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Abstract: A new synthesis of 2-oxa-7-azaspiro[3.5]nonane is described. Spirocyclic oxetanes, 

including 2-oxa-6-azaspiro[3.3]heptane were converted into o-cycloalkylaminoacetanilides 

for oxidative cyclizations using Oxone® in formic acid. The expanded spirocyclic oxetane 

successfully gave the [1,2-a] ring-fused benzimidazole. X-ray crystal structure of the resultant 

new tetracyclic system, 1ʹ,2ʹ-dihydro-4ʹH-spiro[oxetane-3,3ʹ-pyrido[1,2-a]benzimidazole] 

and the azetidine ring-opened adduct, N-(2-acetamido-4-bromophenyl)-N-{[3-(chloromethyl) 

oxetan-3-yl]methyl}acetamide are disclosed. 
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1. Introduction 

Oxetane is considered as a polar equivalent of the gem-dimethyl group (Figure 1) [1–3]. Spirocyclic 

oxetanes such as 2-oxa-6-azaspiro[3.3]heptane (1a) and 2-oxa-7-azaspiro[3.5]nonane (1b) were 

proposed as valuable structural alternatives to ubiquitous morpholine in medicinal chemistry [4].  

A drug discovery project within our group demanded a substituent that enabled higher binding 

affinities to the NAD(P)H:quinone oxidoreductase 1 (NQO1) active site [5]. NQO1 is an enzyme  

over-expressed in cancer cell lines. Our attention turned to oxetane due to its heralded metabolic 

robustness in comparison to carbonyl alternatives, while offering the hydrogen bonding capacity 

necessary for efficient binding to the His194 residue of NQO1 enabling more efficient reduction of 

benzimidazolequinone and imidazobenzimidazolequinone substrates. The following article describes 
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the first fusion of the spirocyclic oxetane motif onto heterocycles in attempts to prepare [1,2-a] alicyclic 

ring-fused benzimidazoles 2a and 2b. 
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Figure 1. Rationale design of synthetic targets. 

2. Results and Discussion 

2.1. Synthesis of Spirocyclic Oxetanes 

The synthesis of the oxalate salt of 2-oxa-6-azaspiro[3.3]heptane 1a starting from the condensation 

of 3-bromo-2,2-bis(bromomethyl)propan-1-ol with p-tosylamide has been described [4]. The expanded 

analogue 1b is commercially available but expensive, and a new synthetic pathway is now reported 

(Scheme 1). N-tosyl-piperidine-4,4-diethyl ester 3 was prepared using the reaction of diethyl malonate 

with N-tosylbis(2-bromoethyl)amine, and similar transformations are available in patents [6,7]. Lithium 

aluminum hydride reduction provides diol 4, which is subjected to a one-pot mesylation and ring 

closure to give the previously unreported oxetane 5. The tosyl group was removed and the oxalate salt of 

2-oxa-7-azaspiro[3.5]nonane 1b formed. An alternative synthesis appears in a patent via the ring-closure 

of 2,2′-(oxetane-3,3-diyl)bis(ethan-1-ol) to give 1b [8]. The latter multi-step synthesis begins with a 

Wittig reaction on 3-oxetanone, and represents a longer more costly preparation of 1b. 

 

Scheme 1. Synthesis of the oxalate salt of 2-oxa-7-azaspiro[3.5]nonane (1b). 
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2.2. Synthesis of o-Cycloalkylaminoacetanilides 

Nucleophilic aromatic substitution onto 1,4-dibromo-2-nitrobenzene using the oxalate salts of 

spirocyclic oxetanes 1a and 1b was possible in yields of >90% when using a large excess of potassium 

carbonate in DMF (Schemes 2 and 3). Reduction of the nitro group of 6a and 6b using iron and 

aqueous ammonium chloride yielded the corresponding anilines 7a and 7b in 95% yield. The acetylation 

was optimized with aniline 7a, where the initial attempt using acetyl chloride gave the desired 

acetamide 8a in 64% yield together with adduct 9a of ring-opening of the azetidine in 19% yield 

(Scheme 2). By-product 9a was confirmed by X-ray crystallography (Figure 2). As pointed out by  

the Reviewer this may have occurred using the chloride ion liberated from the first acetylation.  

The ring-opening of azetidines by the nucleophilic attack of halide ions on azetidinium ions has been 

previously described [9]. Acetylations using acetic anhydride were in contrast regioselective giving 

diacetylated adduct 10a in 90% yield with neat acetic anhydride, while acetylation with acetic 

anhydride in methanol gave the desired product 8a in 81% yield. The latter conditions gave the 

analogous acetamide of 2-oxa-7-azaspiro[3.5]nonane 8b in 90% yield (Scheme 3). 

 

Scheme 2. Synthesis of N-[5-bromo-2-(2-oxa-6-azaspiro[3.3]heptan-6-yl)phenyl]acetamide (8a). 
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Scheme 3. Synthesis of N-[5-bromo-2-(2-oxa-7-azaspiro[3.5]nonan-7-yl)phenyl]acetamide (8b). 

 

Figure 2. X-ray crystal structure of N-(2-acetamido-4-bromophenyl)-N-{[3-(chloromethyl) 

oxetan-3-yl]methyl}acetamide (9a) [10]. 

2.3. Fusion of the Spirocyclic Oxetanes 

In order to fuse the spirocyclic oxetane of 8a and 8b, the well-established oxidative cyclization 

reaction of acetamide onto the neighbouring cyclic amine was used [11–13]. Oxone® in formic acid is 

as an expedient means of converting o-cycloalkylaminoacetanilides into [1,2-a] alicyclic ring-fused 

benzimidazoles and double annulated imidazobenzimidazoles in high yields [13]. Using the latter 

conditions (Scheme 4), acetanilide 8a gave a mixture of products indicating degradation of the spirocyclic 

oxetane and an absence of the desired benzimidazole 2a. In contrast the 2-oxa-7-azaspiro[3.5]nonane 

fused benzimidazole 2b was isolated in 74% yield at the end of the reaction of 8b without the 

requirement for chromatography by simple organic extraction from the basified aqueous mixture. The 

structure of the novel tetracyclic system 2b was confirmed by X-ray crystallography (Figure 3). 
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Scheme 4. Oxidative cyclizations to give spirocyclic oxetane fused benzimidazoles.  

 

Figure 3. X-ray crystal structure of 7ʹ-bromo-1ʹ,2ʹ-dihydro-4ʹH-spiro[oxetane-3,3ʹ-pyrido 

[1,2-a]benzimidazole] (2b) [10]. 

3. Experimental Section 

3.1. General 

All chemicals were obtained from commercial sources and used without further purification. Thin 

layer chromatography (TLC) was performed on TLC silica gel 60 F254 plates. Dry vacuum column 

chromatography was carried out on silica gel (Apollo Scientific ZEOprep 60/15–35 microns). Melting 

points were measured on a Stuart Scientific melting point apparatus SMP1. Infrared spectra were 

recorded using a Perkin-Elmer Spec 1 with ATR attached. 1H-NMR spectra were recorded using a  

Joel ECX 400 MHz instrument equipped with a DEC AXP 300 computer workstation. The chemical 

shifts were recorded in ppm relative to tetramethylsilane. 13C-NMR data were collected at 100 MHz 

with complete proton decoupling. High resolution mass spectra (HRMS) were carried out using ESI  

time-of-flight mass spectrometer (TOFMS). The precision of all accurate mass measurements were 

better than 5 ppm. NMR spectra of all compounds are available in the Supplementary Materials 

document accompanying this article. 

3.2. Experimental Procedures 

3.2.1. Synthesis of Spirocyclic Oxetanes 

Bis(2-oxa-6-azaspiro[3.3]heptan-6-ium) ethanedioate (oxalate salt of 1a) was prepared according to 

the literature [4]. 

Diethyl 1-(4-methylbenzene-1-sulfonyl)piperidine-4,4-dicarboxylate (3). Diethyl malonate (0.500 g,  

3.1 mmol) and NaH (0.165 g, 6.9 mmol) in DMF (50 mL) were heated at 80 °C for 30 min. N,N-bis(2-

bromoethyl)-4-methyl-1-sulfonamide [14] (1.320 g, 3.4 mmol) was added and heating at 80 °C continued 
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for 12 h. The cooled mixture was evaporated, EtOAc (50 mL) added, and washed with aqueous LiCl 

(5%) solution (3 × 50 mL). The organic extracts were dried (Na2SO4) and evaporated to dryness, and 

the residue purified by column chromatography using gradient elution of petroleum ether/EtOAc to 

yield the title compound (0.987 g, 83%) as a white solid; Rf 0.32 (1:4 EtOAc/Pet); mp 90–92 °C; νmax 

(neat, cm−1) 2987, 2851, 1742 (C=O), 1598, 1467, 1444, 1367, 1350 (S=O), 1327, 1305, 1261, 1247, 

1192, 1162 (S=O), 1092, 1052, 1072, 1015; δH (400 MHz, CDCl3) 1.16 (t, J = 7.3 Hz, 6H, CH3), 2.17 

(t, J = 5.5 Hz, 4H), 2.41 (s, 3H), 3.03 (t, J = 5.5 Hz, 4H), 4.13 (q, J = 7.3 Hz, 4H, OCH2), 7.29 (d,  

J = 8.0 Hz, 2H), 7.59 (d, J = 8.0 Hz, 2H); δC (100 MHz, CDCl3) 14.0, 21.6 (CH3), 30.2, 43.2 (CH2), 

52.4 (C), 61.8 (OCH2), 127.7, 129.8 (CH), 133.1, 143.7 (C), 170.4 (C=O); HRMS (ESI) m/z [M + H]+, 

C18H26NO6S calcd. 384.1481, observed 384.1483. 

[1-(4-Methylbenzene-1-sulfonyl)]piperidine-4,4-diyl]dimethanol (4). LiAlH4 (5.2 mL of a 1 M solution 

in THF, 5.2 mmol) was added over 5 min to a solution of diethyl ester 3 (1.000 g, 2.6 mmol) in THF  

(20 mL), and the solution stirred for 16 h at room temperature. The reaction was quenched with 

ethanol (3 mL), a saturated sodium potassium tartrate solution (40 mL), and stirred vigorously for 1 h. 

The resulting biphasic mixture was extracted with EtOAc (2 × 50 mL), washed with brine (2 × 30 mL) 

and dried (Na2SO4). The solution was evaporated to dryness and the residue purified by column 

chromatography using gradient elution of petroleum ether/EtOAc to yield the title compound (0.628 g, 

81%) as a white solid; Rf 0.45 (EtOAc); mp 110–114 °C; νmax (neat, cm−1) 3524 (OH), 3257, 2919, 

2869, 1725, 1597, 1340, 1320 (S=O), 1248, 1184, 1156 (S=O), 1132, 1090, 1053, 1012; δH (400 MHz, 

CDCl3) 1.57 (t, J = 5.7 Hz, 4H), 2.43 (s, 3H), 2.56 (t, J = 4.9 Hz, 2H, OH, disappears with D2O), 2.97 

(t, J = 5.7 Hz, 4H), 3.49 (d, J = 4.9 Hz, 4H, CH2OH), 7.31 (d, J = 7.8 Hz, 2H), 7.61 (d, J = 7.8 Hz, 

2H); δC (100 MHz, CDCl3) 21.6 (CH3), 28.4 (CH2), 36.6 (C), 42.1 (CH2), 68.7 (OCH2), 127.8, 129.8 

(CH), 132.9, 143.8 (C); HRMS (ESI) m/z [M + H]+, C14H22NO4S calcd. 300.1270, observed 300.1269. 

7-(4-Methylbenzene-1-sulfonyl)-2-oxa-7-azaspiro[3.5]nonane (5). Methanesulfonyl chloride (0.4 mL, 

5.2 mmol) in THF (5 mL) was added to diol 4 (1.700 g, 5.7 mmol) in THF (50 mL) via syringe pump 

at a rate of 1.7 mL/h, while potassium tert-butoxide (0.636 g, 5.7 mmol) was added in portions  

(one third per h). The mixture was stirred at room temperature for 1 h with further potassium  

tert-butoxide (1.900 g, 17.0 mmol) added, and stirred for 2 h. The mixture was evaporated, EtOAc  

(50 mL) added, washed with water (2 × 20 mL), and dried (Na2SO4). The solution was evaporated to 

dryness and the residue purified by column chromatography using gradient elution of petroleum 

ether/EtOAc to yield the title compound (1.160 g, 73%) as a white solid; Rf 0.44 (1:1 EtOAc/Pet);  

mp 168–172 °C; νmax (neat, cm−1) 2928, 2868, 1597, 1597, 1345, 1331 (S=O), 1241, 1163 (S=O), 

1140, 1089; δH (400 MHz, CDCl3) 1.93 (bs, 4H), 2.42 (s, 3H), 2.90 (bs, 4H), 4.29 (s, 4H, OCH2), 7.30 

(d, J = 7.3 Hz, 2H), 7.60 (d, J = 7.3 Hz, 2H); δC (100 MHz, CDCl3), 21.7 (CH3) 34.1 (CH2), 38.1 (C), 

43.3 (CH2), 81.1 (OCH2), 127.7, 129.8 (CH), 133.1, 143.8 (C); HRMS (ESI) m/z [M + H]+, C14H20NO3S 

calcd. 282.1164, observed 282.1163. 

Bis(2-oxa-7-azaspiro[3.5]nonan-7-ium) ethanedioate (oxalate salt of 1b). 2-Oxa-7azaspiro[3.5]nonane 

5 (1.300 g, 4.6 mmol) and Mg turnings (0.780 g, 32.3 mmol) in MeOH (50 mL) were sonicated for 1 h. 

The mixture was evaporated to give a viscous grey residue to which Et2O (50 mL) and Na2SO4⋅10H2O 
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(2.000 g) were added. After 30 min of stirring, the mixture was filtered, and anhydrous oxalic acid 

(0.210 g, 2.3 mmol) added to the filtrate to form a precipitate. The precipitate was collected and dried 

under vacuum to yield the title compound (0.580 g, 73%) as a white solid; mp 148–152 °C; νmax  

(neat, cm−1) 3389 (NH), 3124, 2931, 2866, 1713, 1610 (C=O), 1475, 1444, 1397, 1171; δH (400 MHz, 

D2O) 1.94 (t, J = 5.7 Hz, 4H), 2.98 (t, J = 5.7 Hz, 4H), 4.38 (s, 4H, OCH2); δC (100 MHz, D2O) 30.2 

(CH2), 36.6 (C), 41.1 (CH2), 81.1 (OCH2), 165.7 (C=O). 

3.2.2. Synthesis of Acetanilide Cyclization Precursors 

General Procedure for the Synthesis of Nitrobenzenes 6a and 6b 

1,4-Dibromo-2-nitrobenzene (1.000 g, 3.6 mmol), K2CO3 (9.820 g, 71.2 mmol) and spirocyclic 

oxetane 1a–1b oxalate salts (3.6 mmol) were heated in DMF (50 mL) at 80 °C for 4 h. The cooled 

mixture was evaporated, EtOAc (50 mL) added, and washed with aqueous LiCl (5%) solution  

(3 × 20 mL). The organic extracts were dried (Na2SO4), evaporated to dryness, and purified by column 

chromatography using gradient elution of petroleum ether/EtOAc to yield: 

6-(4-Bromo-2-nitrophenyl)-2-oxa-6-azaspiro[3.3]heptane (6a). (0.987 g, 93%) as an orange solid; Rf 

0.49 (1:1 EtOAc/Pet); mp 148–150 °C; νmax (neat, cm−1) 2955, 2861, 1672, 1602, 1558 (NO2), 1502, 

1484, 1458, 1373, 1362, 1348 (NO2), 1276, 1246, 1203, 1123, 1070; δH (400 MHz, CDCl3) 4.11 (s, 

4H, NCH2), 4.81 (s, 4H, OCH2), 6.47 (d, J = 9.2 Hz, 1H, 6-H), 7.45 (dd, J = 9.2, 2.3 Hz, 1H, 5-H), 

7.93 (d, J = 2.3 Hz, 1H, 3-H); δC (100 MHz, CDCl3) 38.3 (C), 62.8 (NCH2), 80.9 (OCH2), 108.3 (C), 

117.4 (6-CH), 128.8 (3-CH), 136.2 (C), 136.5 (5-CH), 143.8 (C); HRMS (ESI) m/z [M + H]+, 

C11H12N2O3
79Br calcd. 299.0031, observed 299.0038. 

7-(4-Bromo-2-nitrophenyl)-2-oxa-7-azaspiro[3.5]nonane (6b). (1.061 g, 91%) as an orange oil; Rf 

0.58 (1:4 EtOAc/Pet); νmax (neat, cm−1) 2931, 2861, 1599, 1519 (NO2), 1485, 1462, 1384, 1331 (NO2), 

1271, 1231, 1168, 1131, 1091; δH (400 MHz, CDCl3) 1.99–2.02 (m, 4H), 2.90–2.93 (m, 4H, NCH2), 4.46 

(s, 4H, OCH2), 6.97 (d, J = 8.7 Hz, 1H, 6-H), 7.53 (dd, J = 8.7, 2.3 Hz, 1H, 5-H), 7.89 (d, J = 2.3 Hz, 1H, 

3-H); δC (100 MHz, CDCl3) 34.9 (CH2) 38.3 (C), 49.2 (NCH2), 81.6 (OCH2), 113.3 (C), 122.8 (6-CH), 

128.7 (3-CH), 136.4 (5-CH), 143.3, 145.5 (C); HRMS (ESI) m/z [M + H]+, C13H16N2O3
79Br calcd. 

327.0344, observed 327.0355. 

General Procedure for the Synthesis of Anilines 7a and 7b 

Nitrobenzene 6a or 6b (2.00 mmol), Fe powder (0.370 g, 6.6 mmol), NH4Cl (59 mg, 1.0 mmol) and 

water (1.5 mL) in EtOH (5 mL) were heated at 80 °C for 5 h. EtOAc (50 mL) was added to the cooled 

mixture, which was filtered, washed with water (50 mL), and dried to yield: 

5-Bromo-2-(2-oxa-6-azaspiro[3.3]heptan-6-yl)aniline (7a). (0.508 g, 95%) as a brown oil; νmax (neat, 

cm−1) 3414, 3334, 2940, 2870, 1614, 1575, 1497, 1292, 1255, 1134, 1046; δH (400 MHz, CDCl3)  

3.50 (bs, 2H, NH2), 3.91 (s, 4H, NCH2), 4.82 (s, 4H, OCH2), 6.41 (d, J = 8.4 Hz, 1H, 3-H), 6.75 (d,  

J = 2.0 Hz, 1H, 6-H), 6.82 (dd, J = 8.4, 2.0 Hz, 1H, 4-H); δC (100 MHz, CDCl3) 39.1 (C), 62.1 
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(NCH2), 81.2 (OCH2), 114.1 (C), 115.8 (3-CH), 118.4 (6-CH), 121.7 (4-CH), 137.8 (C), 139.1 (C); 

HRMS (ESI) m/z [M + H]+, C11H14N2O79Br calcd. 269.0289, observed 269.0290. 

5-Bromo-2-(2-oxa-7-azaspiro[3.5]nonan-7-yl)aniline (7b). (0.564 g, 95%) as a brown solid;  

mp 160–162 °C; νmax (neat, cm−1) 3400, 3317, 2931, 2865, 2811, 1618, 1577, 1493, 1459, 1231, 1210, 

1133, 1122; δH (400 MHz, CDCl3) 1.98 (bs, 4H), 2.72 (bs, 4H, NCH2), 3.99 (bs, 2H, NH2), 4.47 (s, 4H, 

OCH2), 6.76–6.84 (m, 3H); δC (100 MHz, CDCl3) 35.8 (CH2), 38.5 (C), 48.7 (NCH2), 81.9 (OCH2), 

117.6 (C & CH), 121.2, 121.4 (CH), 138.7, 143.1 (C); HRMS (ESI) m/z [M − H]−, C13H16N2O79Br 

calcd. 295.0446, observed 295.0448.  

Procedures for the Synthesis of N-[5-Bromo-2-(2-oxa-6-azaspiro[3.3]heptan-6-yl)phenyl]acetamide (8a) 

AcCl (0.2 mL, 2.5 mmol) was added over 5 min to aniline 7a (0.420 g, 1.6 mmol) and Et3N (0.4 mL, 

2.7 mmol) in CH2Cl2 (10 mL) at 0 °C, and stirred for 3 h at room temperature. The solution was 

evaporated, EtOAc (50 mL) added, and washed with water (50 mL). The organic extracts were dried 

(Na2SO4), evaporated, and purified by column chromatography using gradient elution of petroleum 

ether/EtOAc to yield: 

N-(2-acetylamido-4-bromophenyl)-N-{[3-(chloromethyl)oxetan-3-yl]methyl}acetamide (9a). 0.114 g, 

19%; brown solid; mp 160–164 °C; Rf 0.25 (EtOAc); νmax (neat, cm−1) 3296, 3262, 2953, 2876, 1691 

(C=O), 1657 (C=O), 1578, 1518, 1403, 1364, 1313, 1259, 1193, 1089; δH (400 MHz, CDCl3) 1.85 (s, 

3H), 2.12 (s, 3H), 3.57 (d, J = 14.2 Hz, 1H), 3.67 (d, J = 11.2 Hz, 1H), 3.79 (d, J = 11.2 Hz, 1H), 4.12 

(d, J = 7.1 Hz, 1H, CHHO), 4.42 (d, J = 14.2 Hz, 1H), 4.59–4.63 (m, 2H, OCH2), 4.68 (d, J = 7.1 Hz, 

1H, CHHO), 7.09 (d, J = 8.5 Hz, 1H, 6-H), 7.32 (dd, J = 8.5, 2.1 Hz, 1H, 5-H), 8.43 (d, J = 2.1 Hz, 1H, 

3-H), 9.18 (bs, 1H, NH); δC 22.3, 24.2 (CH3), 45.9 (C), 48.3, 53.2 (CH2), 76.8, 77.2 (OCH2), 122.8 (C), 

127.0 (3-CH), 128.8 (2 × CH), 133.9, 137.2 (C), 169.3, 173.7 (C=O); HRMS (ESI) m/z [M + H]+, 

C15H19N2O3
35Cl79Br calcd. 389.0268, observed 389.0271 and N-[5-bromo-2-(2-oxa-6-azaspiro[3.3] 

heptan-6-yl)phenyl]acetamide (8a). (0.312 g, 64%) as a white solid; Rf 0.18 (EtOAc); mp 185–189 °C; 

νmax (neat, cm−1) 3218, 2929, 2864 1652 (C=O), 1591, 1569, 1520, 1485, 1408, 1368, 1317, 1279, 

1254, 1132, 1060, 1011; δH (400 MHz, (CD3)2SO) 1.99 (s, 3H, CH3), 3.94 (s, 4H, NCH2), 4.65 (s, 4H, 

OCH2), 6.43 (d, J = 8.7 Hz, 1H, 3-H), 7.15 (dd, J = 8.7, 2.3 Hz, 1H, 4-H), 7.25 (d, J = 2.3 Hz, 1H,  

6-H), 9.23 (s, 1H, NH); δC (100 MHz, (CD3)2SO) 23.7 (CH3), 39.0 (C), 62.4 (NCH2), 80.3 (OCH2), 

109.3 (C), 115.9 (3-CH), 126.5 (C), 129.0 (4-CH), 130.4 (6-CH), 145.7 (C), 169.2 (C=O); HRMS 

(ESI) m/z [M − H]−, C13H14N2O2
79Br calcd. 309.0239, observed 309.0249. 

N-Acetyl-N-[5-bromo-2-(2-oxa-6-azaspiro[3.3]heptan-6-yl)phenyl]acetamide (10a). Aniline 7a (0.850 g, 

3.2 mmol) in Ac2O (30 mL) was heated at 100 °C for 2 h. The cooled solution was evaporated,  

ice-water (50 mL) added, and stirred for 3 h. The resultant precipitate was purified by column 

chromatography using gradient elution of petroleum ether/EtOAc to yield the title compound (1.020 g, 

90%) as a white solid; Rf 0.34 (1:1 EtOAc/Pet); mp 152–156 °C; νmax (neat, cm−1) 2932, 2861, 1707 

(C=O), 1702 (C=O), 1591, 1493, 1479, 1458, 1408, 1366, 1334, 1300, 1284, 1225, 1156, 1126, 1073, 

1022; δH (400 MHz, CDCl3) 2.29 (s, 6H, CH3), 3.96 (s, 4H, NCH2), 4.76 (s, 4H, OCH2), 6.41 (d,  

J = 8.7 Hz, 1H, 3-H), 7.05 (d, J = 2.3 Hz, 1H, 6-H), 7.34 (dd, J = 8.7, 2.3 Hz, 1H, 4-H); δC 26.5 (CH3), 
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39.0 (C), 62.2 (NCH2), 80.9 (OCH2), 111.1 (C), 115.9 (3-CH), 126.7 (C) , 132.7, 133.0 (CH), 146.4 

(C), 174.0 (C=O); HRMS (ESI) m/z [M + H]+, C15H18N2O3
79Br calcd. 353.0501, observed 353.0501. 

N-[5-Bromo-2-(2-oxa-7-azaspiro[3.5]nonan-7-yl)phenyl]acetamide (8b). Ac2O (0.9 mL, 10.0 mmol) 

and aniline 7b (0.594 g, 2.0 mmol) in methanol (20 mL) were heated at reflux for 1 h. The cooled 

mixture was evaporated, ice-water added (40 mL), and stirred for 3 h. The resultant precipitate was 

washed with water, and dried under vacuum to yield the title compound (0.611 g, 90%) as a white 

solid; mp 164–166 °C; νmax (neat, cm−1) 3353, 2934, 2860, 2811, 1687 (C=O) 1578, 1507, 1445, 1410, 

1372, 1224, 1132, 1109; δH (400 MHz, CDCl3) 2.02 (bs, 4H), 2.18 (s, 3H), 2.69 (bs, 4H, NCH2), 4.48 

(s, 4H, OCH2), 6.92 (d, J = 8.2 Hz, 1H, 3-H), 7.12 (dd, J = 8.2, 1.8 Hz, 1H, 4-H), 8.36 (bs, 1H, NH), 

8.53 (d, J = 1.8 Hz, 1H, 6-H); δC (100 MHz, CDCl3) 25.0 (CH3), 35.8 (CH2), 38.3 (C), 49.9 (NCH2), 

81.6 (OCH2), 118.8 (C), 121.8 (3-CH), 122.3 (6-CH), 126.6 (4-CH), 134.6, 140.2 (C), 168.1 (C=O); 

HRMS (ESI) m/z [M + H]+, C15H20N2O2
79Br calcd. 339.0708, observed 339.0707. 

3.2.3. Oxidative Cyclization to Give the Spirocyclic Oxetane Fused Benzimidazole 

7ʹ-Bromo-1ʹ,2ʹ-dihydro-4ʹH-spiro[oxetane-3,3ʹ-pyrido[1,2-a]benzimidazole] (2b). Acetanilide 8b 

(0.150 g, 0.44 mmol) and Oxone® (0.820 g, 1.32 mmol) were stirred in formic acid (20 mL) at 40 °C 

for 6 h. The mixture was evaporated, water added (30 mL), neutralized with solid Na2CO3, and 

extracted with CH2Cl2 (3 × 10 mL). The organic extracts were dried (Na2SO4), and evaporated dryness 

to yield the title compound (96 mg, 74%) as a white solid; mp 178–181 °C; νmax (neat, cm−1) 2926, 

2856, 1721, 1511, 1481, 1450, 1406, 1307, 1269, 1163, 1047; δH (400 MHz, CDCl3) 2.44 (t, J = 6.4 Hz, 

2H, 2ʹ-CH2), 3.36 (s, 2H, 4ʹ-CH2), 4.09 (t, J = 6.4 Hz, 2H, 1ʹ-CH2), 4.54–4.59 (m, 4H, 2,4-CH2), 7.14 

(d, J = 8.7 Hz, 1H, 9ʹ-H), 7.32 (dd, J = 8.7, 1.8 Hz, 1H, 8ʹ-H), 7.79 (d, J = 1.8 Hz, 1H, 6ʹ-H); δC  

(100 MHz, CDCl3) 30.6 (2ʹ-CH2), 34.9 (4ʹ-CH2), 37.9 (C), 39.0 (1'-CH2), 80.6 (2,4-CH2), 110.2 (9ʹ-CH), 

115.6 (C), 122.1 (6ʹ-CH), 125.2 (8ʹ-CH), 133.3, 144.5, 150.8 (C); HRMS (ESI) m/z [M + H]+, 

C13H14N2O79Br calcd. 293.0289, observed 293.0287. 

4. Conclusions 

The new spirocyclic oxetane fused system, 1ʹ,2ʹ-dihydro-4ʹH-spiro[oxetane-3,3ʹ-pyrido[1,2-a] 

benzimidazole] has been prepared through oxidative cyclization of the o-cycloalkylaminoacetanilide, 

where 2-oxa-7-azaspiro[3.5]nonane is the cycloamino substituent. Future work will focus on preparing 

quinone analogues for anti-cancer studies, as well as investigating conditions for the synthesis of the 

more strained tetracycle 2a. The acetanilide containing 2-oxa-6-azaspiro[3.3]heptane system proved  

to be unstable under the presented oxidative cyclization conditions giving an intractable mixture. 

Research is on-going in the group to establish milder conditions for oxidative cyclizations of o-cyclic 

amine substituted anilines [15] and acetamides to give ring-fused benzimidazoles. 
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