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Abstract. Traffic-induced vibrations may cause various damages to buildings
located near the road, including cracking of plaster, cracks in load-bearing ele-
ments or even collapse of the whole structure. Measurements of vibrations of real
buildings are costly and laborious. Therefore the aim of the research is to propose
the original numerical algorithm which allows us to predict, with high probability,
the negative dynamic impact of traffic-induced vibrations on the examined build-
ing. The model has been based onmachine learning. Firstly, the experimental tests
have been conducted on different buildings using specialized equipment taking
into account six factors: distance from the building to the edge of the road, type of
surface, condition of road surface, condition of the building, the absorption of soil
and the type of vehicle. Then, the numerical algorithm based on machine learning
(using support vector machine) has been created. The results of the conducted
analysis clearly show that the method can be considered as a good tool for pre-
dicting the impact of traffic-induced vibrations on buildings, being characterized
by high reliability.
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1 Introduction

There a number of different dynamic loads, including the effects of earthquakes, wind,
vibrating machines, jumping of spectators, piling works or passing of vehicles, which
can induce vibrations of buildings (see [1–3] for example). Traffic-induced vibrations,
even that they are not as severe as vibrations caused by wind or earthquakes [4, 5],
can also lead to major problems. They can cause plaster scratches and cracks, scratches
on the structure, structural elements cracking or even collapsing of the building (see
[6]). The harmfulness of vibrations on structural elements is influenced by many factors
regarding the road on which vehicles move. The dynamic parameters of the building are
also important. Vibrationmeasurements on real structures are labour-intensive and costly
projects, and what is important, they are not justified in every case. Nowadays, there are
many decision support systems, research tools and computer programs necessary for
their application. The problem is to find solutions that are both useful and economical.
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Therefore, approximate methods are increasingly used. These methods allow the engi-
neering problem to be solved accurately enough and the result is satisfactory, even if it is
approximate (for example, see [7]). An example of this approach is the use of machine
learning (ML). An example of this methodology is the support vector machine (SVM).
The idea of using ML appeared as early as in 1952, when Arthur Samuel from IBM
began building a computer program for training chess players [8]. The concept of ML
appeared for the first time in 1983 in publication [9]. The purpose and sense of operation
of ML was described by Tom Michael Mitchell in the basic publication regarding ML
algorithms [10]. In turn, Chen et al. [11] used SVM to detect burglars. ML was also used
in building operation problems. An example is the publication [12] which presents a
system based on ML techniques supporting the detection of a threat, for example in the
form of a fire, based on the analysis of the image from monitoring. Related works also
include the paper [13] aiming to create a model of technical degradation of buildings
located in mining areas and subjected to paraseismic tremors. An interesting application
can also be found in the publication by Martínez-Rego et al. [14]. The authors presented
the idea of detecting defects in a wind mill.

A review of the literature indicates that ML can be widely used. The implementation
of this method in various fields can positively affect the development of technology and
reduce costs while minimizing the risk of adverse effects. However, ML has not been
used to forecast impact of traffic-induced vibrations on buildings. Therefore, the aim of
this research is to implement this methodology for such a purpose.

2 Problem of Traffic-Induced Vibrations

Vibrations are described by movement of building structure particles, most often caused
by waves propagated in the ground and reaching the foundations [15]. It should be noted
that vibrations and noise are defined as environmental pollution. A very important factor
in analysing the impact of traffic-induced vibrations on buildings is the soil in which the
wave propagates. They are twowave parameters (damping and absorption) of significant
importance described in [16]. Both of them depend mainly on the type of medium in
which the wave propagates. Therefore, the soil impact parameter was also included in
thisMLmodel. It is also important to determine the source of vibration, propagation path
and indicate the vibration receiver, which can be a structure itself, people or equipment
located inside a building.

Special attention should be paid to the possibility of traffic-induced vibrations already
during the design phase of building, and also in the exploitation phase. According to
the standard [15], the load of the building caused by vibrations transmitted through the
ground can generally be omitted if a building is located at a distance of more than 25 m
from the axis of the railway line or at a distance of more than 15 m from the axis of
the tram line, the axis of the first category road or a thoroughfare street. Therefore, if a
building is located closer than the standard indicates, it is recommended to examine the
impact of vibrations. However, after performing field tests using specialized equipment,
it often appears that there is no immediate danger to the structure. Moreover, carrying
out such tests for all buildings located along the road may not be economically justified.
Therefore, there is a need to develop effective methods for forecasting impact of traffic-
induced vibrations on buildings. The experience and acquired knowledge of experts are
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the basis of systems and calculation programs. Therefore, the aim of the operation is to
create an expert model based onMLwhich allows us to predict with high probability the
threat of negative dynamic impact on the tested building without performing laborious
and expensive field measurements.

It should be added that vibrations may also have significant impact on people in
buildings. This problem is particularly noticeable when people are exposed to long-term
vibrations (see [6, 16]). Traffic-induced vibrations can cause discomfort to people in the
affected area. Test results show that the threshold of human vibration perception is lower
than the limit, after which damage may occur in the building itself [16]. In European
standards (see [17–20]), three parameters are described for assessing the impact of
vibrations: the corrected value of acceleration or velocity of vibrations in the frequency
range 1–80 Hz, spectrum (frequency structure) for effective acceleration or velocity
values in 1/3 octave bands and the dose of vibration.

3 Experimental Study

The extensive experimental study has been firstly carried out for 11 buildings (see
Table 1). The measurements have been conducted for different types of passing vehicles
in accordance with standard [15]. A separate detailed analysis has been performed for
each building. The extreme amplitude values of measured vibrations have been obtained
and compared with the values of the dynamic influence scale so as to determine to which
zone the structure is assigned to (see [15] for details).

Table 1. Summary of data on experimental vibration testing on buildings.

Building no. Condition of
building BC

Distance of
the building
BDR

Soil absorption
SA

Type of road
surface RS

Condition of
road surface
RC

1 Standard 7 m Good Bitumen Good

2 Good 10 m Good Bitumen Good

3 Good 9 m Standard Bitumen Bad

4 Good 15 m Standard Bitumen Standard

5 Good 20 m Standard Bitumen Good

6 Standard 8 m Standard Bitumen Good

7 Good 15 m Good Reinforced
concrete slabs

Bad

8 Good 15 m Good Reinforced
concrete slabs

Bad

9 Good 23 m Bad Bitumen Standard

10 Good 20 m Bad Bitumen Standard

11 Good 12 m Standard Ground Standard
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The measurement results (see [21] for details) have been used as data for creating
the ML model. All tested buildings in experimental study have been divided into 2 sets:
firstly, buildings with small external dimensions of the horizontal projection (maximum
length of 15 m) with one or two stories and secondly, buildings up to five stories high.
To create the ML model, all cases have been divided into 2 groups with descriptions of
zones defined in [15]:

• zone I: vibrations unnoticed by a building; the lower limit of impact of vibrations on
a building and the lower limit of taking into account the dynamic influences;

• zones II–V: vibrations noticed by a building; minimum, mean and significant impact
of vibrations on a building.

4 Forecasting Algorithm Based on SVM

4.1 Input and Output Information

The purpose of the SVM algorithm in the present paper is to classify the variables and
assign them to certain zones. The SVM task is to set a separator that will split the data
into obvious subsets. The aim is to create a way to classify new data for which the
assignment is not known. The SVM method assumes that the input variables are mutu-
ally independent and have the same probability distribution. The following input signals
have been adopted on the basis of standard [15] and publication [21]: the distance of
the building from the road edge (quantitative variable), condition and type of pavement,
condition of the building, type of vehicle and absorption of vibrations in the ground
(quality variables). Before the final set of parameters has been adopted, different com-
binations of these parameters have been examined. The output signal has been defined
in this way that it contains the information whether there is a risk of negative impact
of vibrations on buildings or not. The danger has been determined on the basis of the
criteria described in standard [15]. No impact indicates zone I of dynamic influence
scale, i.e. no influence on a building. If the algorithm predicts a possible threat, it is an
indication for performing in situ measurements, as it may mean that the building falls
in zone II–V of dynamic influence scale.

The construction of SVM has been based on the principles described in the liter-
ature [22–29]. Firstly, the database necessary to start the algorithm has been created.
63 samples have been collected, including 33 input data samples by independent own
measurements (see chapter 3 and [21]) and 30 samples based on measurements of other
researchers [30, 31]. The input signals have been defined as factors (independent vari-
ables) determined during field measurements, i.e. BC - condition of building, BDR -
distance from the edge of the building, SA - soil absorption, RS - type of road surface,
RC - condition of road surface, VT - type of vehicle. The input vector has therefore
been adopted as follows: x(6×1) = {BC, BDR, SA, RS, RC, VT}, quantitative variable:
BDR ε < 1.91–22.5 m >, qualitative variables: BC ε {bad, standard, good}; SA ε {bad,
standard, good}; VT ε {bitumen, ground, reinforced concrete slabs, granite cube}; RC ε

{bad, standard, good}; VT ε {type1, type2, type3}.
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Two classes as the output signal have been adopted: 0 - no impact of vibrations on
the building; 1 - probable impact of vibrations on the building. Thus, the output vector
has been assumed to have the form: y(1×1) = {y}; y ε {0, 1}.

The SVMalgorithmhas been tested for four different kernel functions. The optimiza-
tion problem has been solved, in which the margin (weak margin) has been minimized
because it had been not linearly separable. A binary classification algorithm has been
used since two classes of sets have been assumed: a set of cases for which there is a threat
of impact of vibrations on buildings and a set of safe cases. All cases have been randomly
divided into 2 sets: learning and testing. 47 samples have been randomly assigned to the
learning set (74.6% of all samples) and 16 samples for the test set (25.4% of the total).

Because the cases have been unevenly distributed into classes (for 47 samples empir-
ically determined during measurements, no risk of impact of vibrations on building -
class “0” and for 16 samples a result indicating the risk of vibration impact - class “1”)
a penalty has been used to avoid incorrectly classifying cases of class “1” into a larger
class, that is class “0”. The kernel functions have been adopted in turn as a linear, poly-
nomial, radial base and sigmoidal function [24]. To determine the optimal values of the
learning constants, a cross-validation has been used for each machine with each type of
kernel according to formulas (1–4). The algorithm’s reliability has been assessed on the
basis of errors recognizing the assignment of structures from the set of all data and the
set of learning and testing data to previously defined patterns.

In the first case, the linear function of the form described in [24] has been adopted
as the kernel function K(x, y) according to formula (1):

K(x, y) = xT y + c (1)

where:
c - optional constant;

In accordance with the principle described in [26], a 10-fold cross-validation has
been carried out, the validity of which has been equal to 78.72%. 21 support vectors
have been determined (9 for the “0” class, 12 for the “1” class), including 11 associated
ones. Classification accuracy in the learning set has been found to be equal to 82.98%,
and in the testing set 81.25%. Overall validity (taking into account all samples) has been
equal to 82.54% (this is a weighted average taking into account the size of the sample in a
given set). The algorithm’s reliability has been assessed on the basis of errors recognizing
the assignment of structures from the set of all data and the set of learning and testing
data to previously defined patterns.

In the next stage, the machine with polynomial function K(x, y) of the third degree
has been analysed [25]:

K(x, y) = (αxT y + c)d (2)

where:
c - optional constant;
α - slope, α = 1/N, where N is the data dimension;
d - degree of polynomial;
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The cross-validation and reliability of the algorithm have been carried out in the
same way as for the previous machine. The accuracy of the cross test has been found to
be equal to 78.72%. 27 support vectors have been designated (14 for the “0” class, 13
for the “1” class), including 10 associated ones. Classification accuracy in the learning
set has been found to be equal to 85.11%, and in the testing set 81.25%. Overall validity
has been equal to 84.13%.

In the third step to build the algorithm, the radial base function has been adopted as
the function K(x, y) [24]:

K(x, y) = exp

(
−‖x − y‖2

2σ 2

)
(3)

where:
σ - parameter regulating data noise and ensuring non-linearity of functions.

The accuracy of the cross-validation test has been found to be equal to 78.72%. 24
supporting vectors have been determined (11 for the “0” class, 13 for the “1” class),
including 11 associated ones. Classification accuracy in the training set has been found
to be equal to 85.11%, and in the test set 81.25%. Overall validity has been equal to
84.13%.

In the last case, the sigmoidal function has been adopted according to the formula
(4) for the algorithm [24]:

K(x, y) = tanh
(
αxTy + c

)
(4)

where:
c - optional constant;

The accuracy of the cross-validation has been found to be equal to 76.60%. 21
supporting vectors have been determined (8 for the “0” class, 13 for the “1” class),
including 13 associated ones. Classification accuracy in the learning set has been found
to be equal to 74.47%, and in the testing set 81.25%. Overall relevance has been equal
to 76.19%.

The application of the classification algorithm using SVM has allowed us to obtain
results for all cases: learning and testing. The result for each sample has been compared
with the result obtained from the experiment. The comparison is presented in Table 2
in the form of classification reliability. The overall reliability of the machines has been
calculated as a weighted average taking into account the size of the learning and testing
sets. It can be seen from the table that, considering the four kernel functions used for
construction, they all have achieved the same correctness (81.25%) in the testing set.
However, in the case of learning samples, the third degree polynomial kernel and radial
base function have achieved better prediction, equal to 85.11%. Table 2 also shows that
the best overall validity (84.13% of the prediction) has been obtained using the third
degree polynomial and the radial base function.
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Table 2. Summary of the prediction: classification reliability [%].

Kernel function Correctly determined cases - reliability [%]

Learning set Testing set General (all samples)

Linear 82.98 81.25 82.54

Polynomial 85.11 81.25 84.13

Radial basis functions 85.11 81.25 84.13

Sigmoidal 74.47 81.25 76.19

5 Conclusions

In this paper, the model for forecasting the impact of traffic-induced vibrations on build-
ings using machine learning method has been considered. Firstly, a database has been
created on the results of vibration measurements for buildings using both own research
and other researchers. In the next stage, the rules for creating ML have been presented.
Finally, the model proposed by authors has been presented.

The SVM algorithm has been tested for four different kernel functions: linear, poly-
nomial, radial base and sigmoidal functions. The model has been created for the input
variable vector x(6×1) = {BC,BDR, SA, RS, RC,VT}.Other combinations of input param-
eters have been also considered at the testing stage, but the presented model achieved the
best results. This means that the best combination of input factors for the analysed cases
of traffic-induced vibrations prediction are: technical condition of the building, distance
between the building and the road edge, absorption of vibrations in the ground, type of
surface, technical condition of the surface and type of vehicles moving on the way. The
results clearly show that ML, in this case SVM can be considered as a very effective
method for forecasting impact of traffic-induced vibrations on buildings. The results
obtained for the model proposed by the authors are satisfactory in terms of credibility.
The algorithm is capable to forecast both existing and designed cases.

References

1. Mahmoud, S., Jankowski, R.: Elastic and inelastic multi-storey buildings under earthquake
excitation with the effect of pounding. J. Appl. Sci. 9(18), 3250–3262 (2009)

2. Elwardany, H., Seleemah, A., Jankowski, R.: Seismic pounding behavior of multi-story
buildings in series considering the effect of infill panels. Eng. Struct. 144, 139–150 (2017)

3. Sołtysik, B., Jankowski, R.: Non-linear strain rate analysis of earthquake-induced pounding
between steel buildings. Int. J. Earth Sci. Eng. 6(3), 429–433 (2013)

4. Miari, M., Choong, K.K., Jankowski, R.: Seismic pounding between adjacent buildings:
identification of parameters, soil interaction issues andmitigationmeasures. Soil Dyn. Earthq.
Eng. 121, 135–150 (2019)

5. Falborski, T., Jankowski, R.: Experimental study on effectiveness of a prototype seismic
isolation system made of polymeric bearings. Appl. Sci. 7(8), 808 (2017)

6. Hunaidi, O.: Traffic vibrations in buildings. Constr. Technol. Update 39, 1–6 (2000)
7. Jankowski, R., Walukiewicz, H.: Modeling of two-dimensional random fields. Probab. Eng.

Mech. 12(2), 115–121 (1997)



A Proposed Machine Learning Model for Forecasting 451

8. Michalski, B.J., Proudfoot, D.:What turing did after he invented the universal turingmachine.
J. Logic Lang. Inform. 9(4), 491–509 (2000)

9. Michalski, R.S., Carbonell, J.G.,Mitchell, T.M.:Machine Learning: AnArtificial Intelligence
Approach. Springer, New York (1983). https://doi.org/10.1007/978-3-662-12405-5

10. Mitchell, T.M.: Machine Learning. McGraw-Hill Science, Columbus (1997)
11. Chen, W.H., Hsu, S.H., Shen, H.P.: Application of SVM and ANN for intrusion detection.

Comput. Oper. Res. 32(10), 2617–2634 (2005)
12. Wabik, W.: Monitoring system to detect potential dangerous situations. Stud. Informatica

33(2B), 497–508 (2012)
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