
Computational and Structural Biotechnology Journal 15 (2017) 161–167

Contents lists available at ScienceDirect

journa l homepage: www.e lsev ie r .com/ locate /csb j
Mini Review
Mini-review: In vitro Metabolic Engineering for Biomanufacturing of
High-value Products
Weihua Guo 1, Jiayuan Sheng 1, Xueyang Feng ⁎
Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
⁎ Corresponding author.
E-mail address: xueyang@vt.edu (X. Feng).

1 WG and JS have equal contribution.

http://dx.doi.org/10.1016/j.csbj.2017.01.006
2001-0370/© 2017 The Authors. Published by Elsevier B.V
license (http://creativecommons.org/licenses/by/4.0/).
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 4 November 2016
Received in revised form 12 January 2017
Accepted 15 January 2017
Available online 19 January 2017
With the breakthroughs in biomolecular engineering and synthetic biology, many valuable biologically active
compound and commodity chemicals have been successfully manufactured using cell-based approaches in the
past decade. However, because of the high complexity of cell metabolism, the identification and optimization
of rate-limiting metabolic pathways for improving the product yield is often difficult, which represents a signif-
icant and unavoidable barrier of traditional in vivometabolic engineering. Recently, some in vitro engineering ap-
proaches were proposed as alternative strategies to solve this problem. In brief, by reconstituting a biosynthetic
pathway in a cell-free environment with the supplement of cofactors and substrates, the performance of each
biosynthetic pathway could be evaluated and optimized systematically. Several value-added products, including
chemicals, nutraceuticals, and drug precursors, have been biosynthesized as proof-of-concept demonstrations of
in vitro metabolic engineering. This mini-review summarizes the recent progresses on the emerging topic of
in vitro metabolic engineering and comments on the potential application of cell-free technology to speed up
the “design-build-test” cycles of biomanufacturing.

© 2017 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

For decades, scientists and engineers usemetabolic engineering as a
powerful approach to optimize industrial fermentation processes
through the introduction of directed genetic changes using recombinant
DNA technology. This has become an attractive, sustainable way to pro-
duce molecules [1–3], especially when chemical synthesis is difficult [4,
5].Metabolic engineering aims to endow cellswith improvedproperties
and performance [6]while synthetic biology could create newbiological
. on behalf of Research Network of C
parts,modules, devices and systems, in addition to re-engineering cellu-
lar components and machinery that nature has provided [7]. Through
the integration of metabolic engineering and synthetic biology, efficient
microbial cell factories can be constructed to produce biofuels, biomate-
rials and drug precursors [8].

As high-valued products, biologically active compound is one kind of
the most attractive engineering targets nowadays because many of
them demonstrate important pharmacological activities or biotechno-
logical significance [9]. However, due to the complexity of their struc-
tures which contains multiple chiral centers and labile connectivity
[10], researchers seek microbial production instead of total chemical
synthesis or semisynthesis from isolated precursors. However, these
products often lack optimal production titer and high yield. Till now,
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except for a few examples such as introducing heterologous pathways
into yeast for the large scale production of an anti-malaria drug
artemisinin [11], few valuable biologically active compounds could be
produced at high yield and reach into the stage of large-scale
biomanufacturing. Commodity chemicals is another large group of
chemicals that attracts researchers to use cell-based metabolic engi-
neering for manufacturing, mainly due to concerns of depleting fossil
fuels and climate changes [12]. Biomass produced from plants is the
most abundant renewable resource and is considered to be the cost-
competitive energy and carbon sources that could be converted to pro-
duce biofuels and biochemicals instead of fossil fuels [13]. Recent break-
throughs in synthetic biology and metabolic engineering led to the
production of a series of bulk chemicals such as 1,4-butanediol [14]
and isobutanol [15]. However, cell proliferation is the primary goal of
microorganisms while bioconversions are the side effects. These inher-
ent constraints of living microorganisms prevent them from
implementing some important chemical reactions (e.g., H2 production
from glucose andwater) and prohibit them from achieving the theoret-
ical yield of commodity chemicals.

The unsatisfactory results of large-scale biomanufacturing of high-
value products and commodity chemicals are largely due to two chal-
lenges: complex cell-wide regulation of metabolic pathways, and diffi-
culty in balancing biosynthesis of target products and innate cell
physiology. First, a lot of organisms are difficult to be engineered be-
cause of unknown regulation patterns and the lack of engineering
tools for non-model organisms [16]. Even for model microorganisms
like Escherichia coli and Saccharomyces cerevisiae, which arewell studied
and equipped with a broad spectrum of biomolecular tools to allow
metabolic engineering easily, the effects of heterologous expression of
pathways are often unpredictable to guarantee a high productivity, as
witnessed in metabolic engineering of S. cerevisiae to produce n-
butanol [17] and engineering carbon dioxide fixation in E. coli [18]. In
order to identify optimal biosynthetic systems and discover the best
sets of enzymes, the “design-build-test (DBT)” cycles [19] are often
used. However, the DBT cycles usually take months to finish, as cultur-
ing cells is time consuming. Second, a key challenge in metabolic engi-
neering is balancing the tug-of-war that exists between the cell's
physiological and evolutionary objectives on one side and the engineer's
process objectives on the other [20]. Such conflict of resource allocation
sometimes cannot be well addressed and toxic intermediates could be
built up in the unbalanced pathway thus the manufacturing of high-
value products often ends up with a low titer and yield and a high cost.

Many emerging technologies seek to address these challenges.
Among them, cell-free biotechnology is one of the promising ap-
proaches that offer complementary advantages to in vivometabolic en-
gineering, especially in its potentials of speeding up the DBT cycles [21].
In general, the cell-free biotechnology bypasses the cell growth, and
thus becomes time saving to permit more DBT cycles and avoids the
conflict of resource allocation between cell growth and biosynthesis of
target products. The cell-free biotechnology also uses an open reaction
environment, which allows the easy and precise adjustment of compo-
nents such as cofactors and intermediates during a biosynthetic reaction
[22]. The cell-free biotechnology was first developed in 1961 for the
purpose of elucidating the codon usage [23] and was repurposed for
protein production since the end of the 1990s [24–27]. Recently in late
2000s, the cell-free biotechnologywas further re-engineered toproduce
both biologically active compound and commodity chemicals [28,29,
30]. In this mini-review, we summarized the experimental set-up and
computational modeling of two in vitro metabolic engineering ap-
proaches: cell-free synthetic enzyme engineering and cell-free protein
synthesis (CFPS)-based metabolic engineering (Fig. 1).

2. Cell-free Synthetic Enzyme Engineering

The principle of cell-free synthetic enzyme engineering is to purify
the individual enzymes of a biosynthetic pathway, reconstitute the
pathway and study its performance in vitro. Formore than 100 years, bi-
ologists have sought to excise complete enzymatic pathways from their
native cellular environments for biochemistry research [31]. In vitro
analysis of metabolic pathways is becoming a powerful method to
gain fundamental understanding of biochemical transformations, to re-
veal themechanisms of enzymatic reactions and kinetics, and to identi-
fy key metabolites and feedback control of enzyme activities.
2.1. Functional Investigation of Natural Enzymes and Metabolisms

As a powerful method to investigate natural enzymes and metabo-
lisms, some remarkable achievements have been reported. One remark-
able example is the study of the bacterial fatty acid synthases. Although
being investigated extensively at the genetic and enzymatic level, it is
still not easy to manipulate enhanced production of specific fatty acids
because of the complex cell-wide regulation of fatty acid synthesis. In
2010, Liu et al. revealed the strong dependence of fatty acid synthesis
on malonyl-CoA availability and several important phenomena in fatty
acid synthesis by a quantitative investigation of the fatty acid biosynthe-
sis and regulation in a cell-free synthetic enzyme system [32]. Following
these discoveries, Yu and colleagues reported an in vitro reconstitution
of the fatty acid synthase derived from E. coli by overexpressing all
nine fatty acid biosynthesis (Fab) enzymes and the acyl carrier protein
(ACP) in the natural E. coli host, and purifying the enzymes to homoge-
neity. Upon supplementing the ten protein species with acetyl-CoA,
malonyl-CoA andNADPH, C14-C18 fatty acidswere observed in the sys-
tem, evidenced by 14C-isotope incorporation experiments and subse-
quently via UV-spectrophotometry [33]. The reconstituted multi-
enzyme system has also highlighted that the fine-tuning of each indi-
vidual components could substantially influence the partitioning be-
tween unsaturated and saturated fatty acid products. Similar to fatty
acid biosynthesis, another pathway which synthesizes isoprenoids as
key metabolites in both primary and secondary metabolisms, was
reconstituted in vitro. Basically, in order to develop a route to synthesize
the jet fuel farnesene, Zhu and colleagues reconstituted themevalonate
(MVA) pathway in a cell-free synthetic enzyme system in vitro by ex-
pressing and purifying eight enzymes of the MVA pathway as well as
theα-farnesene synthase froman E. coli host [34]. The purified enzymes
worked in tandem with the requisite NADPH and ATP cofactors to pro-
duce farnesene, as confirmed by gas chromatography–mass spectrome-
try. It was found that the isopentenyldiphosphate (IPP) isomerase was
the most influential factor on the turnover rate of this pathway.

In addition to bacterial pathways, some eukaryotic pathways were
also reconstituted in vitro. The biosynthetic pathways of dhurrin,
which plays an important role in plant defense against pathogens [35],
and camalexin, which is cytotoxic against aggressive prostate cancer
cell lines [36], have been studied in cell-free synthetic enzyme system.
Kahn and colleagues reconstituted the entire dhurrin biosynthetic path-
way in vitro using enzymes from the natural host organism [37].
Through tedious enzyme purification processes, the researchers were
able to obtain all three enzymes, CYP79, glycosyltransferase and
P450ox, in the microsomal fraction of the Sorghum bicolor lysates. It
was found that themicrosomal environment could allow functional ex-
pression of catalytically active CYP79 and P450ox, and thus dhurrin syn-
thesis was observed by radioactive TLC analysis when combining the
three enzymes with 14C-tyrosine, UDP-glucose, and NADPH. In another
study, camalexin pathway was constructed in vitro by purifying three
enzymes: CYP79B2, which catalyzes decarboxylation and N-
hydroxylation of tryptophan to indole-3-acetaldoxamine (IAOx); a sec-
ond P450 enzyme, which was previously unknown and is believed to
catalyze an oxidative coupling of cysteine to IAOx; and CYP71A15,
which decarboxylates and cyclizes the resulting cysteine-indole-3-
acetonitrile (Cys-IAN) compound to form the thiazole ring structure
within camalexin. By using a combination of gene expression data and
protein sequence analysis, Klein and coworkers were able to identify a



Fig. 1. Summary of in vitrometabolic engineering (ME) approaches. 1. In vivometabolic engineering, in whichmodel microorganisms like Escherichia coli and Saccharomyces cerevisiae are
often accompanied with inefficient and time-consuming pathways construction, transformation and fermentation; 2. Cell-free synthetic enzyme engineering, which allows fast pathway
prototyping; however,molecular cloning and enzyme production could be time consuming and the high cost associatedwith production couldmake the process scale-up questionable. 3.
The cell-free protein synthesis (CFPS)-based metabolic engineering, which could accelerate the pathway prototyping in a cytosol mimic environment by using enzymes that are directly
produced in a cell-free system and assembling pathways in a “mix-and-match” fashion.
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P450 enzyme capable of performing theC–S coupling reaction and to re-
constitute the entire camalexin pathway in vitro for the first time [38].

2.2. Production of Biocommodities

Perhaps a more advanced and systematic application of cell-free
synthetic enzyme engineering, especially for reconstituting longbiosyn-
thetic pathways that involves a large number of enzymes for chemical
production purposes [12], is the development of Synthetic Pathway Bio-
transformation (SyPaB) [8]. The development cycle of SyPaB is com-
posed of five parts: (i) pathway reconstruction, (ii) enzyme selection,
(iii) enzyme engineering, (iv) enzymeproduction, and (v) process engi-
neering. The entire SyPaB process can be improved in an iterative man-
ner, which allows gradual improvement to an efficient industrial
process. The DBT cycles of SyPaB have proven to be much faster than
the in vivo systems [8]. As demonstrated in the pioneer work of high-
yield cell-free hydrogen production in Zhang's lab, bulk chemicals
could be potentially manufactured in a cost-effective manner [39].
This cell-free hydrogen synthetic pathway contains four modules: 1) a
chain-shortening phosphorylation reaction for producing glucose-1-
phosphate (G-1-P) catalyzed by glucan phosphorylase; 2) conversion
of G-1-P to glucose-6-phosphate (G-6-P) catalyzed by phosphogluco-
mutase; 3) a pentose phosphate pathway containing 10 enzymes for
producing 12 NADPH per G-6-P; and 4) hydrogen generation from
NADPH catalyzed by hydrogenase. Themaximum hydrogen production
rate reached 3.92mmol of hydrogen per hour per liter of reactor. When
cellobiose was used as the substrate with a reaction time of 150 h for a
complete reaction, the overall yield of H2 was 11.2 mol per mole of
anhydroglucose unit of cellobiose, corresponding to 93.1% of the theo-
retical yields. This yield was more than 2 times higher than the yield
from microbial fermentations which is limited to 4 H2 per mole of glu-
cose [40,41]. In another study, Honda and his coworkers designed an
in vitro non-natural, ATP balanced pathway for n-butanol production
from glucose [42]. This pathway comprised 16 thermostable enzymes
with three modules: 1) generation of two pyruvate and two NADH
from one glucose molecule without ATP accumulation, 2) generation
of acetyl-CoA from pyruvate; and 3) n-butanol production from two
acetyl-CoAs. As a result, one molecule of glucose was able to produce
one molecule of n-butanol, two molecules of CO2 and one molecule of
water. Recently, Opgenorth et al. described a robust, efficient synthetic
glucose breakdown pathway and implemented it to produce bioplastic
PHB [43]. The designed PBG cycle produces a net of 2 acetyl-CoA, 4
NAD(P)H, and 0 ATP for each glucose molecule and 66.6% theoretical
molar yield of carbon due to the release of CO2. Because the PBG path-
way generated more reducing equivalents than are needed to produce
PHB (4 NADPH per glucose produced but only 1 NADPH needed), the
authors designed a NAD(P)H purge valve regulatory nodes which com-
posed of amixture of dehydrogenases to prevent the buildup of NADPH.
Reactions were initiated with 60.7 glucose and continuously monitored
in 10-h cycles by absorbance at 600 nm. It was observed that by the end
of the third cycle, the reaction stopped by the depletion of glucose with
a production of 57±6mMPHB (monomer equivalents), corresponding
to a 94% yield. When reactions were initiated with 109.2 mM glucose,
the system maintained N50% of the maximum activity over the entire
55 h run at room temperature and generated 93.8 ± 6.1 mM PHB, cor-
responding to an 86% yield. The high yield emphasized the importance
of cofactor recycling for SyPaB system. Compared to the microbial pro-
duction of PHB using Cupriavidus necator [44], cell-free synthetic en-
zyme engineering has higher (94%) yield but lower titer (~10 g/L)
than microbial bioprocess (60% yield and 83 g/L titer).

In order to further understand and predict the performance of bio-
logical systems, computational modeling has been commonly applied
[45]. Cell-free synthetic enzyme engineering can bemodeled atmultiple
levels from molecules to modules to systems [46,47]. Compared to
in vivo cell metabolism, the relative simplicity of in vitro biological sys-
tems makes them far easier to simulate processes and predict optimal
enzyme ratios for maximizing product yield and accelerating volumet-
ric productivity. This simplicity could be concluded into five aspects:
1) it is free of complex transcriptional or translational regulations;
2) lower background noises in the defined system; 3) accurate mea-
surements of metabolic components; 4) better defined model parame-
ters, and 5) smaller modeling scales compared to in vivo systems. With
the development of high-speed computers and the accumulation of
huge biological data, numerous computational tools have been devel-
oped to simulate the in vivo cell metabolism and to facilitate the design
of in vivo metabolic engineering [48]. One of the most famous
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computational modeling approaches is the flux balance analysis, which
simulates cell metabolism at genome-scale to provide the potential tar-
get genes for better production of chemicals [49,50]. In addition, anoth-
er commonly used computationalmodel is the kineticmodel, inwhich a
group of differential equations are used to describe the dynamic behav-
iors of concentrations of biological components (e.g., metabolites,
mRNA, and peptides) and are solved by a set of differential equations
with defined kinetic parameters of biological reactions or processes
[51]. To explicitly solve suchmodel, defined kinetic parameters are nec-
essary, which are commonly estimated by fitting the experimental data
with kinetic models. With the estimated parameters, the dynamic re-
sponses of objective biological components can be simulated in specific
conditions. However, one of the limitations of the kinetic model is the
difficulty in obtaining the kinetic parameters, especially the intracellular
kinetic parameters. Ensemble modeling [52], a novel computational ap-
proach constructing the ensemble of all kinetic models with the same
steady state, has been developed to analyze the kinetics allowable by
thermodynamics and to further facilitate the strain design formetabolic
engineering [53–57]. All approaches have been applied in in vivometa-
bolic engineering with tremendous success for rational design of the
host cell [45,48]. However, only a few pioneered studies aim at develop-
ing computational modeling approaches to predict the behaviors of
in vitro synthetic systems, even with the fact that in vitro synthetic sys-
tems could be easier and more precisely described via kinetic models
compared to in vivo systems [45,46]. Recently, a non-linear kinetic
model was used to describe the dynamic behavior of a SyPaB system,
which was able to convert the glucose and xylose from corn stover to
H2 and CO2, by estimating the kinetic parameters with the best fitting
of experimental data [39]. The key enzymes with the largest impact of
the final hydrogen yield and rate were identified by a global sensitivity
analysis based on the kineticmodel. By tuning enzyme loading based on
the identified key enzymes, the volumetric hydrogen productivity was
improved ~3-fold [39]. This improvement demonstrated the value of
computational modeling approach to the SyPaB system. In addition to
enhancing the performance of SyPaB systems, computational modeling
of cell-free synthetic enzyme system was also able to help derive and
test new modeling approach [45,46]. A cutting-edge study attempted
to derive a genome-scale cell-free kinetic modeling approach to simu-
late the biosynthetic capability of important industrial organisms (e.g.,
E. coli) based on the advantages of kinetic modeling in cell-free synthet-
ic enzyme systems [46]. In brief, the authors integrated complex alloste-
ric regulations, which were encoded by simple effective rules and Hill-
like transfer function, with traditional kinetic modeling. By modeling
the kinetic profiles of several hypothetical cell-freemetabolic networks,
it was found that their integrated kinetic modeling approach could cap-
ture both the classic regulatory machinery (i.e., product-induced feed-
back regulation) and the complex allosteric machinery (i.e., non-
competitive inhibition). Recently, a forward designmethod has been re-
ported to establish an in vitro glycolysis biological process,which consti-
tuted of 10 enzymes [58]. The researchers combined online mass
spectrometry and continuous system operation to apply standard sys-
tem theory input functions and used the detailed dynamic system re-
sponses to parameterize a model of sufficient quality for forward
design. This allows the facile optimization of a ten-enzyme cascade to
produce an important intermediate in monosaccharide synthesis, dihy-
droxyacetone phosphate (DHAP) [58].

In summary, cell-free synthetic enzymeengineering is advantageous
to in vivometabolic engineering in speed, simplicity, and easiness ofma-
nipulation. However, there are still several drawbacks associated with
cell-free synthetic enzyme engineering such as SyPaB. For example, in
order to get the purified enzymes, researchers still need to spend nu-
merous time and effort in plasmids construction, expression optimiza-
tion and protein purification. Also, SyPaB was assembled in a complete
artificial manner, which could lead to the instability of certain purified
enzymes and coenzymes [8]. More importantly, the artificial environ-
ment could be dramatically different from the intracellular
environment, which makes the results obtained from SyPaB optimiza-
tion difficult to be transferred into in vivo metabolic engineering. The
cell-free synthetic enzyme system itself, on the other hand, is arguably
difficult in being scaled up for biomanufacturing [59,60].

3. Cell-free Protein Synthesis (CFPS)-based Metabolic Engineering

Akeydifference between the cell-free synthetic enzymeengineering
and the CFPS-based metabolic engineering is that the laborious in vivo
protein expression and purification steps could be bypassed in the lat-
ter, which further speed up the DBT cycles. After decades of improving,
current CFPS is well established, which could yield 200–2300 mg/mL
protein in the batch mode reaction [61–69] and allow the CFPS-based
metabolic engineering. Recently, Jewett et al. [20] reported this novel
CFPS-based metabolic engineering framework for building biosynthetic
pathways by directly synthesizing each enzyme of a biosynthetic path-
way in vitrowith the use of cell-free lysates and mixing multiple crude
lysates to initiate the DBT cycle. A panel of cell-free lysates are selective-
ly enriched and prepared in parallel, in each of which a target enzyme is
overexpressed by using CFPS technology. Their cell-free lysates were
next mixed in a combinatorial manner to construct a mevalonate bio-
synthetic pathway involved in isoprenoid synthesis [70]. Using this
method, Jewett's group rapidly screened enzyme variants, optimized
enzyme ratios, and explored cofactor landscapes for improvingpathway
performance. In the optimized system, mevalonate was synthesized at
17.6 g/L (119 mM) within 20 h compared to the initial titer of 1.6 g/L
generated in 9 h. The fast prototyping and “debugging” of enzymatic
pathways in this CFPS-based metabolic engineering framework offer
unique advantages for metabolic engineering and synthetic biology ap-
plications because of the dramatically improved speed of DBT cycles.
Encouraged by the successes of usingCFPS-basedmetabolic engineering
framework to produce mevalonate, this system was also applied to
prototyping n-butanol biosynthesis [20]. It showed that E. coli lysates
could support a highly active 17-step CoA-dependent n-butanol path-
way derived from Clostridia metabolism involving CoA intermediates
in vitro [20]. In this system, endogenous glycolytic enzymes convert glu-
cose to acetyl-CoA for n-butanol synthesis, another E. coli enzyme
(AtoB) converts acetyl-CoA to acetoacetyl-CoA, and heterologous en-
zymes (Hbd, Crt, Ter, AdhE) convert acetoacetyl-CoA to n-butanol. It
was found that by adding both NAD and CoA with glucose to initiate
n-butanol synthesis, the cell-free system could produce 1.2 g/L n-
butanol. In order to improve pathway performance, the researchers re-
placed someof initial Ter andAdhE enzymeswith a variety of homologs.
In less than a day, they studied 4 Ter and 3 AdhE homologs by using
CFPS-based metabolic engineering framework. Also they demonstrated
the possibility of using linear DNA templates (i.e., linear DNAs such as
PCR products containing the whole expression cassette of the desired
gene) instead of plasmids for pathway prototyping (i.e., an early-stage
method to study the constitution and function of ametabolic pathway),
whichwould further expedite the process as the laborious cloning steps
could be avoided. Finally, the n-butanol production was improved by
200% of the initial starting conditions (up to 1.5 g/L) by optimizing the
performance of different enzymes' sets and adjusting the physicochem-
ical environment.

Currently, no computational modeling approach has been reported
to model the CFPS-based metabolic engineering framework [20,71].
However, the CFPS-based metabolic engineering framework can be
considered as the combination of two different procedures, i.e., cell
free protein synthesis and the SyPaB. In this case, it is possible to com-
bine a CFPSmodelwith the SyPaBmodels that are described in previous
section to simulate and predict theperformance of CFPS-basedmetabol-
ic engineering. In spite of the unknown kinetic parameters of CFPS sys-
tems and the unclear composition of cell lysates [45], several studies
have been implemented to develop various computational modeling
approaches for both PURE system [72] and CFPS systems [72–74]. For
example, one of the pioneered studies was recently implemented to
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derive a kinetic model to describe the gene expression dynamics in a
commercial CFPS system producing green fluorescent protein (GFP) as
the target [75]. By measuring the GFP expression and mRNA levels in
the CFPS system, the authors estimated the unknown kinetic parame-
ters in themodel and predicted both DNA concentration and the exper-
imental time as the key factors impacting the protein titer of CFPS [75].
In addition, computational models of CFPS systems can also elucidate
the unknown impact of biological phenomena [45,76]. In recent studies,
it was found that increasingmolecular crowding of CFPS system caused
by crowding reagents or coacervation of encapsulated circuits, can im-
prove the titer of protein production dramatically [76]. By modeling
the transcription–translation reactions of CFPS system with the kinetic
modeling approach, the author demonstrated that the improved pro-
tein production induced by coacervation was caused by the increased
association constant of T7 polymerase as well as the kinetic transcrip-
tion constant in the coacervated compartments [76]. Another hybrid ki-
netic model that combined a biological model with an agent-based
model (or chemical kinetic model) has been developed to describe the
in vitro protein synthesis and enabled the investigation of the polysome
dynamics under the non-steady-state and non-continuum conditions
[47]. We also want to point out that in addition to modeling the
whole protein synthesis processes such as transcription and translation,
many studies were also focusing on other bio-processes, e.g., peptide
chain elongation [77] and ribosome recycle [78,79], which play pivotal
roles in the entire protein synthesis.

When using kinetic models to simulate CFPS process, one of the
major limitations is the ignorance of the transcriptional and translation-
al regulations (e.g., transcription factors) by using the kinetic parame-
ters with constant values [80] to reflect time-dependent processes. In
addition, the predictive capability of kinetic models is limited due to
the unknown parameters [80]. Therefore, it is necessary to find an alter-
native algorithm with higher predictive capability to facilitate the de-
sign of CFPS systems. Machine learning, a central field of artificial
intelligence, is an ideal choice for predictive analysis to devise complex
systems with high non-linearity and multi-dimensionality [81–83].
Generally, machine learning can automatically learn the instinct corre-
lations between the inputs and outputs of the systems, leading to a pre-
dictive model or algorithmwith high prediction accuracy. For example,
by training the machine-learning algorithm with paired inputs (e.g.,
CFPS experimental designs and properties of target proteins) and out-
puts (e.g., protein productions), the trained algorithm can predict the
outputs from system inputs with high accuracy. Although CFPS is al-
ready simplified from the in vivo protein synthesis, it still has highly
non-linear regulations and large-dimensional impact factors for the
protein production [81]. Recently, a pioneering study has applied a ma-
chine learning algorithm (neural network) to the CFPS systems with
paired data of different experimental designs and corresponding pro-
tein productions for learning CFPS systems and optimizing protein pro-
duction [51]. The authors first set up a CFPS system to synthesize
enhanced GFP (eGFP) by using commercial E. coli CFPS kits with fixed
basic reaction system. Next, the authors chose 11 variable components
in CFPS system and specified a vector of values for each component to
build up a space of possible experiments. By using a robotic workstation
for liquid handling, a larger number of CFPS experiments were imple-
mented in a high-throughput manner [81]. Starting with randomly se-
lected 49 experiments, the machine-learning algorithm started to
learn the CFPS experiments and offered optimized designs of CFPS sys-
tems with improved eGFP production. With the optimized experimen-
tal design, the workstation implemented the next generation of
experiments to generate newexperimental data and to validate the pre-
dictions. By repeating this DBT cycles for eight times, themachine learn-
ing algorithm provided an optimized experimental design with ~3.5-
fold improvement of eGFP production. Besides the improved protein
production, the large-scale CFPS experiments and machine learning al-
gorithm also uncovered kinetic biological insights to better understand
the CFPS system [81]. This is the first time that machine learning
algorithms have been integrated with CFPS systems without an arbi-
trary hypothesis, which demonstrates the capabilities and advantages
of machine learning algorithms for better understanding the CFPS
process.

4. Summary and Perspectives

Compared to traditional in vivo metabolic engineering, in vitro met-
abolic engineering has unique advantages in speeding up the DBT cy-
cles. The key conceptual innovation of in vitrometabolic engineering is
that the components in the DBT cycle can be purified enzymes or cell-
free lysates rather than genetic constructs, thus avoiding engineering
the complex cell metabolism and the tedious pathway construction.
For the two in vitro metabolic engineering approaches discussed in
this study, the major obstacles for cell-free enzymatic pathway engi-
neering are the lack of stable building blocks as standardized parts
and instability of costly coenzymes. By engineering thermo-stable en-
zymes and using them in in vitro metabolic engineering, the high pro-
ductivity is likely to be maintained [8,84]. CFPS-based metabolic
engineering is arguablymore advantageous because it could free the re-
searchers from tedious protein purification and bypass the cofactor is-
sues in a cytosol mimic environment. However, in vitro metabolic
engineering approaches face the challenge of scaling up. Because of
the high cost associated with the energy source (e.g. ATP) used in the
cell-free system, the large-scale biomanufacturing is too expensive
even when producing high-value products. Additionally, when using
cell-free synthetic enzyme engineering, the stability of the enzymes
could cause the reduced productivity during biosynthesis. Nevertheless,
novel strategies from synthetic biology and protein engineering are
being developed to address both challenges. For example, Caschera et
al. have coupled polyphosphate and maltodextrin for bypassing sub-
strate level phosphorylation based on expensive energy sources
(phosphoenolpyruvic acid (PEP) and 3-PGA) [85]. Swartz et al. demon-
strated that the costly NTP could be substitutedwith economicNMP and
by shifting the energy source from expensive compounds to glucose.
Thus, the cost–benefit of cell-free protein synthesis (g-product/$ re-
agent cost) is as much as 2.4 times higher than of reactions using costly
PEP [67]. After decades' effort, cell-free protein synthesis could reach
2.3 mg/mL protein in the batch mode reaction which was comparable
to in vivo expression levels [86]. Finally, although the scale-up of cell-
free protein synthesis for in vitrometabolic engineering remains a chal-
lenge to be demonstrated, a milestone of the scale-up of CFPS has been
achieved to expression complex high valued proteins in a 100 L reactor
[59]. Refactoring the in vitro optimized pathway back into the host cells
might be a future direction to address this scale-up problem. However,
issues of lethality, toxicity of some metabolic intermediates and the
compartmentalization of some pathways in the eukaryotic organisms
should be aware during this process andmight need additional DBT cy-
cles to further improve the productivity. Meanwhile, to simulate and
guide the design of in vitro metabolic engineering, data-driven algo-
rithms (e.g., machine learning and statistical learning) represent prom-
ising approaches, especially with the fast and high-throughput
biological measurements of experimental data [83]. The data-driven al-
gorithms can take advantage of the “Big Data” to uncover the biological
insights behind the biological systems, and to derive the predictive
models for predicting the outputs from corresponding inputs. Currently,
one of the bottlenecks to develop the data-driven models is the limita-
tion of high-quality andwell-curated data [82]. Although several studies
of in vitro metabolic engineering have been implemented and pub-
lished, there is no database that curates these studies in a standardized
manner, which obstructs the development of data-driven algorithms.
The construction of such database requires both time and labors. How-
ever, it is still feasible to construct large-scale database including thou-
sands of datasets in three to five years. With sufficient experimental
data and appropriate data-driven algorithms, the internal complex in-
teractions in the in vitro biological systems could be captured and
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explicitly elucidated in near future. It is worth noting that, biased data
for training the data-driven algorithm will mislead the data-driven
models. Therefore, using the equally distributed data to train the data-
driven models is necessary to derive a data-driven algorithm with
high prediction accuracy. To conclude, in vitro metabolic engineering,
although still being on the infant stage, has great potentials in speeding
up the DBT cycles of biomanufacturing and serves as an alternative ap-
proach to in vivometabolic engineering.
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