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Abstract

High capacity and low capacity running rats, HCR and LCR respectively, have been bred to

represent two extremes of running endurance and have recently demonstrated disparities in

fuel usage during transient aerobic exercise. HCR rats can maintain fatty acid (FA) utiliza-

tion throughout the course of transient aerobic exercise whereas LCR rats rely predomi-

nantly on glucose utilization. We hypothesized that the difference between HCR and LCR

fuel utilization could be explained by a difference in mitochondrial density. To test this

hypothesis and to investigate mechanisms of fuel selection, we used a constraint-based

kinetic analysis of whole-body metabolism to analyze transient exercise data from these

rats. Our model analysis used a thermodynamically constrained kinetic framework that

accounts for glycolysis, the TCA cycle, and mitochondrial FA transport and oxidation. The

model can effectively match the observed relative rates of oxidation of glucose versus FA,

as a function of ATP demand. In searching for the minimal differences required to explain

metabolic function in HCR versus LCR rats, it was determined that the whole-body meta-

bolic phenotype of LCR, compared to the HCR, could be explained by a ~50% reduction in

total mitochondrial activity with an additional 5-fold reduction in mitochondrial FA transport

activity. Finally, we postulate that over sustained periods of exercise that LCR can partly

overcome the initial deficit in FA catabolic activity by upregulating FA transport and/or oxida-

tion processes.

Author summary

Our bodies consume carbohydrates, fats, and amino acids as fuels, utilizing various cata-

bolic pathways to transfer the energy required for normal physiological functions. The

way these pathways function can have an important impact on overall health. While most
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catabolic pathways are known, we are still striving to understand how these pathways

interact, are controlled, and change during exercise and in disease. Here, we have used

computer modeling as a tool to understand fuel utilization differences during exercise for

two animal models. High capacity running rats (HCR) were used as a healthy, fit cohort,

and low capacity running rats (LCR) were used as a sedentary and disease-prone cohort.

Our computer model results show that the HCRs are superior at fat utilization compared

to LCRs because of their increased ability to transport and catabolize fatty acids. We pos-

tulate that these differences depend on exercise intensity and duration, such that longer

acclimation periods may minimize fuel utilization differences between these rats.

Introduction

Fuel selection, the balancing of glucose, fatty acids, and amino acid utilization to match the

ATP demand, is a hallmark of healthy metabolism [1]. It has been shown that endurance

trained individuals can better maintain the oxidation of fatty acid (FA) throughout mild to

moderate intensity exercise [2–4]. A number of studies have shown that exercise training

increases skeletal muscle mitochondrial density [5–7], intramuscular fat storage [8, 9], trans-

port [10], and oxidation [7, 11]. These observations corroborate the idea that endurance ath-

letes are better equipped to handle aerobic exercise because of their increased ability to utilize

FA as a fuel source. However, FA utilization may not be as important, for instance with com-

petitive endurance runners [12, 13], since their sustained exercise intensity typically exceeds

60% VO2max, a regime where most individuals have crossed over from dominant FA to car-

bohydrate utilization [14]. Thus, exercise fuel utilization depends on its intensity (%VO2max).

Normalizing for this produces similarities in fuel utilization even among various organisms

[15–17]. Yet, there are many studies that have demonstrated differences between subjects,

namely exercise trained and untrained individuals [2, 3, 18, 19], even when accounting for

normalization (%VO2max).

A popular mechanistic view of fuel selection centers on the Randle cycle [20, 21], which

explains the preference for FA by the inhibition of the pyruvate dehydrogenase complex, an

enzyme at the interface of glycolysis and the TCA cycle and a gate keeper for aerobic glucose

oxidation. Extensions [20] to the Randle cycle have been proposed, such as the inhibition of

carnitine palmitoyltransferase-1 by malonyl-CoA [22], to explain how glucose oxidation inhib-

its fatty acid oxidation (FAO). Although the Randle cycle is proposed to describe the reciprocal

relationship between glucose and FAO [23], it has been shown to be too simple to explain the

etiology of type 2 diabetes [24, 25] and fuel selection in exercise [17, 26, 27].

High and low capacity running rats [28], (HCR and LCR) are genetically outbred rats that

have been bred to model extreme genotypes and phenotypes with regard to exercise perfor-

mance. The main difference in exercise ability between these rats lies in skeletal muscle [29]

substrate selection between glucose and FA metabolism [30]. Recently, it has been shown that

HCR can effectively utilize FA during graded treadmill exercise, where LCR largely lack this

ability [30]. To explore this phenomenon, we have developed a computer model of whole-

body central metabolism that accounts for mass balance and thermodynamic constraints to

simulate fuel selection during exercise.

Our model explicitly accounts for all the reactions in glycolysis, the TCA cycle, the mito-

chondrial electron transport chain, as well as FA transport and beta-oxidation reactions

(Fig 1). Overall, the model includes 98 metabolites and 87 reactions (Fig 1), and has been

parameterized with HCR and LCR respiration, plasma lactate, and muscle acyl-carnitine
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concentrations as a function of exercise [30]. Our primary objective was to find the minimal

difference between HCR and LCR enzymatic activities required to simulate the apparent fuel

selection difference between these animals [30].

Our results show that by minimally decreasing total HCR mitochondrial activity by 30–

50% and by further reducing mitochondrial FA transport, we can match the LCR’s attenuated

FA utilization activity during transient aerobic exercise. However, when these data are normal-

ized with %VO2max and compared with steady-state data at 75% VO2max there is a major

difference in respiratory exchange quotients between LCR transient and steady-state data for

Fig 1. Central pathways of glucose and fatty acid catabolism and transport. Glucose and FA are oxidized via the cytosolic reactions of glycolysis and the

mitochondrial reactions of β-oxidation, respectively. The mitochondrial outer membrane (OM), inner membrane space (IMS), inner membrane (IM), and matrix are

labeled. Transport fluxes for glucose (GLUT4), FA (CD36), O2, CO2, and lactate considered by the constraint-based modeling approach are indicated by a red asterisk.

Metabolic demand, or ATP demand, in the model is determined by the ATP hydrolysis rate. All model reactions are explicitly defined in S1 Table.

https://doi.org/10.1371/journal.pcbi.1005982.g001
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the LCR, but not for the HCR. We found that this difference may be explained, by the model,

if FA transport and oxidative capacity are much more slowly mobilized upon exercise in the

LCR compared to the HCR.

Results

HCR and LCR exercise data

HCR and LCR metabolic data were obtained, during a graded treadmill experiment, from a previ-

ous publication [30]. In these experiments, HCR (n = 23) and LCR rats (n = 16) were ran on a

treadmill with speed increasing every 2 minutes until exhaustion. HCR and LCR rats exhausted,

on average, at about 50 and 14 minutes, respectively [30]. During the exercise regimen, O2 uptake,

CO2 output, as well as carbohydrate and FA utilization were estimated [30]. Blood plasma was

also sampled for glucose, FA, and lactate [30]. Additionally, gastrocnemius muscle biopsies were

taken at 0 and 10 minutes, for both HCR and LCR, and at 45 minutes for HCR only [30]. Muscle

biopsies and blood plasma were analyzed by metabolomics and proteomic methods [30].

HCR and LCR constraint-based modeling

HCR and LCR O2 and CO2 flux data (Fig 2A and 2B), and carbohydrate and FA flux data (Fig

2C and 2D), estimated from indirect calorimetry, were previously collected [30] during a

Fig 2. Metabolic transport fluxes for HCR and LCR rats. Transport fluxes were obtained during a previously published graded treadmill experiment [30]

and converted to molar quantities. In this experiment, HCR and LCR rats were ran at an increasing treadmill speed (every 2 minutes) until exhaustion. (A)

O2 uptake fluxes for HCR (blue) and LCR (red) rats. (B) CO2 output fluxes for HCR (blue) and LCR (red) rats. (C) Estimated carbohydrate uptake flux for

HCR (blue) and LCR (red) rats. (D) Estimated FA uptake fluxes for HCR (blue) and LCR (red) rats.

https://doi.org/10.1371/journal.pcbi.1005982.g002
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graded treadmill exercise protocol (described above). These data (Fig 2) were used as transport

flux inputs for a constraint-based [31, 32] calculation to compute all 87 internal reaction fluxes

of the metabolic system shown in Fig 1 for HCR and LCR data (reactions shown in S1 Table).

Transport fluxes (Fig 2) at each time point for HCR and LCR were used to solve for internal

fluxes (J ) (Eq 1, Methods), while maximizing mitochondrial ATP production as an objective

function and applying ab initio thermodynamic cycle constraints for the network [33].

Initial FA, was simplified to be only palmitate (C16 acyl chain length), and glucose was the

only carbohydrate considered. The computed 87 internal reaction fluxes, with time, are shown

for HCR (Fig 3A) and LCR (Fig 3B). The reaction fluxes are annotated by an enzyme identifier

(Shown in S1 Table), and grouped by major pathways shown in Fig 1. The constraint-based

solution demonstrates the incline of metabolic flux with exercise for HCR (Fig 3A) and LCR

(Fig 3B), most consistently through the TCA cycle, glycolytic pathway, and bioenergetic reac-

tions. The solution also demonstrates the attenuated flux through the FAO pathway for LCR

(inset Fig 3B) relative to HCR (inset Fig 3A). The constraint-based solution is a first approxi-

mation (quasi-steady state) that allows an estimation of internal fluxes and a starting point for

parameterization of a kinetic modelling approach. The fluxes represent whole-body rates, mea-

sured in units of moles per unit time per body weight. The ATPase rate was used from this

constraint-based solution at each time point (Fig 3C) to simulate the work load, or ATP

demand, in HCR and LCR in the subsequently described kinetic model.

To test the stability of the HCR and LCR solutions (Fig 3), we determined how uncertainty

in the measured boundary fluxes translates into uncertainty in the estimated fluxes. Results

from these analyses are summarized in S1–S3 Figs. The maximum and minimum solutions for

HCR (S1 Fig) and LCR (S2 Fig), at each time point, differ by only a small margin.

HCR and LCR dynamic modeling

A kinetic model for simulating HCR and LCR fuel selection was initially identified using fluxes

from the constraint-based solution (Fig 3) and using Eq 4 (Methods) to assign value for the

enzyme activities (X). Furthermore, ATP demand was simulated based on the interpolated

rate from the constraint-based solution (Fig 3C). Initial concentrations for 98 metabolites

were obtained by a Monte Carlo method that randomly searched for a concentration vector

satisfying the thermodynamic constraint of Eq 2 (Methods). The directions of the fluxes in Eq

2 (Methods) were determined from the constraint-based solution at rest (time = 0). Reasonable

concentration bounds determined from the literature were imposed on the Monte Carlo

search (Reported in S2 Table as lower (LB) and upper bounds (UB)). Finally, the activities

were adjusted to fit the HCR data in Fig 4, as described below. The initial concentration vector

used to simulate the data in Fig 4 is reported in S2 Table.

HCR CO2 (Fig 4A) and O2 (Fig 4B) fluxes (JCO2 and JO2), plasma lactate (Fig 4C), respira-

tory quotient (RQ; Fig 4D), and muscle acyl-carnitine profiles (Fig 4E–4J) (all data derived

from [30]) were used to parameterize the model by least-squares minimization. With a total of

86 adjustable parameters, the solution illustrated in Fig 4 is not unique. Uncertainty of param-

eter values and their predictions were assessed below.

After fitting the HCR data (Fig 4; blue), we tested the hypothesis (Hypothesis 1) that the met-

abolic data can be simulated by invoking only a difference in mitochondrial density between

HCR and LCR (Fig 4; red dash-dot lines). This hypothesis is derived from the observations that

trained individuals have a higher proportion of mitochondria per muscle mass than untrained

individuals, and this difference has been observed in both HCR and LCR rats [6, 34].

Simulation of hypothesis 1 significantly deviated from the RQ data, where the error

between the model and the data were quantitated by the sum of squared error function values

Computational modeling of fuel selection
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Fig 3. HCR and LCR metabolic constraint-based solutions. (A) HCR constraint-based solution: Eq 1 (in Methods)

was solved at each time point for internal reaction fluxes using given carbohydrate, FA, O2, and CO2 transport fluxes.
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defined in Eq 7 (Fig 4D; red dash-dot lines; error function value = 2.89). Thus, decreasing total

HCR mitochondrial activity only (optimal near a 50% decrease) could not sufficiently switch

HCR to utilize glucose in an aerobic manner, as demonstrated by LCR data (Fig 4D; red dash-

dot lines). However, this hypothesis does cause the model to switch to utilize glucose in an

anaerobic manner (Fig 4C; red dash-dot lines). Decreasing total HCR mitochondrial activity

beyond 50% did not improve fitting to the LCR data.

Second, we tested the hypothesis that HCR and LCR only differ in total FA utilization (Fig

4; dashed lines). We found that this hypothesis (Hypothesis 2) was also somewhat inconsistent

with the data (error function value = 4.03). Decreasing only FAO enzyme activities (optimal

decrease around 10-fold) matches the RQ data for LCR (Fig 4D; dashed lines) better than

hypothesis 1, indicative of increasing the aerobic oxidation of glucose. But decreasing FAO

enzymes only was unable to match the observed increase in anaerobic glucose utilization (Fig

4C; dashed lines) and acetyl-carnitine concentrations with exercise (Fig 4I; dashed lines).

These observations led us to alter both total mitochondrial enzyme and FAO activities to

achieve a minimal difference between HCR and LCR enzyme activities (Fig 4; solid lines; error

function value = 2.68). By minimal, we are referring to the minimal number of enzyme activity

differences between model parameterizations representing the LCR versus the HCR data.

To be clear, when both mitochondrial enzyme activities and FAO enzyme activities were

decreased this means that after applying, for example, a 50% decrease in all mitochondrial

enzymes an additional decrease in FAO enzyme activities was applied to help fit the LCR data.

This additional difference, between FAO enzymes and all other mitochondrial enzymes, can

be seen in Fig 5, which is discussed below. We found that decreasing FA transport enzyme

activities was the most effective way to switch fuel usage from a more FAO dominant mode to

a more glucose oxidative mode. Decreasing total mitochondrial enzyme activity between 30%

and 50% was also required to best-fit the data.

The predicted ratios of HCR and LCR enzyme activities (XHCR/XLCR) are shown in Fig 5

for the minimal best-fit parameter set of the LCR data (Fig 4; red solid lines). The minimal

best-fit parameter set for LCR has decreased all mitochondrial enzyme activities by 50% and

additionally decreased several FAO related enzyme activities relative to HCR.

The model was used to probe dynamic variables during exercise that are difficult to mea-

sure (Fig 6). The model demonstrates constant cytosolic ATP (Fig 6A; blue) and decreasing

(more positive) cytosolic ATP potential (Fig 6B), consistent with previous in vivo measure-

ments during prolonged exercise [35]. Interestingly, the model simulation for LCR eventually

fails because it is unable to meet the ATP demand (Fig 6A; red). However, this phenomenon

occurs long after LCR have exhausted in the experimental data (Fig 4). The model demon-

strates LCR’s increased flux through aerobic glucose oxidation (Fig 6D and 6E) and anaerobic

or glycolytic flux (Fig 6F), but has reduced FAO (Fig 6N) flux compared to HCR. The model

also demonstrates that as work increases the NAD pool becomes more reduced (Fig 6C) in the

cytosolic fraction whereas the converse occurs in the mitochondrial fraction (Fig 6K). The

model predicts LCR is eventually unable to maintain the mitochondrial membrane potential

(Fig 6J) due to the failure of aerobic glucose oxidation.

Transport fluxes were derived from HCR O2 and CO2 flux data [30] shown in Fig 2. (Inset) Zoomed in view of HCR

mitochondrial FA transport and beta-oxidation enzyme fluxes. (B) LCR constraint-based solution: Eq 1 (in Methods)

was solved at each time point for internal reaction fluxes using given carbohydrate, FA, O2, and CO2 fluxes [30] shown

in Fig 2. (Inset) Zoomed in view of LCR mitochondrial FA transport and beta-oxidation enzyme fluxes. (C) The

ATPase (ATP! ADP + Pi) flux (circles) from the HCR constraint-based solution in panel A was used to estimate the

ATPase rate with time for subsequent simulations.

https://doi.org/10.1371/journal.pcbi.1005982.g003
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Fig 4. Simulation of HCR and minimal simulation of LCR rat exercise data. HCR (blue circles) and LCR (red circles) rat data

were collected previously [30] during a graded treadmill experiment. Major pathways (87 reactions) of glucose, FA transport,

oxidation, and bioenergetics (Fig 1) were simulated using an ordinary differential equation system (98 state variables). Enzyme

activities (X, Eq 4) were adjusted to fit the HCR data (blue circles), while a change in HCR enzyme activities were used to fit the

LCR data (red circles). Simulations are represented by lines for HCR (blue) and LCR (red). LCR: solid lines were simulated by

decreasing HCR total mitochondrial and FAO activities (error function value = 2.68), red dash-dot lines were simulated by

decreasing total HCR mitochondrial enzyme activities only (error function value = 2.89), and dashed lines were simulated by

decreasing HCR FAO enzyme activities only (error function value = 4.03). Total acyl-carnitine concentrations shown in panels

(E-J) were derived from HCR and LCR gastrocnemius muscle [30]. Error bars represent standard error of the mean, while error

bars in panel D were calculated from the propagation of error using errors in JCO2 and JO2 fluxes shown in panel A and B,

respectively. (A) HCR and LCR rat carbon dioxide flux (JCO2). (B) HCR and LCR rat molecular oxygen flux (JO2). (C) Plasma

lactate from HCR and LCR. (D) Respiratory quotient (JCO2/JO2) for HCR and LCR. (E) Total C16-carnitine muscle

concentration for HCR and LCR rats. (F) Total C14-carnitine muscle concentration for HCR and LCR rats. (G) Total

C8-carnitine muscle concentration for HCR and LCR rats. (H) Total C4-carnitine muscle concentration for HCR and LCR rats.

(I) Total Acetyl-carnitine muscle concentration for HCR and LCR. (J) Total Carnitine muscle concentration for HCR and LCR

rats.

https://doi.org/10.1371/journal.pcbi.1005982.g004
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One of the earliest indicators of failure in LCR is the drop in the acetyl-CoA/CoA ratio (Fig

6L), where acetyl-CoA decreases and CoA increases. The cause for the eventual crashing is

that the cytosolic NAD pool becomes overly reduced (Fig 6C) slowing down glycolysis (Fig

6D), subsequent production of pyruvate (Fig 6H and 6I), and acetyl-CoA feeding into the

TCA cycle (Fig 6M). This leads to decreased mitochondrial ATP output (Fig 6O), which is

unable to meet the ATP demand (Fig 6A). Although β-oxidation decreases (Fig 6N) at about

35 minutes in the simulation it does not crash like glycolysis. These simulation results are gen-

erally consistent when using other enzyme activities that also fit the data, discussed below.

Predicted metabolite concentrations for HCR and LCR are available in S3 and S4 Tables for

HCR and LCR, respectively. These predicted metabolite concentrations were generated based

on the activities used to produce Fig 6. Ratios of the simulated metabolite concentrations as a

function of time, and exercise, demonstrate further predicted differences (S3 and S4 Figs)

between HCR and LCR. These figures predict higher concentrations of initial FAO substrates

for HCR (S3 Fig) compared to LCR, whereas LCR has accumulated more FAO end products

(S4 Fig). This figure also demonstrates the model prediction that HCR will accumulate AMP

and PPi (S4A Fig), a consequence of HCR’s relative increased FAO flux compared to LCR.

Parameter confidence and sensitivity

To evaluate the robustness of our results, we obtained an ensemble of independent parameter

sets capable of fitting the data. To achieve this, we randomly perturbed the parameters from an

initial fit to the HCR data (Fig 4; blue) and fed them into a simulated annealing algorithm fol-

lowed by a local optimization algorithm. By this strategy, we obtained 10 different fits to the

Fig 5. Ratios of HCR/LCR enzyme activities for minimal LCR simulation. The enzyme activities used to fit the HCR and LCR data in Fig 4 were used to create the

ratio XHCR/XLCR. Enzyme activities are labeled by shortened identifiers, described in S1 Table, and further grouped with brackets into major pathways defined in Fig 1.

https://doi.org/10.1371/journal.pcbi.1005982.g005
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HCR data (Fig 7; blue). Each of these HCR parameter sets were then used to obtain 10 minimal

fits to LCR data by only changing total mitochondrial activities and the select activities shown

in Fig 5. The minimal changes made to these HCR parameter sets to fit LCR data are all similar

to those shown in Fig 5.

HCR parameters were also used as initial starting points to find 10 non-minimal fits to the

LCR data (Fig 7; red). That is, we allowed all parameters to vary independently to match the

LCR data. Like the minimal best-fit LCR simulation in Fig 4, we observed that 7 out of these 10

LCR simulations eventually failed because they were unable to meet the ATP demand by rely-

ing on mostly glucose oxidation for an extended period of exercise. The difference, however,

between the parameter sets used to simulate the LCR data in Fig 4 and in Fig 7, is that the latter

parameter sets were generated by allowing all enzyme activities to change to fit the LCR data.

Fig 6. Simulation of HCR and LCR metabolism during exercise. In all panels, HCR and LCR simulations are represented by blue and red lines, respectively.

Simulations were performed using the minimal difference parameter set between HCR and LCR (Figs 4 and 5). (A) Cytosolic ATP with time. (B) Gibbs free energy

potential (Eq 2, Methods) for cytosolic ATP hydrolysis with time. (C) Cytosolic ratio of oxidized (NAD+) over reduced (NADH) NAD with time. (D) Time-

dependent average flux from glycolytic enzymes. (E) Time-dependent average flux of glycerol-3-phosphate (G3P) shuttle enzymes. (F) Lactate dehydrogenase flux

with time. (G) Pyruvate dehydrogenase (PDH) complex flux with time. (H) Cytosolic pyruvate with time. (I) Mitochondrial pyruvate with time. (J) Time-

dependent mitochondrial membrane potential. (K) Mitochondrial NAD ratio for oxidized (NAD+) over reduced (NADH) NAD with time. Inset is a zoomed-out

view of the main panel. (L) Mitochondrial Acetyl-CoA to CoA ratio with time. (M) Time-dependent average flux of TCA cycle enzymes. (N) Time-dependent

average flux of FA β-oxidation enzymes. (O) Adenine nucleotide transporter (ANT) flux with time.

https://doi.org/10.1371/journal.pcbi.1005982.g006
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In other words, the LCR enzyme activities used to simulate LCR in Fig 7 do not reflect a mini-

mal difference relative to HCR enzyme activities.

To obtain a distribution of activity ratios (XHCR/XLCR), such as that shown in Fig 5 for a

minimal difference, we randomly perturbed each of the 10 parameter sets for HCR (Fig 7;

Fig 7. Simulation families of HCR and LCR data. HCR (blue circles) and LCR (red circles) rat exercise data [30] are as described in

Fig 4. Several independent attempts were made to simulate the HCR and LCR data by independently adjusting the enzyme activities

yielding 10 families of fits. All simulations are depicted by lines of the corresponding color (HCR (blue) and LCR (red)). Error bars

represent standard error of the mean, while error bars in panel D were calculated from the propagation of error formula using errors

in JCO2 and JO2 fluxes shown in panel A and B, respectively. LCR simulations (red lines) are truncated at 18 minutes in panels E-J

for clarity. (A) HCR and LCR rat carbon dioxide flux (JCO2). (B) HCR and LCR rat molecular oxygen flux (JO2). (C) Plasma lactate

from HCR and LCR. (D) Respiratory quotient (JCO2/JO2) for HCR and LCR. (E) Total C16-carnitine muscle concentration for

HCR and LCR rats. (F) Total C14-carnitine muscle concentration for HCR and LCR rats. (G) Total C8-carnitine muscle

concentration for HCR and LCR rats. (H) Total C4-carnitine muscle concentration for HCR and LCR rats. (I) Total acetyl-carnitine

muscle concentration for HCR and LCR rats. (J) Total carnitine muscle concentration for HCR and LCR rats.

https://doi.org/10.1371/journal.pcbi.1005982.g007
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blue) and LCR (Fig 7; red) until we obtained 103 parameter sets capable of fitting each data set.

We then took the ratio of all possible combinations of parameter sets between HCR and LCR

yielding 106 ratios (Fig 8) for each enzyme activity. This demonstrates that the main difference

between HCR and LCR enzyme activities lies in mitochondrial acyl-CoA/acyl-carnitine trans-

port. The widest range in parameter differences between HCR and LCR is in the palmitoyl-

CoA translocase (PCT) and carnitine palmitoyltransferase-2 (CPT2) activities. However, the

output of the model is not particularly sensitive to these activities.

Although a number of enzyme activities (model adjustable parameters) tend to fall within a

relatively small range (Fig 8) to fit the data (Fig 7) this does not mean that we have identified

absolute enzyme activities because of the correlations that exist in parameter space and because

of the simplified nature of the kinetic model. Thus, one should not assign strict value to these

enzyme activities, but understand that simulating LCR data from a HCR model starting point

can generally be achieved by minimally altering FAO and FA transport enzyme activities with

some additional decrease in total mitochondrial enzyme activity.

In order to determine what enzyme activities are most important to fuel selection in exer-

cise, we calculated sensitivity coefficients for each of the enzyme activities for HCR and LCR

for all 103 parameter sets with respect to the simulation of the respiratory quotient (JCO2/JO2).

The respiratory quotient is typically considered to be a good indicator of fuel selection based

Fig 8. Histograms of HCR and LCR enzyme activity ratios (XHCR/XLCR) from multiple parameter sets. A 103 parameter sets, each composed of 86 enzyme activities,

individually fitted to HCR and LCR data were used to obtain a multitude of enzyme activity ratios (XHCR/XLCR). All combinations of each of the 103 parameter sets for

HCR and LCR were used yielding 106 ratios for each of the 86 enzyme activities. Each histogram panel in the figure represents one of the 86 enzyme activity ratios and

are annotated per the shortened enzyme identifier defined in S1 Table. In each histogram panel, the y-axis represents the frequency of ratio (XHCR/XLCR) occurrence and

the x-axis represents the value of the ratio.

https://doi.org/10.1371/journal.pcbi.1005982.g008
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on stoichiometric utilization of O2 and production of CO2 for different substrates. The results

of this calculation yielding 103 sensitivity coefficients for HCR (Fig 9) and LCR (Fig 10) are dis-

played in histograms and ordered by high to low sensitivity in the figure. This calculation

revealed carnitine palmitoyltransferase-1 (CPT1) activity to be the most sensitive with HCR

(Fig 9), while lactate transport (LACT) was the most sensitive with LCR (Fig 10).

Exercise fuel selection in HCR and LCR were also both highly sensitive to glucose transport

(GLUT), hexokinase (HK), and the combination of complex 3 and 4 (Complex 3+4) activity

(Figs 9 and 10). The main difference between HCR and LCR with respect to fuel selection

enzyme sensitivity was with FA utilization enzymes, such that HCR was sensitive to these

activities and LCR was not (Figs 9 and 10). Thus, HCR is predicted to have more control of FA

utilization relative to LCR, FA transport in particular.

To help combine the information collected by computing numerous enzyme activity ratios

(Fig 8) and sensitivity coefficients (Figs 9 and 10), we used a simple expression (Eq 6, Methods)

to calculate a median score for the relative importance of each enzyme activity (Fig 11). The

purpose of this score was to assess the major differences between HCR and LCR enzyme exer-

cise activities regarding fuel selection, while also accounting for their sensitivity. This calcula-

tion is based on the non-minimal fitting of LCR data (Fig 7).

Fig 9. Histograms of HCR enzyme activity (XHCR) sensitivities to fuel selection ranked from multiple HCR parameter sets. A 103 parameter sets, each composed

of 86 enzyme activities, individually fitted to HCR were used to obtain 103 sensitivity coefficients for each activity. Each histogram panel in the figure represents a

distribution of one of the 86 enzyme activity sensitivity coefficients. Each panel is annotated per the shortened enzyme identifier defined in S1 Table. In each histogram

panel, the y-axis represents the observed occurrence, or frequency, of a sensitivity coefficient and the x-axis represents the rank, or order of sensitivity coefficient

magnitude out of 86. For instance, rank 1 is the most sensitive activity (XHCR) whereas as rank 86 is the least sensitive activity. Histogram panels are ordered per their

median rank value from top left to bottom right in the figure. Thus, the most sensitive activities are ordered from top left to bottom right in the figure.

https://doi.org/10.1371/journal.pcbi.1005982.g009
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The enzyme score calculation reveals higher importance for glycolytic enzymes for LCR

and FA catabolic enzymes for HCR, although our minimal approach to fitting LCR data (Fig

4) showed that glycolytic enzyme activities do not have to change (Fig 5) to fit this data. Inter-

estingly, the importance of CPT1 and ACAD4 was also revealed in this calculation, which

agrees with conclusions drawn from the minimal approach to fitting LCR data (compare Fig 5

and Fig 11).

Comparison of HCR and LCR transient and steady-state normalized fuel selection and

FA utilization capacity. To theoretically estimate the FA utilization capacity of HCR and

LCR, we decreased glycolytic activities by several orders of magnitude until no appreciable gly-

colytic flux was observed. Without the ability to synthesize ATP via glycolysis, and eliminating

ATP buffering by creatine kinase, FA utilization is the only means to sustain ATP synthesis in

our model. After decreasing these activities, an increasing linear ATPase rate was imposed

until the ATP synthesis capacity was overwhelmed by ATP demand, at which point ATP con-

centration collapses (Fig 12A). With glucose oxidation effectively knocked out, the mitochon-

drial adenine nucleotide transporter (ANT) flux equals the ATP synthesis flux from FAO (Fig

12B). These calculations revealed, based on 10 parameter sets for HCR and LCR, that the FAO

capacity is 30% lower in LCR than HCR (Fig 12C).

Fig 10. Histograms of LCR enzyme activity (XLCR) sensitivities to fuel selection ranked from multiple LCR parameter sets. A 103 parameter sets, each composed

of 86 enzyme activities, individually fitted to LCR were used to obtain 103 sensitivity coefficients for each activity. Each histogram panel in the figure represents a

distribution of one of the 86 enzyme activity sensitivity coefficients. Each panel is annotated per the shortened enzyme identifier defined in S1 Table. In each histogram

panel, the y-axis represents the observed occurrence, or frequency, of a sensitivity coefficient and the x-axis represents the rank, or order of sensitivity coefficient

magnitude out of 86. For instance, rank 1 is the most sensitive activity (XLCR) whereas as rank 86 is the least sensitive activity. Histogram panels are ordered per their

median rank value from top left to bottom right in the figure. Thus, the most sensitive activities are ordered from top left to bottom right in the figure.

https://doi.org/10.1371/journal.pcbi.1005982.g010
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Fig 11. Median HCR and LCR normalized enzyme activity scores. HCR and LCR enzyme activities, each from 103 parameter sets, and their corresponding sensitivity

coefficients, were used to calculate a median enzyme activity score to assess each enzyme’s importance in fuel selection. HCR scores are depicted by blue bars and LCR

by red bars. Enzyme activity scores are labeled by shortened identifiers, described in S1 Table, and further grouped with brackets into major pathways defined in Fig 1.

(Inset) Zoomed in view of certain beta-oxidation enzyme activity scores. Error bars represent standard deviations.

https://doi.org/10.1371/journal.pcbi.1005982.g011

Fig 12. Simulated estimation of HCR and LCR fatty acid oxidation capacity. To theoretically assess FA utilization capacity in HCR (blue) and LCR (red), glycolytic

enzyme activities were decreased by several orders of magnitude to eliminate ATP synthesis from glucose. (A) Average ATP concentration at increasing ATPase rates.

(B) Average mitochondrial adenine nucleotide transporter (ANT) flux at increasing ATPase rates. (C) Average of β-oxidation enzyme fluxes at increasing ATPase rates.

The error bars represent standard deviations from 10 families of HCR and LCR activity parameter sets (Fig 7).

https://doi.org/10.1371/journal.pcbi.1005982.g012
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To compare HCR and LCR fuel selection with normalized exercise intensity, we plotted the

respiratory quotient (RQ) data for HCR and LCR, as a function of their %VO2max (Fig 13A).

These data are the same as those shown in Fig 4D, with the addition of steady-state treadmill

exercise data previously collected for both HCR and LCR at 75% VO2max (See supplemental

data in [30]). The steady-state, RQ data at 75% VO2max (diamonds in Fig 13A) are different

than the transient RQ data (circles in Fig 13A).The steady-state values were obtained by run-

ning HCR and LCR rats for a longer time period (data collected in the last 15 min of a 30 min

run) at constant treadmill speed. In contrast, transient data were collected every 2 minutes,

while treadmill speed increased every 2 minutes (circles in Fig 13A). Therefore, HCR and LCR

rats have much less time to become acclimated to the exercise intensity in the transient exer-

cise regimen, which increases in intensity every 2 minutes. It is noticeable from this plot that

the transient LCR data (red circles) differ from the steady-state data (a red diamond) at 75%

VO2max, but this is not the case for HCR (blue markers).

The model was simulated to calculate the RQ at various percentages of VO2max (Fig 13B)

to match the transient (non-steady-state) data. Transient simulations were performed by

Fig 13. HCR and LCR transient and steady-state fuel utilization with normalized exercise. (A) Data only: Transient

respiratory quotient (JCO2/JO2) data obtained from HCR (blue connected circles) and LCR (red connected circles) rats

during the previously described treadmill exercise protocol [30] are plotted as a function of %VO2max. Steady-state

respiratory quotient HCR (blue diamond) and LCR (red diamond) data obtained at 75% VO2max are also plotted in panel

A. (B) Transient data with transient simulations: HCR and LCR parameter set families, transitioned from a resting state

parameter set, were used to simulate transient normalized exercise intensity (described in Methods), as a function of %

VO2max. HCR data are shown as blue circles (as in panel A) while the simulations are shown as blue lines. LCR data are

shown as red circles (as in panel A) while the simulations are shown as red lines. Transient simulations were conducted by

simulating exercise for 2 min at each %VO2max, as is the case with HCR and LCR transient data. (C) Steady-state data

with steady-state simulation: Lines are simulated as in panel B except with 60 minutes of simulation time to mimic

steady-state exercise data. HCR data are shown as blue diamonds while the HCR simulations are shown as blue lines. LCR

data are shown as red diamonds while the LCR simulations are shown as red lines. LCR was also simulated without an

additional reduction in FAO enzyme and FA transport activities (red dashed line), to better match the LCR steady-state

data. (D) Simulated HCR % fuel utilization: HCR fuel utilization percentages with both transient (dashed lines) and

steady-state (solid lines), normalized exercise intensity. FA (Fatty acid) percentages are shown as circles and carbohydrate

are shown as squares. (E) Simulated LCR % fuel utilization: LCR fuel utilization percentages with both transient (dashed

lines) and steady-state exercise (solid lines). FA percentages are shown as circles and carbohydrate are shown as squares.

(F) Simulated steady-state HCR and LCR %fuel utilization only: Steady-state fuel utilization percentage estimates from

panel D and E for HCR (blue) and LCR (red) are re-plotted in this panel for comparison.

https://doi.org/10.1371/journal.pcbi.1005982.g013
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simulating the model for 2 min at a constant ATPase work rate, and after each 2 min period

the work rate was increased according to either HCR or LCR’s normalized work load (%

VO2max). We discovered that when trying to simulate the model to long times that we needed

to allow for enzyme activities to change between resting and exercise workloads to achieve

steady-states to match the data in Fig 13. Thus, for the simulations in Fig 13, enzyme activities

are transitioned from resting activities to exercise activities, as a function of %VO2max, using

a monoexponential equation (Eq 5, Methods) with a transition constant (Tc). A transition con-

stant (Tc) of 0.15 and 0.1 were used for HCR and LCR, respectively. A simulation time of 2

minutes was used to simulate the transient data (Fig 13B).

From here, we attempted to simulate the steady-state data at 75% VO2max (Fig 13C) by

simply increasing the simulation time to 60 minutes. The LCR simulation does not match the

steady-state data at 75% VO2max (Fig 13C; red solid line). Although the LCR steady-state sim-

ulation does not match the data, we could better simulate this data by omitting the additional

decrease in FA catabolic enzyme activities (Fig 13C; red dashed line), which were needed to

better match the transient LCR data (Figs 4 and 13B).

The predicted effect of time on fuel selection can be better seen by simulating the model

and approximating the percent of FA and carbohydrate that are utilized as a function of %

VO2max for HCR (Fig 13D) and LCR (Fig 13E). As the simulation time increases from 2 min-

utes (Fig 13D, dashed line connections) to 60 minutes (Fig 13D, solid line connections), only

small changes are predicted for HCR. To simulate LCR steady-state fuel percentages (Fig 13E,

solid line connections) we omitted the additional decrease in FA catabolic enzyme activities,

since this change was needed to help match the LCR steady-state data (Fig 13C). Compared to

HCR, we found that the difference between steady-state and transient simulations are more

pronounced for LCR, especially at lower %VO2max (Fig 13E).

For comparison, simulated steady-state fuel percentages for HCR and LCR are shown in

Fig 13F. The model predicts that in the steady-state at normalized exercise intensity (%

VO2max) HCR and LCR have similar fuel selection profiles (Fig 13F). In other words, this

analysis predicted the deficit in LCR FAO is transient and diminishes with sustained exercise.

Discussion

HCR and LCR rats are models of two extremes of exercise aerobic capacity that differ primarily

in skeletal muscle [29] fuel selection [30] and also demonstrate different susceptibilities to

insulin resistance [36, 37]. Therefore, HCR and LCR rats provide an interesting means to

study skeletal muscle metabolic remodeling, regarding fuel selection in exercise endurance,

capacity, and metabolic disease.

Our main objective was to identify the minimal difference in enzyme activities between

HCR and LCR rats, as they were subjected to graded treadmill exercise, to understand how

HCR rats better sustain aerobic exercise compared to LCR rats. To accomplish this, we con-

structed a thermodynamically constrained model combining constraint-based analysis and

ordinary differential equation modeling. We hypothesized that the model would show that

LCR only differ from HCR by a moderate decrease in mitochondrial density (total mitochon-

drial activity). We also asked the question if a model completely based on mass-action kinetics

and thermodynamic constraints, lacking detailed enzyme kinetic modeling, could still repro-

duce fuel switching dependent on ATP demand.

Constraint-based modeling, rooted in flux balance analysis [38], was first used to estimate

the metabolic fluxes of a model explicitly accounting for glycolysis, the TCA cycle, mitochon-

drial electron transport reactions, and mitochondrial FA transport and β-oxidation (Figs 1 and

3) during HCR and LCR aerobic exercise (Fig 2). The estimation of these metabolic fluxes (Fig
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3) allowed us to then estimate individual enzyme activities based on a simple generalized

enzyme flux expression (Eq 3, Methods) and simulate the time-dependent data (Fig 4) in a

minimal way. Our analysis revealed that to explain the minimal difference between HCR and

LCR data, we needed to decrease both total mitochondrial enzyme activities (~50%) with, at

least, an additional decrease in mitochondrial FA transport and oxidative activities (about an

additional 5-fold decrease) (Fig 5).

It has been previously shown that LCR have similar mitochondrial density in red gastrocne-

mius muscle [34, 37], but are reduced in white [34], which corroborates the idea that LCR aer-

obic exercise capacity could be simply attenuated by a decrease in mitochondrial density.

However, HCR and LCR muscle proteomic data during exercise [30] suggested additional dif-

ferences. These experiments demonstrated significantly greater acetylation/phosphorylation of

LCR FA transport and β-oxidative enzymes, among others, with respect to HCR during exer-

cise [30]. These increases in posttranslational modification (PTM) are believed to decrease

enzyme activities and hinder FA catabolism. Furthermore, HCR have also been shown to be

enriched in oxidative phosphorylation and FA metabolism proteins [30, 37], thus enzyme

expression levels also appear to be a factor.

Our model does not distinguish between enzyme activity effects induced by PTM or expres-

sion levels, however, it does support the need to invoke combined changes in both total mitochon-

drial activity (mitochondrial density) and a specific decrease in FA transport. Additional

decreases in FA β-oxidation enzyme activities (Fig 5) were also invoked to better simulate LCR

data, which are also supported by proteomics data [30]. According to model sensitivity analysis,

enzymatic control over fuel selection during exercise differs between HCR and LCR due to HCR’s

increased control over FA transport enzymes such as CPT1 and FAT (CD36) (Figs 9 and 10).

Our model is simplified in that it does not account for amino acid catabolism, although amino

acid data were provided in the data set we analyzed [30]. This simplification is justified by our goal

to gain insight into glucose and FA catabolism, which account for the bulk of the energy demand

(85–90% [39]). However, the addition of amino acid catabolism could provide additional insight.

Despite the need to decrease HCR FA enzyme activities to simulate LCR data, it is impor-

tant to understand that these data (Fig 4) were collected during a transient catabolic state.

When these data are normalized for exercise intensity (%VO2max) and compared to steady-

state data at 75% VO2max (Fig 13A) there is a discrepancy between the LCR transient and

steady-state data. The steady-state respiratory quotients at 75% VO2max are similar between

HCR and LCR (Fig 13A).

Thus, it appears that the difference between LCR and HCR FAO diminishes with sustained

normalized exercise intensity (Fig 13). This result suggests that LCR may transition from

attenuated fat catabolism during transient intense exercise to a more active fat catabolism

when allowed longer time periods to acclimate to the exercise intensity. The transition between

initial and steady-state activities may be achieved by PTM, as previously proposed [30]. Fur-

thermore, the model also leads to the conclusion that FA transport is critical for fuel selection,

recently demonstrated with CD36 KO and overexpression mice [27, 40].

Finally, it is interesting that the simple kinetic model developed here, for the HCR rat, can

switch between FA and carbohydrate substrates in a physiological manner, as demonstrated

by simulating the metabolic response to exercise. The model does not include allostery, such as

required for the Randle cycle [20, 21] or calcium mediated activation of mitochondrial dehy-

drogenases. The model does not necessarily exclude these mechanisms as contributors to fuel

selection in vivo, but does show that simple kinetic modeling can effectively capture this phe-

nomenon without involving these regulatory processes.
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Methods

Constraint-based solution

The computer model was initialized by building a stoichiometric matrix S (98 reactants by 87

reactions; Eq 1) accounting for all of the reactions shown in Fig 1, using previously developed

computer code [32]. A full list of the reactions and their definitions can be found in S1 Table.

As a first approximation of internal reaction fluxes, a steady-state approximation was imple-

mented (Eq 1). In Eq 1, (S) is the stoichiometric matrix and (J ) is a vector of fluxes for each of

the 87 reactions plus 6 transport fluxes.

S � J ¼ 0 ð1Þ

The transport fluxes are defined by the input of glucose, FA, O2, and the output of lactate,

CO2, and H2O. Transport fluxes were determined using respiration and indirect calorimetry

data shown in Fig 2 from HCR and LCR rats during a graded treadmill running exercise proto-

col [30]. Eq 1 was solved for (J ) using the FMINCON function in MATLAB 2016a, by applying

ab initio thermodynamic cycle constraints [33], and maximizing mitochondrial ATP produc-

tion as an objective function for each time point shown in Fig 2. Fig 3 shows an interpolated

surface of the combined solutions of Eq 1 for HCR (Fig 3A) and LCR (Fig 3B) using the data

in Fig 2 as transport fluxes at each time point.

Thermodynamically feasible concentration vector

To obtain a thermodynamically feasible concentration vector needed to simulate the meta-

bolic network (Fig 1), we first collected a standard transformed Gibbs free energy vector

ðDG00Þ for the 87 reactions in the network at 25˚C and pH 7. Therefore, all reactions treat pH

as a fixed entity throughout the course of the simulations. DG00 was obtained primarily from

the Goldberg [41], Li [42], and Alberty [43] databases, or calculated using the Equilibrator

[44] server. DG00 values can be found in S1 Table. A Monte Carlo method was applied to ran-

domly choose metabolite concentrations that were consistent with literature concentration

boundaries and satisfied Eq 2 (An expression of the 2nd law of thermodynamics discussed in

[45]), where R is the gas constant, T is absolute temperature, and Q is the mass action ratio

vector.

DG0 � J < 0

DG0 ¼ DG00 þ RT lnQ
ð2Þ

The resulting concentration vector was slightly adjusted to match the data shown in Fig 4

for HCR and LCR. The final concentration vectors used to simulate HCR and LCR can be

found in S2 Table.

Model simulation

The model was simulated by solving the ordinary differential equation system in Eq 3, where

(C) is the concentration vector, (P) is a partition matrix, (S) is the stoichiometric matrix, and

(Jcalc) is the calculated reaction flux vector. The partition matrix is a diagonal matrix that com-

partmentalizes the system into extracellular, cytosolic, and mitochondrial spaces with partition

coefficients of 0.2, 0.75, and 0.05, respectively, based on the fractional volume of skeletal mus-

cle [46]. Here we have used skeletal muscle tissue spaces because this tissue type represents the

dominant tissue for whole body metabolism during exercise. To account for the water volume
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of skeletal muscle, we used a value of 755 mL water per kg of muscle mass [46].

dC
dt
¼ P� 1S � J calc ð3Þ

Reaction fluxes (Jkcalc) for each kth reaction were calculated via a general flux expression (Eq

4) derived previously [32]. In Eq 4, (X) is the enzyme activity and (Ct) is a concentration

dependent term where μ and ν are the stoichiometry’s of the substrates and the products of

reaction k, respectively. The Ct term is unitless due to individual terms being divided by the

reference state of 1 M.

Jkcalc ¼ XCt
1 � e

DG0

RT

1þ e
DG0 � DG00

RT

0

B
B
@
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C
C
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t ¼
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i¼1
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ðCiÞ
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ð4Þ

The rate of ATP hydrolysis, required for work, throughout the exercise protocol was esti-

mated by using the ATPase flux (Fig 3C) determined from the constraint-based solution for

HCR. These determined fluxes were then fitted to a polynomial to estimate the ATPase rate at

any time. This ATPase rate was then used as an input to drive the system and simulate work.

Model simulations were conducted using ode15s in MATLAB 2016a with an absolute toler-

ance of 10−12 and relative tolerance of 10−10, with the non-negative option on. Enzyme activi-

ties (X in Eq 4) were treated as constants throughout the course of the simulations for

transient exercise data shown in Figs 4 and 7. However, long-term simulations, such as those

shown in Fig 13, required transitioning the activities from resting activities (Xrest) to exercise

activities (Xexercise). Activities were transitioned as a function of %VO2max using a general

monoexponential equation (Eq 5) with a transition constant (Tc).

Xð%VO2maxÞ ¼ Xexercise þ ðXrest � XexerciseÞe
� ð%VO2max� %VO2restÞ

Tc ð5Þ

Fuel utilization percentages, as shown in Fig 13D–13F, were calculated as follows: % FA utiliza-

tion = (1-RQ)/(1–0.7); carbohydrate utilization = 100-% FA utilization; where RQ is the calcu-

lated respiratory quotient. Exercise enzyme activity parameters (Xexercise) from 103 parameter

sets that were fitted to HCR and LCR data, and their corresponding sensitivity coefficients (ϕ),

were used to calculate a normalized enzyme activity score to assess the greatest differences in

enzyme activity while accounting for their sensitivity.
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Model parameterization and optimization

Enzyme activities (X in Eq 4) were treated as adjustable parameters when trying to fit the HCR

data (blue) in Fig 4. Initial guesses for these activities were derived by solving for them algebrai-

cally by setting Eq 4 equal to fluxes from the constraint-based solution and plugging in the initial

concentration vector. Simulations utilizing enzyme activities (X in Eq 4) derived using the initial

resting fluxes from the constraint-based solution tended to fail prematurely at higher ATPase

rates because these activities were too low. We arbitrarily increased enzyme activities to allow

the simulations to withstand higher ATPase rates. From here, to fit HCR data, enzyme activities

were adjusted to minimize the difference between the HCR data (Fig 4, blue) and the simulation

using simulated annealing and Monte Carlo approaches, along with the FMINCON function in

MATLAB 2016a. Error function values reported in the text were computed using Eq 7.

Error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mean
ðdatai � modeliÞ

2

variancei

� �
s

ð7Þ

LCR parameters were obtained either by minimally changing HCR parameters (individual

enzyme activities) to fit LCR data (Fig 4; red), or by allowing all enzyme activities to change to

fit the LCR data (Fig 7; red). Total mitochondrial activity was adjusted from HCR to LCR by a

multiplicative factor. For example, a 30% decrease in mitochondrial activity from HCR to LCR

was defined as: XLCR(mito) = XHCR(mito)�(1–0.3). Further decreases in HCR activities, to

achieve fitness to the LCR data, were explored by randomly adjusting different enzyme activities

starting from small differences (Figs 4 and 5) with the goal of adjusting a minimal number of

enzyme activity differences between model parameterizations representing the LCR versus the

HCR data. With this minimal fitting approach, 10 LCR activity parameter sets were obtained

starting from 10 HCR activity parameter sets. Additionally, a non-minimal approach to fitting

LCR data (Fig 7; red) was implemented that allowed for all enzyme activities to change relative

to HCR. This approach applied both global and local optimization methods to achieve fitness.

Supporting information

S1 Table. Enzyme reaction definitions, abbreviations, free energies, and activities. A

spreadsheet containing all chemical reaction definitions, and the corresponding enzyme name

and enzyme abbreviation, free energy of reaction, and enzyme activities used for simulation of

main Fig 4.

(XLSX)

S2 Table. Metabolite names (species), abbreviations, and concentrations. A spreadsheet

containing all metabolites (species), an abbreviated species identifier where “_m” indicates

mitochondrial, “_e” indicates extracellular, and no additional label indicates cytosolic species.

Resting metabolite concentrations (initial conditions) are also given for HCR and LCR along

with upper and lower boundaries (UB and LB, respectively) that were used in determining ini-

tial starting concentrations.

(XLSX)

S3 Table. HCR metabolite exercise dependent (time dependent) concentrations. A spread-

sheet containing molar (M) concentrations of all metabolites for HCR, based on the simulation

shown in Fig 4 (blue solid line).

(XLSX)

S4 Table. LCR metabolite exercise dependent (time dependent) concentrations. A spread-

sheet containing molar (M) concentrations of all metabolites for LCR, based on the simulation
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shown in Fig 4 (red solid line).

(XLSX)

S1 Fig. Maximum and minimum of one-thousand HCR constraint-based solutions. HCR

constraint-based solutions of Eq 1 (in Methods) solved at each time point for internal reaction

fluxes using given Carbohydrate, FA, O2, and CO2 transport fluxes. Transport fluxes were

derived from HCR O2 and CO2 flux data shown in Fig 2. One-thousand solutions were pro-

duced from 1000 initial starting points of internal flux vectors spanning 18 orders of magni-

tude (10−9 to 109). The maximum of these solutions are shown as red transparent mesh while

the minimum of these solutions are shown as blue mesh.

(TIF)

S2 Fig. Maximum and minimum of one-thousand LCR constraint-based solutions. LCR

constraint-based solutions of Eq 1 (in Methods) solved at each time point for internal reaction

fluxes using given Carbohydrate, FA, O2, and CO2 transport fluxes. Transport fluxes were

derived from LCR O2 and CO2 flux data shown in Fig 2. One-thousand solutions were pro-

duced from 1000 initial starting points of internal flux vectors spanning 18 orders of magni-

tude (10−9 to 109). The maximum of these solutions are shown as red transparent mesh while

the minimum of these solutions are shown as blue mesh.

(TIF)

S3 Fig. The ATPase (ATP! ADP + Pi) flux, maximum red circles and minimum blue cir-

cles, from the one-thousand constraint-based solutions using HCR transport fluxes.

(TIF)

S4 Fig. A) HCR and LCR metabolite concentrations determined from the simulation of tran-

sient exercise data described in main Fig 4 were used to plot a surface of metabolite ratios,

[HCR (metabolites)]/[LCR (metabolites)] to diagnose differences in metabolite concentra-

tions. The enzyme activities used for the simulation were from the best fitting hypothesis in

Fig 4, blue solid line for HCR and red solid line for LCR. B) This panel is the same as in panel

(A) except that it is the reciprocal to show [LCR (metabolites)]/[HCR (metabolites)], therefore

metabolite concentrations that are greater in LCR become much more visible.

(TIF)

S1 Matlab Code. A MATLAB file containing code to generate the plots associated with the

figures. This code also contains the code required to simulate the model as is needed to gener-

ate several figures.

(ZIP)

S1 Matlab Figures. MATLAB figures “.fig” files have been generated, and can be down-

loaded here, to visualize the figures without the need to run code that can take several min-

utes in some cases.

(ZIP)
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