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Background: Radiofrequency catheter ablation (CA) is an efficient antiarrhythmic

treatment with a class I indication for idiopathic ventricular arrhythmia (IVA), only when

drugs are ineffective or have unacceptable side effects. The accurate prediction of the

origins of IVA can significantly increase the operation success rate, reduce operation

duration and decrease the risk of complications. The present work proposes an artificial

intelligence-enabled ECG analysis algorithm to estimate possible origins of idiopathic

ventricular arrhythmia at a clinical-grade level accuracy.

Method: A total of 18,612 ECG recordings extracted from 545 patients who underwent

successful CA to treat IVA were proportionally sampled into training, validation and testing

cohorts. We designed four classification schemes responding to different hierarchical

levels of the possible IVA origins. For every classification scheme, we compared

98 distinct machine learning models with optimized hyperparameter values obtained

through extensive grid search and reported an optimal algorithm with the highest

accuracy scores attained on the testing cohorts.

Results: For classification scheme 4, our pioneering study designs and implements a

machine learning-based ECG algorithm to predict 21 possible sites of IVA origin with an

accuracy of 98.24% on a testing cohort. The accuracy and F1-score for the left three

schemes surpassed 99%.

Conclusion: In this work, we developed an algorithm that precisely predicts the correct

origins of IVA (out of 21 possible sites) and outperforms the accuracy of all prior studies

and human experts.

Keywords: ventricular tachycardia, premature ventricular complex, catheter ablation, machine learning, ECG

INTRODUCTION

Premature ventricular complexes (PVC) are commonly found in persons without evidence of
structural heart disease. However, in a subset of patients, they may herald the presence of
underlying cardiomyopathy. A daily high burden of PVC or paroxysmal ventricular tachycardia
(VT) may cause a cardiac chamber dilation and an impairment of the systolic function of the
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heart a condition known as PVC-induced cardiomyopathy. In
a population-based study (1) of older adults without any heart
failure signs or systolic dysfunction, the baseline of PVC/VT
burden was significantly associated with an adjusted increased
odds of decreased left ventricular ejection fraction (odds ratio
(OR), 1.13; 95% confidence interval (CI), 1.05–1.21) and an
increased adjusted risk of incident heart failure (hazard ratio
(HR), 1.06; 95% CI, 1.02–1.09) and death (HR, 1.04; 95% CI,
1.02–1.06). Idiopathic ventricular arrhythmias (IVA) is a term
commonly used to describe PVC or VT in the absence of
structural heart disease. Catheter ablation (CA) is an efficient
treatment with a class I indication for IVA when drugs are
ineffective or have unacceptable side effects (2–4). Complications
of catheter ablation include cardiac perforation, tamponade, and
coronary artery occlusion (5). The success of the CA procedure
is predicated on a precise and fast determination of the correct
ablation sites. The origins of PVC and VT can be identified
through analysis of ECGs, activation mapping, pace mapping,
and echocardiogram. Using standard 12-lead ECGs, an accurate
prediction of the origins of IVA before the ablation procedure can
optimize the CA treatment strategy, reduce ablation duration,
and avoid operative complications (6). Previous studies have
proposed several ECG criteria and models for the estimation
of IVA origins at different levels of the anatomical structure.
For instance, Zheng et al. (7), Di et al. (8), Cheng et al. (9),
He et al. (10), Xie et al. (11), Efimova et al. (12), Yoshida
et al. (13), Nakano et al. (14), Cheng et al. (15), Betensky
et al. (16), Arya et al. (17), and Kamakura et al. (18) proposed
an algorithm or index to predict origins from right or left
outflow tract; (19) developed an ECG criteria for locations
under outflow tract; (20, 21) devised an ECG criteria for
locations under right ventricular outflow tract; (22) proposed
transitional zone index to separate origins from right ventricular
outflow tract and aortic sinus cusp. However, these results
have been limited by analyzing only a few locations, ECG
measurement efficiency, and the ability to deploy the model
to real-life medical settings. For instance, the majority of prior
works were only focused on locating general regions, such as
left outflow tract, right outflow tract, non-outflow tract, etc.,
rather than taking into account all possible ablation sites available
in a systemic perspective. Moreover, the decision criterion
derived from ECG measurement, such as transitional index
and ratios of QRS complex altitudes, are not available in the
commercial software and open-source tools. Thus, operators are
reluctant to apply prior study results since measurement and
computation of these criteria are cumbersome manual works.
In contrast, we developed an optimal multi-stage approach that
automatically extracts features from standard 12-lead ECGs and
incorporates these features into a machine learning classification
model to predict the precise site of IVA origin with fewer
limitations and higher accuracy than prior studies. In the
common clinical practice, the estimation of origins will be
performed with a hierarchical sequence from general regions,
such as right and left ventricular, to detailed locations. Therefore,
the study encompassed four classification schemes to classify
IVA origin sites from 3 general regions to 21 anatomical sites.
We also provided a multi-prospective analysis for revealing the

underlying relationship between important ECG characteristics
and the sites of IVA origins.

METHODS

Study Design
The institutional review board of Ningbo First Hospital of
Zhejiang University has approved this retrospective study and
granted the waiver of consent requirement. The study was
conducted in accordance with the Declaration of Helsinki. The
estimation of origins with a hierarchical sequence from general
regions to detailed locations can cater to different level demands
of the application. Therefore, we designed four classification
schemes with increasing numbers of anatomical origin sites. The
first scheme will help the operators to figure out the origin from
epicardium of left ventricular summit, right, and left ventricle.
The second one can separate origins from left/right outflow tract
and left/right non-out flow tract, respectively. The third one is
able to predict 18 anatomical locations, and the fourth scheme
can distinguish 21 possible sites. The origin sites of each scheme
are shown in Table 1.

For each patient, we extracted all available ECG recordings
when PVC or VT occurred. According to the window size setting
(introduced in the section of ECG measurement protocol), each
recording included one QRS complex and possibly contained
segments before the Q-wave onset and after the S-wave offset.
According to the outcome of ablation, each ECG recording was
labeled by the anatomical origins that represented successful
ablation sites. To fairly evaluate the estimation performance
of proposed work, this study employed a training-validation-
testing design that randomly and proportionally assigned all
participated patients into distinct cohorts. Therefore, training,
validation, and testing cohorts did not have ECG recording
samples from the same patient. However, since each patient
could have a different length of ECG recordings when PVC or
VT occurred, the training cohort did not have equal numbers
of ECG recordings associated with individual anatomical sites.
Thus, we employed an oversamplingmethod to increaseminority
samples in the training cohort to address the imbalanced learning
problem. For instance, the number of patients with epicardium
of left ventricular (LV) summit origins was five (shown in
column 2 of Table 2, rather than 10 that is the number of ECG
recordings (shown in column 3 of Table 2). In the first step, we
assigned three patients to the training cohort, one patient to the
validation cohort, and one patient to the testing cohort. Secondly,
cardiologists in the research group selected three ECG recordings
for the patient in the testing cohort. Proportionally, we extracted
three ECG recordings for the patient in the validation cohort
and 25 ECG recordings for the patients in the training cohort.
Finally, we achieved 80–10–10% distribution split across training,
validation, and testing cohorts both per patient and per ECG
recordings. During the training stage, the oversampling method
was implemented to increase the number of ECG recordings
from 25 to 1,694, the largest sample number associated with left
cusp (LC) origin. The overall sample distributions of patients
and ECG recordings for classification scheme 4 are presented in
Table 2.
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TABLE 1 | Performance report with 95% CIs and hierarchical anatomy structure for four classification schemes.

Scheme 1 Scheme 2 Scheme 3 Scheme 4

Accuracy (95% CI) 99.79 (99.41–99.89) 99.62 (99.09–99.78) 97.78 (96.76–98.41) 98.24 (97.36–98.71)

F1-score (95% CI) 99.84 (99.6–99.96) 99.42 (98.79–99.75) 97.74 (94.15–99.73) 98.56 (97.88–99.12)

Anatomical sites

LV endocardium

Outflow tract

LCC LCC

RCC RCC

AMC AMC

Summit Summit

LCC-RCC Commissure LCC-RCC Commissure

Non-Outflow tract

Left His bundle Left His bundle

MV MV

Left Septal
LAF

LPF

Papillary Muscle
LAPM

LPPM

RV endocardium

Outflow tract

AC AC

LC LC

RC RC

RVOT septal
RVOT posterior septal

RVOT anterior septal

RVOT free wall RVOT free wall

Non-Outflow tract

Right His bundle Right His bundle

TV TV

RAPM RAPM

Epicardium of LV summit Epicardium of LV summit Epicardium of LV summit Epicardium of LV summit

LC, left cusp; LCC, left coronary cusp; AC, anterior cusp; RC, right cusp; AMC, aortomitral continuity; LPF, left posterior fascicle; TV, tricuspid valve; LAF, left anterior fascicle; LPPM,

left posterior papillary muscle; MV, mitral valve; LAPM, left anterior papillary muscle; RCC, right coronary cusp; RAPM, right anterior papillary muscle.

For every classification scheme presented in Table 1, a four-
stage experiment was conducted sequentially: (1) a random forest
model to perform an exhaustive search for the best window size
of ECG input data; (2) a hyper-parameters grid search for 98
competing machine learning models based on validation data
performance [a design that has been successfully implemented
in a similar study (23)]; (3) a comprehensive comparison of
all 98 models to identify the best model based on the accuracy
achieved in the testing cohort; and (4) a fully blind testing phase
to evaluate, interpret, and report the best model performance.
The pipeline of this experiment is presented in Figure 1.

Patient Selection
We analyzed ablation procedure logs and image recording files,
including MRI, ECG, Cardio Echo, X-ray, and 3D mapping, of a
total of 747 patients who had undergone mapping and ablation
for IVA at the Ningbo First Hospital of Zhejiang University from
March 2007 to September 2019. A 12-lead surface ECG test was
obtained on each clinic visit, and a 24-h Holter monitoring was
recorded before the ablation. A requirement for entry into the
study was for patients to experience the burden of IVA for greater
than 10% of the total duration of time.

A total of 109 (14.6%) patients were removed from the study
since ablation logs and image recordings were not complete or
mismatched. If IVA burden was less than 5% of the total test
duration of the Holter monitoring and there was no recurrence

of clinical IVA during clinic visit in the first six-month follow-
up after CA, the ablation was regarded as a successful procedure,
and origin sites of IVA were ascertained. A total of 76 (10.17%)
patients were excluded from this study because of the recurrence
of IVA in the first six-months of follow-up.Moreover, the patients
who had coronary artery disease, myocarditis, cardiomyopathy,
and ischemic heart disease were removed from the study
according to the clinical history, echocardiograms, cardiac
magnetic resonance, angiography and coronary computerized
tomography (CT). A summary description of the demographics
and clinical features are shown in Table 3 and five patients were
removed from the study because of conditions mentioned above.
In addition, 12 patients (1.61%) who had multiple ablation sites
were excluded from the study since origin sites could not be
precisely confirmed according to the rules defined in the section
of Origin sites confirmation. Finally, a total of 545 patients with
anatomically normal hearts without congenital disease or prior
operations were included in this study. A diagram (shown in
Figure 2) precisely presents the patient selection process.

Classification of Anatomical Sites
The general regions of origin of IVA include left ventricular
(LV) endocardium, right ventricular (RV) endocardium, and
epicardium of LV summit. The origins in the RV and LV
endocardium were anatomically divided into right ventricular
outflow tract (RVOT), right ventricular non-outflow tract
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TABLE 2 | Sampls distribution of classification scheme 4.

Locations Patients, n (%) ECG recordings, n (%) Training cohort, n (%) Validation cohort, n (%) Testing cohort, n (%)

LC 67 (15.12) 2,118 (14.36) 1,694 (80) 212 (10) 212 (10)

RVOT posterior septal 43 (9.93) 1,848 (12.53) 1,478 (80) 185 (10) 185 (10)

LCC 41 (9.47) 588 (3.99) 470 (80) 59 (10) 59 (10)

AC 38 (8.78) 1,079 (7.31) 863 (80) 108 (10) 108 (10)

RVOT free wall 32 (7.39) 1,287 (8.72) 1,029 (80) 129 (10) 129 (10)

RVOT anterior septal 32 (7.39) 1,014 (6.87) 812 (80) 101 (10) 101 (10)

Right His bundle 31 (7.16) 705 (4.78) 563 (80) 71 (10) 71 (10)

RC 24 (5.54) 353 (2.39) 283 (80) 35 (10) 35 (10)

AMC 23 (5.31) 1,434 (9.72) 1,146 (80) 144 (10) 144 (10)

LPF 18 (4.16) 913 (6.19) 731 (80) 91 (10) 91 (10)

TV 18 (4.16) 563 (3.82) 451 (80) 56 (10) 56 (10)

LAF 13 (3) 885 (6) 707 (80) 89 (10) 89 (10)

LCC-RCC commissure 11 (2.54) 172 (1.17) 138 (80) 17 (10) 17 (10)

Epicardium of LV summit 10 (2.31) 351 (2.38) 281 (80) 35 (10) 35 (10)

LPPM 9 (2.08) 677 (4.59) 541 (80) 68 (10) 68 (10)

MV 8 (1.85) 330 (2.24) 264 (80) 33 (10) 33 (10)

LAPM 8 (1.85) 192 (1.3) 154 (80) 19 (10) 19 (10)

RCC 7 (1.62) 51 (0.35) 41 (80) 5 (10) 5 (10)

Summit 5 (1.15) 31 (0.21) 25 (80) 3 (10) 3 (10)

Left His bundle 3 (0.69) 149 (1.01) 119 (80) 15 (10) 15 (10)

RAPM 2 (0.46) 14 (0.09) 12 (80) 1 (10) 1 (10)

LC, left cusp; LCC, left coronary cusp; AC, anterior cusp; RC, right cusp; AMC, aortomitral continuity; LPF, left posterior fascicle; TV, tricuspid valve; LAF, left anterior fascicle; LPPM,

left posterior papillary muscle; MV, mitral valve; LAPM, left anterior papillary muscle; RCC, right coronary cusp; RAPM, right anterior papillary muscle.

FIGURE 1 | The illustration of study design. A total of six experiment steps were conducted sequentially.

(RVNOT), left ventricular outflow tract (LVOT), and left
ventricular non-outflow tract (LVNOT), respectively. The LVOT
endocardium was divided into five regions: left coronary cusp
(LCC), right coronary cusp (RCC), aortomitral continuity
(AMC), summit, and LCC-RCC commissure. The LVNOT
endocardium region was divided into left His bundle, mitral
valve (MV), left septal including left anterior fascicle (LAF)

and left posterior fascicle (LPF), and left papillary muscle
including left anterior papillarymuscle (LAPM) and left posterior
papillary muscle (LPPM). The possible origin sites in the
RVOT endocardiumwere identified by 3-dimensional directions:
anterior and posterior, right and left, and superior and inferior.
Accordingly, origins under the RVOT were classified into six
regions: anterior cusp (AC), left cusp (LC), right cusp (RC),
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TABLE 3 | Baseline clinical characteristics of the patients.

Characteristic Total Training cohort Validation cohort Testing cohort P-value

Patients, n (%) 545 436 (80) 55 (10) 54 (10) NA

Age, Mean ± SD, year 47.1 ± 12.6 46.8 ± 12.3 47.5 ± 13.4 45.7 ± 15.4 0.92

Male, n (%) 178 (32.66) 144 (33) 16 (29.1) 18 (32.73) 0.949

BMI, Mean ± SD, (kg/m2 ) 29.20 ± 4.18 29.05 ± 4.67 27.68 ± 3.12 28.08 ± 5.21 0.089

Cardiac MRI, n (%) 10 (1) 9 (1) 1 (0) 0 (0) NA

Angiography, n (%) 6 (1) 6 (1) 0 (0) 0 (0) NA

Coronary CT, n (%) 12 (2) 6 (1) 5 (1) 1 (0) 0.016

Clinical findings on entry

History of hypertension, n (%) 54 (10) 33 (6) 13 (2) 8 (1.5) < 0.01

History of diabetes, n (%) 37 (6.7) 30 (5.5) 2 (0) 5 (1) 0.712

Antiarrhythmic drugs, n (%) 225 (41.3) 205 (37.6) 9 (1.7) 11 (2) < 0.01

Echocardiogram test

Echocardiograms, n (%) 187 (34.3) 136 (25) 33 (6.1) 18 (3.3) < 0.01

LV internal systolic dimension, Mean ± SD, mm 33.6 ± 4.1 33.1 ± 3.3 30.9 ± 4.7 32 ± 2.9 0.288

LV internal diastolic dimension, Mean ± SD, mm 49.9 ± 6.1 50.3 ± 5.2 49.1 ± 6.6 48.5 ± 6.7 0.099

lnterventricular septal thickness, Mean ± SD, mm 11.2 ± 1.7 11.3 ± 1.7 11.2 ± 2 11.1 ± 1.4 0.772

LV posterior wall thickness, Mean ± SD, mm 10.7 ± 1.2 10.5 ± 9 11.1 ± 1.2 10.7 ± 0.7 0.842

RV outflow tract, Mean ± SD, mm 31.9 ± 4.7 30.7 ± 5.5 33.7 ± 4.4 30.6 ± 4.5 0.647

LVEF (%) 60.8 ± 5.5 61.4 ± 4.8 59.0 ± 4.4 61.9 ± 3.5 0.289

ECG

PVC burden (n/24h Holter), Mean ± SD 27146.5 ± 10611.8 25667.2 ± 11320 27884.3 ± 11734.2 26724.4 ± 12128.5 0.592

Frequent PVC, n (%) 513 (94.13) 414 (94.95) 47 (85.45) 51 (94.44) 0.072

Paroxysm VT, n (%) 19 (3.49) 15 (3.44) 4 (7.27) 1 (1.85) 0.483

Persistent VT, n (%) 13 (2.39) 7 (1.61) 4 (7.27) 2 (3.7) 0.061

Prior CA, n (%) 5 (0.92) 2 (0.46) 1 (1.82) 2 (3.7) 0.065

BMI, body mass index; MRI, magnetic resonance imaging; CT, computerized tomography; LV, left ventricular; LVEF, left ventricular ejection fraction. Frequent PVC means that PVC

burden is above 10% of total test duration.

RVOT septal (including posterior septal and anterior septal),
and free wall. The RVNOT endocardium region includes right
His bundle, tricuspid valve (TV), and right anterior papillary
muscle (RAPM). The site of MV/TV here could include anterior,
posterior, and lateral MV/TV. Each location is depicted in
Figure 3, and the classification of hierarchical anatomical sites is
shown in Table 1.

Catheter Ablation Procedures
Administration of antiarrhythmic drugs had been stopped for at
least five half-lives before the inception of the ablation procedure.
A 4.0-mm 7F irrigated-tip ablation catheter (Navistar, Biosense
Webster, Diamond Bar, CA) was initially placed in the RVOT
for mapping. Both fluoroscopy and electroanatomic mapping
systems (CARTO, Biosense Webster, Diamond Bar, CA, USA or
NavX Velocity, St. Jude Medical, St. Paul, MN, USA) were used
to localize the anatomical position of the catheter ablation for all
cases in this study. For a total of 187 patients enrolled after 2018,
the echocardiogram was used to identify specific anatomical
structures such as cusps and papillary muscles. For instance,
Figure 4 presented the fluoroscopy, 3-dimensional mapping,
intracardiac echocardiography, and activation mapping for a
patient who has VT originating from LCC-RCC commissure of
LVOT. Using point by point mapping, anatomical aggregated

maps were created. Activation mapping was performed in all
patients during VT and PVC. Pace mapping was also performed,
with the lowest pacing output (2 to 20 mA) and pulse width (0.5
to 10ms), to capture the ventricular myocardium at the site of the
earliest activation. If suitable ablation sites for the RVOT origin
were not located or ablation failed to abolish the arrhythmia,
extendedmapping to the LVOT site was deployed via a retrograde
aortic approach. After target sites were located, radiofrequency
energy was delivered with maximum power up to 35 W with
a saline irrigation flow rate of 17–9 ml/min and a maximum
electrode-tissue interface temperature of 43°C. If the VT/PVC
disappeared, or the frequency of arrhythmias diminished after
the first 30 s of ablation, the energy was delivered continuously
from 60 to 180 s. For PVC/VT that originated from summit under
LVOT, we carried the ablation through LVOT endocardium by
35W power after successfully locating the optimal ablation target
site. The acute ablation success was defined as the absence of
spontaneous or induced IVA at 30 min after the last energy
delivery and confirmed by continuous cardiac telemetry in the
subsequent 24 h of inpatient care.

Origin Sites Confirmation
In this study, the successful ablation sites that followed the above
classification convention were outcome labels for the machine
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FIGURE 2 | Decision process to exclude patients from the study.

learning predictive models, and the corresponding 12-lead ECG
data mainly containing a QRS complex were the inputs variables.
One can map one-to-one relationship between the origin site
(successful ablation site) and the QRS complex in most cases.
However, for some sophisticated cases, if PVC or VT originated
from one site, such as mid-myocardial layer, and had multiple
PVC exit sites due to lesion biophysics, heat sink effect from
adjacent vessels, fiber orientation and heat transfer, etc., multiple
QRS morphologies would be presented. We enrolled such cases
into the study when the following three criteria were satisfied:
(1) the absence of spontaneous or induced PVCs or VT after
energy delivered, (2) the confirmation of acute ablation success
mentioned in the section of Catheter ablation procedures, and

(3) the confirmation of successful sustained ablation mentioned
in the section of Followup. For such cases, multiple QRS complex
inputs will have single origin site label. In addition, if PVC
or VT originated from multiple sites and the QRS complex
will present different morphology, ablation needs to be carried
out in multiple locations, maybe in different chambers. The
operator will ablate the possible origin site according to QRS
morphology of the most frequently occurred PVC or VT, one
by one. The same criteria mentioned above were harnessed to
confirm origin sites for such scenarios as well. Strictly speaking,
we used the successful ablation site to estimate the PVC/VT
origin site and utilized the ECG signals to predict the successful
ablation site, rather than PVC exit site. Thus, origin sites in
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FIGURE 3 | Anatomical locations of possible IVA origins. 1 = LCC; 2 = RCC; 3 = AMC; 4 = Summit; 5 = LCC-RCC commissure; 6 = Left His bundle; 7 = MV; 8 = Left

anterior fascicle (LAF); 9 = Left posterior fascicle (LPF); 10 = Left anterior papillary muscle (LAPM); 11 = Left posterior papillary muscle (LPPM); 12 = AC; 13 = LC; 14 =

RC; 15 = RVOT anterior septal; 16 = RVOT posterior septal; 17 = RVOT free wall; 18 = Right His bundle; 19 = Right anterior papillary muscle (RAPM); 20 = TV; 21 =

Epicardium of LV summit. The abbreviations are as in Table 1.

this study were the names of successful ablation sites shown in
Table 1.

Follow Up
All antiarrhythmic drugs were discontinued after ablation
procedure and during the follow-up period. In the 24 h of
inpatient care following the ablation procedure, every patient
received continuous ECG monitoring. After discharge, the
patients underwent a follow-up two weeks after the ablation.
These follow-ups continued every month at the cardiology clinic
thereafter. A 12-lead surface ECG tests were obtained at each
clinic visit, and a 24-h Holter monitoring was prescribed at
three and six months after the ablation. The successful sustained
ablation was defined for patients that did not experience the
recurrence of IVA during clinic visit and frequent PVC or VT
(happening above 5% of total test duration) in the first six-
months of follow-up.

ECG Measurement Protocol
The 12-lead ECGs were collected at a sampling rate of
2,000 Hz using the standard electrode placement. In this
work, the coif5 Wavelets and Stein’s Unbiased Risk Estimator
(SURE)-based threshold were implemented by a MATLAB
(Natick, Massachusetts, The MathWorks Inc.) program for
noise reduction. As machine learning model input, each ECG

recording consisted of smoothed voltage values around one R-
wave peak when PVC or VT happened (shown in Figure 5). To
achieve the best classification performance and computational
effectiveness, we implemented an exhaustive grid search using
the ensemble random forest model to find the best window
size of an ECG recording that achieved the highest accuracy of
prediction. The candidate sizes ranged from 200 sampling data
points (100 ms) to 1,000 sampling data points (500 ms) with a
step of 10 sampling data points (5 ms). The reference line for
each ECG recording is the R-wave peak point at lead-II (shown
in Figure 5A). For the four classification schemes, Figure 5B
showed the optimal window sizes of ECG recording that attained
the best prediction performance based on the validation cohorts,
window sizes consisting of 250 (125), 550 (275), 360 (180),
and 320 (160) sampling points (ms), respectively. Moreover, the
visualization validation was performed after optimal window
sizes were obtained. For instance, the V1-lead ECGs that
have labels of 21 sites predicted by scheme 4 were shown in
Supplementary Figure 13.

Optimal Strategies for Machine Learning
Model Tuning
Our study aimed at designing the optimal machine learning
algorithm consisting of multiple stages and data preprocessing.
We carried out a comprehensive grid search to identify the
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FIGURE 4 | Mapping for IVA originating from LCC-RCC commissure in LVOT. (A) Right anterior oblique and left anterior oblique fluoroscopic views showed an

ablation catheter in the LVOT. Ablation in the LVOT (LCC-RCC commissure) eliminated the PVC within 3 s. (B) The three-dimensional anatomic representation of the

RV endocardium, LV endocardium, and venous system with the ablation catheter positioned at the anterior interventricular vein. (C) The green circle indicated the tip

of ablation catheter in LCC-RCC commissure. (D) The earliest bipolar and unipolar activation time (–30 ms) are shown. MAP1 is unipolar signal and MAP1-2 is bipolar

signal.

optimal hyper-parameter values for each classification method
presented in Supplementary Table 10. We selected, as optimal,
the hyper-parameter values that attained the highest weighted
average F1-Score on the validation cohort. Ensemble machine
learning methods based on multiple samplings were used to
improve classification performance. Two major stream ensemble
methods, averaging and boosting, were implemented in this
work. The first method consists of building numerous classifiers
that are independently trained on different observed samples,
and the individual results are averaged. This approach has
the computational advantage of carrying out the independent
training steps in parallel. In contrast, the gradient boosting
method builds a set of classification models that will work
sequentially. A boosting model was optimized and trained by
feeding misclassified samples from a prior model until a quasi-
optimal model with the lowest misclassification probability was
obtained. In this work, we compared six ensemble methods,
including Bagging Average, Random Forest, AdaBoost, Gradient
Boost Tree, Extreme Gradient Boost Tree, and Extremely
Randomized Tree.

We wrapped the ensemble methods and base classifiers
into three meta-classifiers, One vs. Rest, One vs. One, and
Error-Correcting Output-Codes. It is possible to use these meta-
classifiers with ensemble algorithms hoping that their accuracy

or runtime performance improves. A total of 98 different
combinations were compared in this study, after combining
meta-classifiers with ensemble methods and base classifiers
that included Decision Trees, K Nearest Neighbors, Nearest
Centroid, Gaussian Naive Bayesian, Multinomial Naive Bayesian,
Complement Naive Bayesian, Bernoulli Naive Bayesian, Linear
Classifier, Quadratic Discriminant Analysis, Multinomial
Logistic Regression, Multilayer Perceptron Neural Net, Ridge
Regression Classifier, Linear Classifiers with Stochastic Gradient
Descent, Passive Aggressive Classifier, and Linear Support
Vector Machine.

Convolutional neural network (CNN) models and recurrent
neural network (RNN) models, such as long short term memory
network (LSTM) with attention, have shown some promising
results in ECG data analysis (24, 25). These models used
sequential transformations of the raw data as features that were
ultimately fed into a multinomial logistic regression classifier
(softmax unit). Properly training them requires extensive data for
each category outcome. A CNN with a 36 layer residual block
structure and 32-layer long short term memory network with
attention were also put into the comparison list.

After comparing all the above machine learning algorithms,
our results showed that the Extremely Randomized Trees (26)
classifier attained the highest performance in all settings,
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FIGURE 5 | A demonstration of exhaustive grid search for the best window size of an ECG recording. (A) A segment of an ECG shows one sinus rhythm heartbeat

and one PVC from a patient with PVC originating from the tricuspid valve. The exhaustive grid search using the ensemble random forest model gave the optimal length

of an ECG recording to the highest prediction accuracy. The red dotted line aligned with the R-wave point at lead II represents the reference line. The range between

the two green dotted lines is the minimum candidate with input length of 200 sampling points (100 ms). The range between the two black dotted lines is the maximum

candidate of input length of 1,000 sampling points (500 ms). (B) X-axis denotes the window sizes of ECG data, and Y-axis denotes the average accuracy. The best

window size for classification scheme 1 is 250 sampling points; for classification scheme 2–550 sampling points; for classification scheme 3–360 sampling points: for

classification scheme 4–320 sampling points. ACC = Accuracy.

as evidenced by the achieved accuracy, F1-scores, and their
95% CIs.

Statistical Analysis
For the continuous variable age, we calculated the mean and
standard deviation. For the categorical variables, gender and
locations, we calculated frequency counts and percentages.
One-way Analysis of Variance (ANOVA) was used to test
for differences of means across groups. Associations between
categorical variables were analyzed with chi-square test and
Fisher’s exact test. A p-value< 0.05 was considered as statistically
significant. The noise reduction and summary of the classification
results via confusion matrices were done in MATLAB (Natick,
Massachusetts, The MathWorks Inc.) Statistical optimization
of the 98 models was done through iterative training using
Python’s scikit-learn package (27). The Seaborn package was
employed to conduct univariate and multi-variate analysis for
feature importance. The feature importance heat map was drawn
by our proprietary Python (28) module. In the heat map, the
X-axis denotes 12 leads, and the Y-axis indicates the sampling
point. The ascending color brightness indicates the increasing
variable importance magnitudes. The performances of all models
were compared using the accuracy, sensitivity (SE), specificity
(SP), positive predictive value (PPV), negative predictive value
(NPV), balanced accuracy, adjusted accuracy, and the F1-Score
measures. We used a two-sided 95% confidence interval (CI)

to summarize the sample variability in the estimates. CIs were
obtained by bootstrapping with 2,000 replications carried out in
R version 3.5.3.

Computation Resource
The computations and simulations were conducted in parallel on
the Chapman University Schmid cluster with 500 cores and 1T
RAM. The entire process took 95 days and 13 h.

RESULTS

Patient Characteristics
We analyzed 12-lead ECG data from patients who underwent
CA to treat IVA at the Ningbo First Hospital of Zhejiang
University from March 2007 to September 2019. After the
CA procedure, 2 (0.37%) of the patients developed a slight
ecchymosis. All patients remained in the study, a total of 545,
were randomly assigned to one of three cohorts, a training cohort
(80%), which was used to train machine learning algorithms,
a validation cohort (10%) that was designed to tune training
parameters, and a testing cohort (10%) on which the machine
learning algorithms were tested. The baseline characteristics of
545 patients are presented in Table 3 and a total of 18,612
ECG recordings were extracted from these patients. The ECG
recording sample allocations of four classification schemes were
presented in Table 2 and Supplementary Tables 1–3. There were
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no statistically significant differences with respect to age, male,
body mass index, left ventricular ejection fraction, PVC, and
clinical arrhythmia across the three groups.

Assessing the Performance of the Models
After comparing over one hundred machine learning algorithms
that were successfully implemented in a similar study (7, 23), our
results showed that the Extremely Randomized Trees classifier
attained the highest performance in all settings as evidenced by
its accuracy, F1-scores, and 95% CIs. All performance measures
reported below were based on a blind test of the testing cohorts
that encompass ECG recordings associated with anatomic sites in
each classification scheme.

In the first classification scheme used to predict right
ventricular endocardium, left ventricular endocardium, and
epicardium of left ventricular summit, the model achieved an
accuracy of 99.79 (99.41–99.89) and an F1-score of 99.84 (99.6–
99.96). For scheme 2, designed to predict 5 possible locations,
the proposed method reached an accuracy of 99.62 (99.09–
99.78) and an F1-score of 99.42 (98.79–99.75). For scheme 3
that predicts 18 anatomical locations, the model achieved an
accuracy of 97.78 (96.76–98.41), an F1-score of 97.74 (94.15–
99.73), and an adjusted accuracy of 98.53 (98.33–99.15). For
scheme 4 that can distinguish 21 origin sites, the proposed
model attained an accuracy of 98.24 (97.36–98.71), an F1-
score of 98.56 (97.88–99.12), and an adjusted accuracy of 98.75
(98.35–99.38). These prediction accuracy performance measures
and anatomical sites associated with each scheme were presented

in Table 1. The performance measures for each sites in scheme 4
were shown in Table 4. Similar prediction performance reports
for scheme 1–3 were presented in Supplementary Tables 4–6.
Considering the general accuracy does not take into account the
subtleties of class size imbalances, we reported F1-scores that
represent the harmonic mean of the estimated precision and
recall. Moreover, for classification schemes 3 and 4, we developed
a new scoring metric that awards partial credit to incorrect
predictions that resulted in similar treatments or outcomes as
the true locations would have produced. We reported the new
adjusted accuracy results using these new scoring metrics in
Supplementary Tables 7, 8.

Furthermore, the confusion matrix shown in Figure 6

describes the performance of the classification scheme 4. It
presents both correct and incorrect frequency counts for the
model predictions of each site compared against the true
locations. The numbers presented in matrix are the amount
of ECG recording samples, not the count of patients. Similar
confusionmatrices for the other three classification schemes were
presented in Supplementary Figures 1–3.

Presentation and Interpretation of the
Fitted Models
In machine learning, the feature importance is used to measure
the magnitude of variable impact in predicting the site of origin.
By ranking the features according to the magnitude of the
impact they have on predicting the site of origin, we created
a new feature importance heat map (shown in Figure 7) to

TABLE 4 | Performance report with 95% CIs for classification scheme 4.

Locations SE (%) SP (%) PPV (%) NPV (%) F1–Score (%) Balanced ACC (%)

AC 98.15 (93.09–100) 99.78 (99.37–99.93) 97.25 (92.88–99.19) 99.85 (99.42–100) 97.7 (94.97–99.24) 98.96 (96.46–99.89)

AMC 98.61 (95.16–100) 99.92 (99.55–100) 99.3 (95.97–100) 99.85 (99.47–100) 98.95 (97.02–99.68) 99.27 (97.52–99.96)

RVOT posterior septal 100 (NA) 99.77 (99.38–99.92) 98.4 (95.75–99.49) 100 (NA) 99.2 (97.83–99.75) 99.88 (99.69–99.96)

Epicardium of LV summit 100 (NA) 100 (NA) 100 (NA) 100 (NA) 100 (NA) 100 (NA)

RVOT free wall 99.22 (95.68–100) 99.78 (99.40–99.93) 97.71 (93.92–99.32) 99.93 (99.62–100) 98.46 (96.34–99.61) 99.5 (97.73–99.93)

RVOT anterior septal 99.01 (94.40–100) 100 (NA) 100 (NA) 99.93 (99.57–100) 99.5 (97.12–100) 99.5 (97.20–100)

LC 97.17 (93.88–98.98) 99.6 (99.12–99.84) 97.63 (94.69–99.10) 99.53 (98.97–99.84) 97.4 (95.24–98.63) 98.39 (96.74–99.26)

LCC 100 (NA) 99.93 (99.58–100) 98.33 (91.18–100) 100 (NA) 99.16 (95.38–100) 99.96 (99.79–100)

LCC–RCC commissure 100 (NA) 100 (NA) 100 (NA) 100 (NA) 100 (NA) 100 (NA)

LPF 100 (NA) 99.71 (99.28–99.93) 95.79 (90.12–98.88) 100 (NA) 97.85 (94.80–99.44) 99.86 (99.64–99.96)

LPPM 98.53 (90.86–100) 100 (NA) 100 (NA) 99.93 (99.57–100) 99.26 (95.21–100) 99.26 (95.43–100)

LAF 95.51 (88.52–98.8) 99.93 (99.64–100) 98.84 (94.21–100) 99.71 (99.28–99.93) 97.14 (93.48–98.91) 97.72 (94.27–99.35)

LAPM 100 (NA) 100 (NA) 100 (NA) 100 (NA) 100 (NA) 100 (NA)

MV 93.94 (80–100) 100 (NA) 100 (NA) 99.86 (99.52–100) 96.88 (88.89–100) 96.97 (90–100)

Left His bundle 100 (NA) 100 (NA) 100 (NA) 100 (NA) 100 (NA) 100 (NA)

Right His bundle 94.37 (86.18–98.44) 99.86 (99.43–100) 97.1 (90.12–100) 99.72 (99.29–99.93) 95.71 (90.53–98.14) 97.11 (93.17–99.16)

RC 94.29 (81.31–100) 99.86 (99.51–100) 94.29 (80–100) 99.86 (99.49–100) 94.29 (85.71–98.51) 97.07 (90.71–99.93)

RCC 100 (NA) 100 (NA) 100 (NA) 100 (NA) 100 (NA) 100 (NA)

RAPM 100 (NA) 100 (NA) 100 (NA) 100 (NA) 100 (NA) 100 (NA)

Summit 100 (NA) 100 (NA) 100 (NA) 100 (NA) 100 (NA) 100 (NA)

TV 98.21 (93.19–99.16) 99.93 (99.17–100) 98.21 (96.37–99.96) 99.93 (99.26–100) 98.21 (95.47–99.46) 99.07 (98.33–100)

Average 98.43 (97.61–99.5) 99.9 (98.01–100) 98.71 (97.85–99.36) 98.43 (97.65–99.42) 98.56 (97.88–99.12) 98.24 (97.36–98.71)

SE, sensitivity; SP, specificity; PPV, positive predictive value; NPV, native predictive value; ACC, accuracy; F1-Score =2 * PPV * SE / (PPV + SE); Balanced ACC = (SE+SP)/2; NA, not

applicable; other abbreviations are as in Table 1.
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FIGURE 6 | Confusion matrix for classification scheme 4. The true class labels of the 21 origins in the Y-axis were confirmed by successful CA. The predicted class

labels in the X-axis represent the outcomes generated by the machine learning classification model. Numbers in blue on the main diagonal represent the correct

predictions. Percentages in blue represent the accuracy of the corresponding category. A number presented in matrix is the amount of ECG recording samples

associated with an anatomic label, not the count of patients. The abbreviations are as in Table 1.

visualize the variable importance for classification scheme 4. The
corresponding feature importance heat maps for classification
schemes 1–3 were presented in the Supplementary Figures 4–6.
The feature importance heat map allows us to identify the top
three important features and utilize them to make preliminary
origins estimation. For instance, we have found that the voltage
value at the 10th position in lead V1 after the reference line
is the variable with the highest importance. Through further
single variable analysis (shown in Supplementary Figure 14),
one can find that the average voltage value of this variable
for aortomitral continuity is higher than the average value
for right coronary cusp. Also, this average value is lower for
the tricuspid valve location compared to all other origins in
the left ventricular endocardium. The voltage value at the
7th position in lead-V1 after the reference line is the most
important variable to separate left ventricular endocardium,
right ventricular endocardium, and epicardium of left ventricular
summit (shown in Supplementary Figure 9). The high average
value of this variable was associated with a high probability
that the location is on the left ventricular endocardium.
Similarly, one can utilize the other important variables presented
in Supplementary Figures 7–9 to precisely determine the
misfiring locations.

Furthermore, we employed a non-parametric smoothing
technique to visualize the average ECG morphology and
important signal locations. For example, a total of 863
V1-lead ECG recordings that have the label of AC site
in the scheme 4 training cohort were smoothed and

averaged to a single line (shown in subplot entitled with
AC in Figure 8). The average V1-lead ECG morphologies
for the remaining 20 anatomical sites were shown in the
same figure.

Failure Prediction Analysis
The proposed machine learning model will report the
probabilities of all possible sites and their corresponding
rankings. For instance, in classification scheme 4 the algorithm’s
exceptional accuracy means that in almost all cases the machine
learning model ranks the correct site as number one (1,451
out of 1,476). However, if the top prediction is incorrect,
the location with the second highest probability is likely the
correct site. We considered 26 predictions with incorrect
machine learning model top predictions. In 20 of these cases,
the second ranked location identified the true site and in 6 of
these cases the third ranked location did too. The probabilities
of all possible sites for these 26 samples were presented in
Supplementary Table 11.

Moreover, we provide visualization results frommodel output
and input of failed predictions. For instance, to analyze a sample
in the testing cohort that was predicted as an AC site but the
true class is RVOT anterior septal, three plots were presented in
Supplementary Figure 15 consisting of the average 12-lead ECG
graphic with true label, a 12-lead ECG data in testing cohort that
was misclassified, and the average 12-lead ECG data with the false
prediction label.
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FIGURE 7 | Feature importance heat map for classification scheme 4. The X-axis denotes 12 leads, and the Y-axis indicates the sampling point. The ascending color

brightness indicates the increasing variable importance magnitudes. The most important features occur in the lead-V1, lead-V2, lead-I, lead-V3, lead-V4, lead-V5, and

lead-V6 sequentially. Thus, the feature importance heat map suggests that lead-V1 plays a major role in predicting the 21 anatomical origins. By ranking the signals

according to the magnitudes of variable importance, we found the top three important features: in lead-V1 the voltage value at the 10th point after the reference line; in

lead-V1 the voltage value at the reference line; in lead-V1 the voltage value at the 3rd point after the reference line. The point in the reference line (the R-wave peak

point at lead-II) is counted as the first point.

Comparison With Previous Studies and
Human Experts
We compared our approach against results from 15 prior
studies (8–16, 18–22, 29) as well as prediction performance of
human experts. The accuracy, F1-Score, sensitivity, specificity,
positive predictive value, negative predictive value, and the
area under the curve of the receiver operating characteristic
(ROC) curve were used to compare performances and were
shown in Supplementary Table 9. The proposed machine
learning approach attained the highest overall prediction
accuracy (0.9824) and achieved the best anatomical precision by
identifying the largest number of sites (21).

We also designed a comprehensive study to compare the
location prediction performance between human experts and our
machine learning algorithm. A total of 12 ablation operators
who had 5 to 20 years of radiofrequency catheter ablation
experience carried out ablation procedures to 545 patients.
Under the multi-class setting, we used one vs. others strategy
to compute sensitivity, specificity, F1-score, and accuracy for
each site. For instance, if the successful ablation site is AC and
the first ablation site given by an operator was AC, this was
counted as a true positive for the AC site. If the successful
ablation site was AC and the first ablation site given by operator
was not AC, this was counted as a false negative for the AC

site. If the successful ablation site was not AC and the first
ablation site given by operator was AC, this was counted as
a false positive for the AC site. If the successful ablation site
was not AC and the first ablation site given by operator was
not AC, this was counted as a true negative for the AC site.
Sequentially, after we calculated these measurements for all
21 sites, reported the weighted averages of these performance
metrics (shown in Supplementary Table 10). In summary, the
sensitivity, specificity, F1-Score, and accuracy of the machine
learning-enabled ECG approach exceeded those of the human
experts 0.57, 18.18, 2.17, and 3.95%, respectively.

DISCUSSION

Accurate prediction of the source of IVA is challenging and can
be further obfuscated by the presence of additional abnormal
findings on the ECG, such as a bundle block. Even though
mapping can easily determine the sites, it is disadvantageous
to map every possible site during the ablation procedure. The
additional and redundant mapping, especially for the cross left
and right chamber one, will prolong the operation time and
increase the risk of complications. For example, some origins
including AMC, epicardium of LV summit, LVOT and RVOT,
have very similar ECG morphology. In these scenarios, if the
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FIGURE 8 | Average ECG morphology of V1 lead for classification scheme 4. Nonparametric smoothing technique was employed to generate the average V1-lead

ECG morphology for all 21 anatomical sites. The three red stars denote the locations of the three most important variables (ECG signals). The abbreviations used are

identical to those in Table 1.

sites can be accurately predicted, the extra mapping for the
remaining possible ablation sites is not necessary and can be
avoided. Therefore, developing and deploying an algorithm with
high prediction accuracy to guide the practitioners in identifying
the likely target of ablation would be invaluable. The assistive
technology will improve success rates, enhance and accelerate
the procedure planning, and enable detailed discussion of the
treatment options and risks with the patients.

We have collected a large expertly labeled database consisting
of 18,612 ECG recordings recorded from 545 patients, we trained
and validated a state-of-the-art machine learning algorithm to
predict the exact 21 anatomical origins of IVAwith an accuracy of
98.24%. Under the auspices of Chapman University and Ningbo
First Hospital of Zhejiang University, we created and shared our
proprietary 12-lead ECG database interpreted by experts with the
scientific community (30).

A comprehensive comparison of the predictive accuracy
of our approach against methods proposed in 15 previous
studies (8–16, 18–22, 29) showed that our algorithm is the
only one that can predict the largest number of sites (21)
with an accuracy of 98.24%. None of the existing research
results managed to achieve prediction of the IVA sites of
origin with the anatomical level of detail of our study. The
machine learning algorithm makes a prediction based on the
complete data consisting of all available smoothed voltage
values while previous studies used only a set of variables
extracted from the raw data, such as the transitional zone index
and R-wave amplitudes. For classification scheme 4, designed
to predict 21 possible anatomical sites, the univariate and

trivariate analysis demonstrated that neither single nor triple
variable combination could separate all possible origins clearly
(Supplementary Figures 14, 16).

Moreover, this algorithm was designed to support ablation
operator without breaking current ablation practices. For
instance, if PVC or VT originated from one site with multiple
PVC exit sites (which presented multiple QRS morphologies),
the operator would choose QRS morphology of the most
frequent PVC to predict the possible ablation site and deploy
the ablation procedure introduced in the section of Catheter
ablation procedures. Finally, the acute ablation success will
confirm whether such an assumption is true. This algorithm will
take ECG data as input (decided by operator) and predict the
possible origin site. Thus, it will seamlessly help operator to make
the correct decision and improve the probability of success.

Study Limitations
Although this study includes patients with a comprehensive
list of anatomy sites, the oversampling was carried out during
the training stage to balance minority representations of RCC
and summit under LVOT, left His bundle and RAPM, and the
performance of the method could be improved in the presence of
more cases of them. As this retrospective study spanned a long
period of time and intracardiac echo was not utilized in all cases
(especially at early stages of the study), some exact locations were
not strictly ascertained by supporting evidence from intracardiac
echo, such as pulmonary cusps and papillary muscle origins.
Moreover, some cases of multi-ablation at different sites for
multi-focal PVC/VT were excluded from the study. Thus, the
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algorithm potentially could have a limitation if applied in
such scenarios. A multi-center prospective evaluation in larger
cohorts is necessary to show robustness and compatibility of the
proposed algorithm.

CONCLUSION

The proposed machine learning model can be immediately
and effortlessly deployed to electrophysiology labs allowing
cardiologists to predict the exact origins of arrhythmia and
provide an optimum treatment plan both before and during the
CA procedure. The complete analysis was done automatically by
the model, and the prediction for one patient only takes less than
one second of computational time.
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