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Abstract

Disease prediction tools improve management efforts for many plant diseases. Prediction
and downstream prevention demand information about disease etiology, which can be com-
plicated for some diseases, like those caused by soilborne microorganisms. Fortunately, the
availability of machine learning methods has enabled researchers to elucidate complex rela-
tionships between hosts and pathogens without invoking difficult-to-satisfy assumptions.
The etiology of a destructive plant disease, Verticillium wilt of mint, caused by the fungus
Verticillium dahliae was reevaluated with several supervised machine learning methods.
Specifically, the objective of this research was to identify drivers of wilt in commercial mint
fields, describe the relationships between these drivers, and predict wilt. Soil samples were
collected from commercial mint fields. Wilt foci, V. dahliae, and plant-parasitic nematodes
that can exacerbate wilt were quantified. Multiple linear regression, a generalized additive
model, random forest, and an artificial neural network were fit to the data, validated with 10-
fold cross-validation, and measures of explanatory and predictive performance were com-
pared. All models selected nematodes within the genus Pratylenchus as the most important
predictor of wilt. The fungus after which this disease is named, V. dahliae, was the fourth
most important predictor of wilt, after crop age and cultivar. All models explained around
50% of the total variation (R? < 0.46), and exhibited comparable predictive error (RMSE <
1.21). Collectively, these models revealed that the quantitative relationships between two
pathogens, mint cultivars and age are required to explain wilt. The ascendance of Praty-
lenchus spp. in predicting symptoms of a disease assumed to primarily be caused by V.
dahliae exposes the underestimated contribution of these nematodes to wilt. This research
provides a foundation on which predictive forecasting tools can be developed for mint grow-
ers and reminds us of the lessons that can be learned by revisiting assumptions about dis-
ease etiology.
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Introduction

Diseases of plants and animals jeopardize food security, public health, and biodiversity [1, 2].
Prevention of disease epidemics requires information about disease monitoring and surveil-
lance [3], biosecurity [4], and prediction of disease emergence [5]. “Prediction”, however, “is
difficult, especially about the future” [6, 7]. The accuracy of predictions is limited by the under-
lying predictability of the system and recognition of all possible outcomes [8]. The availability,
use, and interpretation of data as well as the analytical methods used to detect patterns therein
also constrain accurate predictions [8]. Further, for infectious diseases, prediction efforts are
predicated upon identification of causes of a disease and the conditions that favor outbreaks.

Operationally, disease etiology is elucidated with an inductive and pathogen-centric para-
digm, where the organism that causes a disease is identified with Koch’s postulates and thereaf-
ter is assumed to be responsible for all symptoms associated with and typified by the original
host [9]. Conversely, when the etiology of a disease is complex and evades this reductionist
approach [10], a deductive, association-oriented, strategy may be employed to identify candi-
date biotic and or abiotic factors associated with disease symptoms [11]. Hypothetically, these
approaches should converge on the same causal organism(s). In practice, however, the road to
causation can be circuitous.

Early dying of potato plants, for example, is a disease with complex etiology that can reduce
yields by up to 50% [12]. Despite the potential for devastating losses, symptoms of this disease
can be nearly indistinguishable from normal plant senescence but for the premature stage at
which infected plants senesce [12, 13]. The subtle expression of disease symptoms coupled
with the multitude of organisms associated with these symptoms stifled the elucidation of the
etiology of this disease [13, 14]. After years of international research efforts, it was discovered
that early dying is primarily caused by the fungus Verticillium dahliae Kleb. but other fungi,
bacteria, and nematodes can intensify disease expression in different geographic areas [13, 14].
Identification of the organisms responsible for early dying has enabled targeted management
strategies that can limit the intensity of epidemics [15].

With the growing awareness of disease complexes like potato early dying, non-culturable
microbes, and microbiomes, Koch’s postulates have become difficult to complete for some dis-
eases [11, 16]. Moreover, disease prediction and management strategies are non-starters without
fundamental etiological information. Fortunately, statistical and machine learning methods that
can be used to elucidate complex microbial interactions have become available [17]. The conflu-
ence of accumulating evidence that diseases can be caused by more than one organism and the
availability of advanced statistical learning tools has enabled researchers to revisit the assumptions
of the disease etiology paradigm, namely that one pathogen causes one disease. The precedent for
questioning assumptions demonstrates that this is a tried-and-true approach for gathering intelli-
gence [18] and can be especially impactful for plant and animal diseases [19].

Plant diseases caused by soilborne microorganisms are especially apt targets for the applica-
tion of these methods because they are often caused by bi-, tri-, or multi-variate groups of
microbes. Verticillium wilt of mint, for example, can be exacerbated by inter-kingdom interac-
tions between V. dahliae and root lesion nematode that culminate in disease over the course of
years [20, 21]. While both the fungus, V. dahliae, and the root lesion nematode, Pratylenchus
penetrans (Cobb, 1917) Filipjev and Schuurmans Stekhoven, 1941, cause disease separately
[21, 22] symptoms caused by both organisms together can be especially severe depending on
the strains of V. dahliae present [21], the mint cultivar, and the age of the mint field. While
most mint crops are harvested annually or bi-annually for 4-5 years, some crops grown in
highly organic alluvial soils can be grown for up to 20 years. Prevention of Verticillium wilt
outbreaks in mint production systems therefore requires development of predictive and
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explanatory models that synthesize important predictors, guide future control efforts, and elu-
cidate the relationships between the factors that contribute to disease outbreaks.

While the importance of and interactions between V. dahliae and P. penetrans are under-
stood in controlled laboratory environments, the role of these organisms in driving disease
epidemics under fields conditions are not clear. The objective of this research was to reevaluate
the disease etiology of Verticillium wilt of mint by identifying the primary drivers of disease.
Soil samples were collected from commercial mint fields that varied in location, the cultivar of
mint planted, the age of the crop, and the history of wilt. From each sample, V. dahliae and
plant-parasitic nematodes were quantified. The relationships between wilt symptoms and V.
dahliae, plant-parasitic nematodes, crop cultivar, and stand age were evaluated with four dif-
ferent supervised learning methods. These methods all identified Pratylenchus spp. as the most
important driver of wilt symptoms. To ensure that Pratylenchus spp. were imperative to symp-
tom expression and dissociate the effects of these nematodes from V. dahliae a bioassay was
completed in desiccated field soils that were dried such that V. dahliae could survive, but Pra-
tylenchus spp. could not survive. Overt symptoms of wilt were not observed in bioassay plants
grown in soil devoid of Pratylenchus spp. The importance of reevaluating disease etiology to
learn about the conditions under which diseases are expressed is discussed.

Materials and methods
Estimation of plant parasites from commercial mint fields

Soil samples were collected between November and February of each sampling year using a hier-
archical design where commercial peppermint (Mentha x piperita L.), native mint (M. spicata L.),
and spearmint (M. x gracilis Sole.) were selected using a model-based sampling approach to
envelop a wide range of pathogen inoculum levels. Sites within fields were selected using a design-
based sampling approach to reduce bias within each field. Soil samples were collected from private
land with the permission of the land owners. More specifically, a total of 30 fields were sampled in
Washington state (n = 17) and Oregon (n = 13) using a stratified random sampling (Fig 1). Three
fields in Oregon and two in Washington were sampled consecutively for 2 years and three fields
were sampled consecutively for 3 years. Each field was divided into between two to four quarters
in order to split fields into approximately equally-sized swaths of land from which samples were
collected. From each quarter 30 soil samples were collected with a soil corer along six transects
from the top 23 cm of soil. The 30 soil samples from each quarter were subsequently bulked into
one composite sample. In total, 96 soil samples were used for further processing. The ages, in
years, of the crops from these fields ranged from 1 (n =48),2 (n =25),3 (n=17),to 4 (n = 6).
The total sample count was not 30 fields x 4 quarters/field = 120 samples because some fields were
comprised of only 2 quarters. Soil samples were stored in slightly opened Ziploc bags (SC John-
son, Racine, WI) at 4°C before V. dahliae and nematode quantification.

From each soil sample Verticillium spp. were quantified with two independent methods.
Firstly, Verticillium spp. were quantified with a culture-dependent assay. Specifically, 0.1 g sub-
samples of soil were delivered by Anderson air sampler onto 10 plates of semi-selective
medium NPX [23] for a total of 1 g [24]. Plates were incubated in darkness for two-weeks at
22°C. Following the incubation, soil was washed from the surface of the plates and Verticil-
lium-like colonies were counted.

Secondly, Verticillium spp. were quantified with a QPCR assay described by [25]. Genomic
DNA was first extracted using the MP FastDNA SPIN Kit for Soil (MP biomedicals, Santa
Ana, CA) with several modifications (S1 Protocol and http://dx.doi.org/10.17504/protocols.io.
vwie7ce). The master mix for the 20 pl qPCR reaction included 10yl of 2X ABI SYBR Select
Mastermix (Applied Biosystems, Foster City, CA), 2l of each primer (10uM), 2ul of DNA,
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Fig 1. Map of collection sites and sampling scheme. Commercial mint fields in Washington and Oregon states where soil samples were collected and
Verticillium wilt symptoms were monitored. Red circles represent fields in Washington while orange circles represent fields in Oregon. The circular inset
illustrates the sampling scheme used where lines represent transects and filled circles represent sampling points.

https://doi.org/10.1371/journal.pone.0211508.9001

and 4l of water. For each sample, three technical replicates were included. To obtain data
from samples with potential PCR inhibitors, both non-diluted and 10-fold diluted samples
were analyzed. Thermocycler conditions included an initial 10 minute denaturation at 95°C,
40 cycles of denaturation, annealing, and extension at 30s for 95°C, 60°C, and 72°C, where
data was collected. Melt curve analysis started at 60°C and increased to 90°C at a rate of 0.3°C/
s. Because the primers for the intergenic-spacer region (IGS) used in the qPCR assay above
amplify several Verticillium spp., we used a [26] multiplex PCR assay to distinguish two Verti-
cillium spp. that were similar morphologically.

Nematode extraction, identification and enumeration was competed by Dr. Russ Ingham
and Nadine Wade at Oregon State University (Corvallis, OR.). Nematodes were extracted
from 250 g soil samples with a modified density centrifugation method [27, 28]. Live nema-
todes were then identified to genus or species level using morphological features and counted
with stereo (40X) and compound (400X) microscopes. Nematode densities were adjusted for
soil moisture and are expressed as the number of nematodes/250 g of dry soil.

Estimation of Verticillium wilt symptoms in commercial mint fields and
with a bioassay

Wilt symptoms were quantified in commercial mint fields planted with peppermint, spear-
mint, and native mint during the growing season after soil samples were collected. While both
peppermint and spearmint are susceptible to V. dahliae native mint is more resistant to V. dah-
liae and co-infection with P. penetrans [21]. Therefore, native mint fields were sampled and
plants were included in the bioassay to serve as negative controls. Wilt assessment was com-
pleted for each field just before the first and or second harvest for each season. For each field,
the number of wilt foci and the number of wilted stems per focus were quantified along the
same six transects within each field quarter used for collecting soil samples.

To separate the effects of V. dahliae and Pratylenchus spp. on wilt, symptom development
was monitored in mint plants grown in desiccated field soil, where V. dahliae [24] but not Pra-
tylenchus spp. was assumed to survive [29]. Specifically, soil collected from commercial mint
fields was homogenized and dried in a greenhouse for 4 weeks at an average temperature of
23.5°C (£11.5°C). Soil was then aerated by incorporation of perlite (Supreme Perlite Co., Port-
land, OR.) in a 1:1 ratio. Susceptible and resistant mint species, M. gracilis and M. spicata,
respectively, were subsequently planted in the prepared soil and monitored for disease symp-
toms. Plants were arranged in a randomized complete block design. Because wilt symptoms
accrue over time and may not be expressed within a year, stem sections of mint plants were
also assayed for colonization by V. dahliae. Stems from mint plants were harvested, sectioned
into 1-cm pieces, surface disinfested with 0.5% NaOCI for two minutes, dipped in sterilized
water, and plated onto NPX medium. Stem sections were incubated at 22°C for 4 weeks and
inspected weekly for Verticillium-like colonies. Verticillium spp. were identified based on mor-
phological features, as described in [30].

Prediction of Verticillium wilt of mint in commercial mint fields with
statistical learning tools

Relationships between wilt symptoms and the abundance of V. dahliae DNA, Pratylenchus
spp. counts, the cultivar of mint, and the age of the crop were visualized with locally weighted
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scatterplot smoothing (lowess) surfaces for continuous predictors and with boxplots for cate-
gorical predictors. The smoothness of the lowess surfaces were constrained with smoothing
parameters of 0.5. The influence of two predictors on wilt symptoms were visualized with con-
tour plots. Graphs were generated in R (version 3.5.0, R Foundation for Statistical Computing,
Austria) with the”ggplot2” [31] and “plotly” packages [32].

The relationship between wilt and the candidate predictors was determined with four
supervised learning methods. Estimates of each pathogen were treated as random effects
where the mint cultivar and age of the mint crop were treated as fixed effects. Two models
with explanatory potential, namely multiple linear regression (MLR) and a generalized addi-
tive model (GAM), were used to provide interpretative guidance about the relationships
between disease and candidate predictors. To complement these explanatory models, two
methods with predictive strength, namely random forests (RF) and artificial neural networks
(ANN), were used to advance disease prediction. Our expectation was the RF and ANN algo-
rithms would outperform the MLR and GAM models in predictive performance but that the
MLR and GAM would provide interpretable parameter estimates.

All four models were fit and 10-fold cross-validated. The importance of each explanatory
variable was quantified using the ‘varImp’ function within the “caret” package in R. The
explanatory performance of each model was assessed and compared across all models with
adjusted R, Predictive performance was assessed and compared with the root mean squared
error (RMSE), repeated 10-fold cross validation, and by comparison of predicted and observed
data. Explanatory and predictive performance were compared across all supervised learning
methods with tests derived from [33] and [34]. P-values were adjusted with a Bonferroni cor-
rection. All analyses were completed in R with the “caret” package [35].

The MLR model was used to provide interpretable parameter coefficients to explain rela-
tionships between wilt and explanatory variables. Exploratory data analyses and diagnostics
were completed to ensure that the assumptions of normality, homoscedasticity, linearity, and
orthogonality were satisfied before fitting the MLR model. Putative predictors and interaction
terms were then selected with best subset model selection. Finally, the MLR model was fit with
the “caret” package in R [35].

The GAM was used to provide flexible, non-linear, relationships between wilt and the explana-
tory variables. GAMs are extensions of generalized linear models [36] where the response variable
is related to smoothed functions of the predictors with a link function. GAM was fitted with the
‘gam’ method within the “caret” package in R. Regression splines were used for smoothing terms.
Smoothing parameters were estimated with the Generalized Cross Validation criterion.

The RF algorithm was used to complement the explanatory capacity of the MLR and GAM
models with predictive capability. RF is an ensemble method that uses random subsets of pre-
dictors to build hundreds to thousands of decision trees over which estimates are averaged to
yield predictions for regression problems or modes for classification problems [37]. Hyper-
parameters were tuned over parameter space with a grid search. A total of 1,000 trees were
used to initiate the RF algorithm with the ‘rf method within the caret “package” in R.

The ANN algorithm was used, like the RF algorithm, to supplement the explanatory abili-
ties of the MLR and GAM models with predictive power. ANN are algorithmic analogs of bio-
logical neural networks. ANN are comprised of nodes that transform inputs, in the form of
predictors, to predictive outputs after transmission through a series of hidden nodal layers.
Hidden layers combine inputs in weights proportional to their strength with transfer functions
that ultimately yield outputs [38]. Hyperparameter tuning for the number of units in the hid-
den layers was set between 1 to 10 and the weight decays were set from 0.1 to 1. The model
averaged neural network algorithm was iterated 5,000 times with the ‘avNNet” method in the
“caret” package in R.
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Results

Estimation of plant parasites from commercial mint fields

V. dahliae was detected from all 30 fields (Fig 2A); V. longisporum was not detected from any
fields sampled. Estimates of V. dahliae DNA are presented because estimates of inoculum are
correlated with DNA estimates (r = 0.60, P < 0.0001) and the gPCR method was more sensi-
tive than the plating method (S1 Fig). Estimates of V. dahliae varied across commercial fields
sampled in Washington and Oregon from 0 to 135 colony-forming units /g of soil and from 5
to 28,800 femtograms (fg) of DNA (Fig 2). This range of inoculum levels enabled prediction
over several orders of magnitude without extrapolation.

Both plant-parasitic and non-parasitic nematodes were detected in the fields sampled. Esti-
mates of all nematodes varied across fields (Fig 2B and S2 Fig). Of the plant-parasitic nema-
todes detected P. penetrans [39], P. neglectus [40], P. thornei [41], Paratylenchus sp. [42],
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Fig 2. Wilt symptoms and pathogen abundance. Boxplots (minimum, first quartile, median, third quartile, and
maximum) of (A) Verticillium dahliae inoculum, (B) counts of Pratylenchus spp. nematodes, (C) and Verticillium wilt
symptoms quantified from commercial mint fields in Washington and Oregon states.

https://doi.org/10.1371/journal.pone.0211508.g002
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Criconemella sp. [39], and Meloidogyne hapla [43] are parasitic towards mint species. Aside
from the Pratylenchus spp. most of the nematodes were not detected from most fields (52 Fig).
Counts of Pratylenchus spp. ranged from 0 to 4,345 nematodes/250g of soil (Fig 2B).

Estimation of Verticillium wilt symptoms in commercial mint fields and
with a bioassay

Wilt symptoms, expressed as the number of foci/field, were linearly related to the number of
wilted stems/focus, therefor only the former is presented henceforth. Wilt symptoms varied
across the fields sampled and ranged from 0 to 87 foci/quarter (Fig 2C). Overt wilt symptoms,
typified by chlorosis, necrosis, anthocyanescence, leaf asymmetry, wilting, and stunting, were
not observed in the bioassays where resistant and susceptible mint cultivars were grown in des-
iccated field soil. However, V. dahliae was isolated from the stems of both susceptible and
resistant mint cultivars grown in bioassays using soil from 9/30 and 8/30 fields, respectively
(S3 Fig).

Wilt symptoms were not linearly related to V. dahliae inoculum levels (Fig 3A) but were
roughly linearly related to Pratylenchus spp. counts (Fig 3B). Because linear or non-linear rela-
tionships between each organism and wilt symptoms did not appear to explain most of the var-
iation in these data, additional predictors were added before the learning methods were fit and
validated. For model building, all Pratylenchus spp. were pooled together because P. penetrans,
P. neglectus, and P. thornei are all associated with mint crops [39, 40, 41], and prediction with
each species alone would require extensive imputation and additional observations.

Prediction of Verticillium wilt of mint in commercial mint fields with
statistical learning tools

Wilt symptoms were not strongly related to V. dahliae inoculum likely because of several influ-
ential observations that pulled the smoothed lowess line away from the 45 degree line expected
for a positive correlation (Fig 3). Wilt was positively related to counts of Pratylenchus spp.
until approximately 50 nematodes were present, after which wilt symptoms asymptote (Fig
3B). The severity of wilt was dependent on the mint cultivar with symptoms being most vari-
able in the peppermint fields, were greatest in the spearmint fields, and lowest in the native
mint fields (Fig 3C). Wilt increased with increasing age of the mint crop up until the 4 year,
where available data were too sparse to make inferences (Fig 3D). The combined influence of
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Fig 3. Wilt symptoms as a function of biotic and abiotic predictors. Verticillium wilt symptoms are presented as a
function of (A) inoculum of Verticillium dahliae, (B) counts of Pratylenchus spp., (C) mint cultivars, and (D) age of
mint crops.

https://doi.org/10.1371/journal.pone.0211508.9003
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V. dahliae and Pratylenchus spp. on wilt illustrates that disease intensity was greatest under
two conditions: when V. dahliae inoculum was high and Pratylenchus spp. counts were low
and in the inverse scenario (Fig 4A). The combined influence of mint cultivars and the age of
the mint crop on wilt severity illustrates that disease intensity was greatest in 2 to 3 year old
spearmint crops and 3 year old peppermint crops (Fig 4B).

The assumptions required to interpret the MLR model were not satisfied, except for orthog-
onality, which was satisfied by inspection of scatterplot matrices and variance inflation factor
scores, which ranged between 0.8 and 1.2. Remedial measures were not pursued to enable
comparisons across all supervised learning methods. V. dahliae inoculum, counts of Praty-
lenchus spp., mint cultivars, and the age of mint crops were selected as predictors with best
subsets selection. Coefficients, test statistics, and P-values are presented in Table 1. All predic-
tors were positively associated with wilt, except for four year old mint fields which exhibited a
slight negative but insignificant relationship with wilt (Table 1). Of the predictors, counts of
Pratylenchus spp. imparted the strongest effects on wilt severity (Fig 5).

Like the MLR model, the GAM model, RF, and ANN algorithms identified Pratylenchus
spp.» the age of the mint field, and the cultivar of mint as the most important predictors of wilt
(Fig 5). The strength and significance of the coefficients from the GAM model were compara-
ble to the MLR model but differed in form for the continuous predictors. The relationships
between wilt and both V. dahliae and Pratylenchus spp. were non-linear, as illustrated by effec-
tive degrees of freedom values greater than 1 (Table 1).
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Table 1. Effects of predictors on wilt symptoms from the two statistical models.

Predictor MLR GAM
partial slope t P-value edf F P-value
log(Verticillium dahliae DNA (fg)) 0.17 1.66 0.03 4.23 3.34 0.008
log(Pratylenchus spp. /250 g of soil) 0.44 7.12 <0.0001 8.60 9.77 <0.0001
estimate t
Mint cultivar
peppermint 2.41 3.41 0.007 1.32 2.71 0.008
spearmint 1.60 1.55 0.13 0.61 1.10 0.32
native spearmint
Field age
1 year . . . . . .
2 years 0.36 1.33 0.32 0.15 0.22 0.82
3 years 1.08 3.45 0.004 1.11 3.86 0.003
4 years 0.14 -0.24 0.83

Coefficient estimates, test-statistics, the effective degrees of freedom (edf), and P-values for predictors of wilt used in multiple linear regression (MLR) and generalized

additive models (GAM). Dots represent instances where insufficient data prevented estimation within a row or column.

https://doi.org/10.1371/journal.pone.0211508.t001

All supervised learning methods explained approximately 50% of the variation in the data
(Fig 5). Adjusted coefficients of determination (R®) were not statistically different from each
other (P > 0.37). Similarly, the predictive performances, expressed as RMSE, were comparable
across each learning method and ranged from 1.14 to 1.21 (Fig 6). Further, RMSEs differed
only between the GAM and ANN (P = 0.03). Finally, all methods predicted wilt when no wilt
was observed and underestimated high levels of wilt (Fig 6).
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Fig 5. Contribution of each predictor to wilt. Importance of Verticillium wilt predictors and explanatory
performance, expressed as coefficients of determination (R?), of (A) the multiple linear regression model, (B)
generalized additive model, (C) random forest, (D) and artificial neural networks.

https://doi.org/10.1371/journal.pone.0211508.g005
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Fig 6. Predictive performance of statistical learning methods. Verticillium wilt symptoms predicted by the
supervised learning methods versus observed and predictive performance, expressed as root mean square error
(RMSE), of the (A) multiple linear regression model, (B) generalized additive model, (C) random forest, and (D)
artificial neural networks.

https://doi.org/10.1371/journal.pone.0211508.g006

Discussion

Prevention of disease epidemics depends on a variety of factors, including but not limited to
accurate etiological information and predictive tools. The availability of advanced statistical
learning tools has enabled researchers to elucidate complex host-pathogen interactions and
generate predictive tools to prevent epidemics. Supervised machine learning techniques were
used here to describe and predict the relationships between symptoms of Verticillium wilt of
mint and candidate predictors. The fungus that causes symptoms typified by Verticillium wilt,
V. dahliae, was a weak predictor of wilt. Plant-parasitic nematodes within the genus Praty-
lenchus, however, were paramount to all other predictors, including mint cultivar, crop age,
and V. dahliae inoculum levels. All of the supervised learning methods used here, from the
proverbial MLR to the more modern RF and ANN, explained and predicted wilt comparably.
These results underscore the importance of returning to first principles to reevaluate assump-
tions about disease etiology and ultimately cultivate a comprehensive understanding of disease
epidemiology to enable prevention.

The plant pathogenic fungus, V. dahliae, after which Verticillium wilts are named was con-
sistently identified as the weakest predictor of mint wilt by all supervised learning methods
used herein. This discovery might be explained by the presence of a diversity of V. dahliae
strains that vary, phenotypically, in the ability to cause disease on mint [44]. This explanation
is corroborated by the occurrence of high levels of wilt, presumably caused by highly aggressive
strains, in soils infested with low levels of V. dahliae inoculum and vice versa (Fig 3). The cul-
tural and sequence-based methods used here to quantify V. dahliae do not differentiate among
strains of this fungus and, therefore, might overestimate effective inoculum, especially if strains
that are not pathogenic towards mint are present. Low levels of disease in some mint fields
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where soils were infested with V. dahliae might be explained by soils that suppress disease
symptoms despite the presence of V. dahliae. Although there are no documented examples of
suppressive soils in the Verticllium wilt of mint pathosystem, suppressive soils are operative in
some potato field soils infested with Verticillium dahliae [45]. Spatial and temporal variability
[46] might have also contributed to the smaller than expected contribution of V. dahliae to
wilt expression. For example, wilt varies across fields and some symptoms may have escaped
visual detection because they are expressed at the scale of one leaf in a field comprised of 100
acres. Similarly, wilt varies through time [46] and it is possible that we sampled prior to symp-
tom expression for some of the younger crops. The observation that overt wilt symptoms were
not observed in susceptible or resistant bioassay plants, despite low incidences of infected
stems, provides evidence that the strains present in the fields sampled were either not patho-
genic towards mint or needed more time to incite symptoms.

Plant-parasitic nematodes in the genus Pratylenchus were strongly associated with wilt
symptoms assumed to be caused by the fungus V. dahliae. Specifically, Pratylenchus spp. were
at least twice as important in explaining wilt symptoms as the other predictors, regardless of
the learning method used. The importance of Pratylenchus spp. in contributing to symptoms
of Verticillium wilt might be explained by the similarity of symptoms induced by V. dahliae
and P. penetrans in mint. For example, both organisms can induce stunting and anthocyanes-
cence in susceptible mint plants [22, 47] but only V. dahliae causes asymmetrical leaf morphol-
ogy [47] and only P. penetrans weakens mint roots [22]. Differentiation of these symptoms,
therefore, requires astute inspection and manipulation of each plant. Conversely, the organ-
isms responsible for symptoms can be inferred with a bioassay where one organism is selec-
tively terminated and symptom expression is monitored. The absence of wilt symptoms in
bioassay plants that were grown in desiccated field soil where P. penetrans could not survive
[29] provides evidence that Pratylenchus spp. were likely more responsible than V. dahliae for
the wilt symptoms observed in commercial fields. This claim is further supported by the obser-
vation that some nematicides can delay development of Verticillium wilt symptoms or increase
yields in fields infested with both pathogens [48]. These results are impactful for growers, who
might reassess their disease management strategies to target nematodes as well as fungi, and
scientists, who might reassess their research efforts to envelop both organisms. Finally,
although strong evidence of an association between Pratylenchus spp. and wilt is presented
here, causation-oriented experiments should be completed before major changes to disease
management or research programs are implemented.

While Pratylenchus spp. and, to a lesser extent, V. dahliae were needed to explain wilt
expression in commercial mint fields, an interaction between these two organisms was not
detected, as might be expected. The absence of this interaction might be explained by the pres-
ence of V. dahliae strains that do not interact synergistically with P. penetrans, native mint
plants [21] or, although unprecedented, P. penetrans strains that do not interact with V. dah-
liae. Furthermore, it is possible that only a subset of the Pratylenchus spp. pooled together for
this research interact synergistically with V. dahliae [49]. Finally, although a statistically signifi-
cant interaction was not detected during model selection, it is possible that a weak but biologi-
cally significant interaction was operative yet undetected. This conjecture is supported by the
severe levels of wilt observed when the abundances of V. dahliae and Pratylenchus spp are
inversely related. Contrary to the expectation that wilt would be most severe when both patho-
gens were most abundant, Fig 4 reveals that wilt intensity is mild under these conditions. One
interpretation of this observation is that wilt expression is dependent on the density of both
organisms until a threshold is achieved and thereafter, competition and or antagonism ensue.
Together, these results remind us that more fundamental research is needed to describe trans-
kingdom behavioral relationships between the microorganisms that affect our food supply.
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More information about the drivers of disease emergence and expression are also needed to
enhance model performance. All of the supervised learning methods used here described approxi-
mately 50% of the total variation in the wilt intensity data. Given that these learning methods
spanned the interpretability vs. flexibility spectrum described by [37] it seems unlikely that this
unexplained variance might be reduced by the application of another model or algorithm. Instead,
the addition of more observations and predictors from the disease triangle, such as environmental
factors (e.g. soil physical, chemical, and biological properties) and host and pathogen genotypes,
might inflate metrics of explanatory and predictive performances. Finally, deployment of faster,
more sensitive, and comprehensive disease monitoring and surveillance systems, like unmanned
aerial vehicles, would populate large data sets and enable finer resolution predictions.

The research presented here demonstrates the potential for generating new information
about disease etiology by reevaluating the vertices of the disease triangle with the application
of machine learning techniques. Specifically, this research exposes the potential rewards of
exercising open minds and the costs of maintaining the status quo. The rewards here include a
more comprehensive and nuanced understanding of the drivers of a plant disease and predic-
tion tools to guide preventative management strategies. The costs of maintaining the assump-
tion that V. dahliae alone is the main problem for mint growers in the Pacific Northwest of the
United States include the allocation of various resources, from research time and capital to
soil-fumigants, to a problem that may not warrant these endowments. While it is certainly
impractical to apply this approach to every disease, especially those for which efficacious treat-
ments are available, the rewards of possibly preventing epidemics and conserving resources
supersede the risks of status quo confirmation.

Supporting information

S1 Protocol. Protocol for genomic DNA extraction and quantitative real-time PCR.
(DOCX)

S1 Fig. Relationship between assays for Verticillium dahliae quantification. Correlations
between estimates of Verticillium dahliae from the quantitative real-time PCR (qPCR) assay
and the traditional culture-dependent method. Samples from Washington state are repre-
sented in red while samples from Oregon are represented in orange. The correlation coeffi-
cient and P-value for all samples are shown in gray while those for samples from Washington
and Oregon are shown in red and orange, respectively.

(TTF)

S2 Fig. Plant-parasitic nematode counts. Counts of plant-parasitic nematodes, including Pra-
tylenchus spp. (a), Criconemella sp. (b), Paratylenchus spp. (c), and Meloidogyne spp. (d) are
presented for each field.

(TIF)

S3 Fig. Stem infection of bioassay plants. Incidence of susceptible (Mentha gracilis) and resis-
tant (M. spicata) mint stems infected with Verticillium dahliae after a season of growth in des-
iccated soils collected from commercial mint fields.

(TIF)

S1 Dataset. Data for model selection, validation, and comparisons. Raw data collected from
fields including field locations, mint cultivars, stand age, nematode counts, estimates of Verti-
cillium dahliae, the number of wilt foci/ field quarter and wilted stems/ focus, and the inci-
dence of mint stems infected with V. dahliae.

(CSV)
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