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Abstract: Due to the widespread use and potential toxicity of avermectins (AVMs),  

multi-residue monitoring of AVMs in edible tissues, especially in milk, has become 

increasingly important. With the aim of developing a broad-selective immunoassay for 

AVMs, a broad-specific monoclonal antibody (Mab) was raised. Based on this Mab, a 

homologous indirect enzyme-linked immunosorbent assay (ELISA) for the rapid detection 

of AVMs in milk was developed. Under the optimized conditions, the IC50 values in assay 

buffer were estimated to be 3.05 ng/mL for abamectin, 13.10 ng/mL for ivermectin,  

38.96 ng/mL for eprinomectin, 61.00 ng/mL for doramectin, 14.38 ng/mL for emamectin 

benzoate. Detection capability (CCβ) of the ELISA was less than 5 ng/mL and 2 ng/mL in 

milk samples prepared by simple dilution and solvent extraction, respectively. The 

optimized ELISA was used to quantify AVMs in milk samples spiked at different amounts. 

The mean recovery and coefficient of variation (CV) were 95.90% and 15.42%, respectively. 

The Mab-based ELISA achieved a great improvement in AVMs detection. Results proved 

this broad-selective ELISA would be useful for the multi-residue determination of AVMs 

in milk without purification process. 
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1. Introduction 

Avermectins (AVMs) are insecticidal/miticidal compounds derived from the soil bacterium, 

Streptomyces avermitilis. Five AVMs (Table 1), namely abamectin (ABM), ivermectin (IVM), 

eprinomectin (EPR), doramectin (DOR) and emamectin (EMA) are widely used in agriculture and 

food-producing animals for the treatment of a broad spectrum of parasitic diseases. AVMs are very 

effective against parasites at extremely low doses. However, toxicology research has showed that an 

overdose of AVMs could cause a combination of clinical side effects ranging from mild to extremely 

severe, including death [1]. Given the potential hazard that AVMs pose to human and animal health, 

maximum residue limits (MRLs) are established in many countries. Joint FAO/WHO Expert 

Committee on Food Additives recommend the MRLs for IVM, DOR, and EPR in milk are 10, 15,  

20 μg/L, respectively [2]. In the China, the MRL for IVM in milk is 10 μg/L, whereas the use of ABM 

and DOR is prohibited in cattle producing milk for human consumption [3]. 

Table 1. Chemical structures of avermectins a. 

 

Substance Abbreviation X(C22 - C23) R1 R2 
Abamectin ABM –CH=CH– OH CH(CH3)Y b 
Ivermectin IVM –CH2–CH2– OH CH(CH3)Y b 
Eprinomectin EPR –CH=CH– NHC(O)CH3 CH(CH3)Y b 
Doramectin DOR –CH=CH– OH C6H5 
Emamectin EMA –CH=CH– NH–CH3 CH(CH3)Y b 
a Each drug has two homologues, with the major component comprising more than 80% (B1a) and 
the minor less than 20% (B1b) of the AVMs. The major component is used as the marker 
compound to calculate total residues in edible tissues; b Component B1a–Y=C2H5, component  
B1b–Y=CH3. 

The conventional methods for detection of AVMs involving high performance liquid 

chromatography (HPLC) and liquid chromatography/mass spectrometry (LC/MS) are sensitive and 

reliable [4–7]. However, these applications are relatively time-consuming and usable only on a 

laboratory scale with expensive instruments. Since immunoassays have proven to be a powerful tool 

for high throughput and on-site screening analysis for surveillance and monitoring purpose in a wide 

variety of food matrices [8], broad-selective immunodetection prior to chromatographic determination 

may be an attractive approach for multi-residue monitoring. If the total quantity of two or more AVMs 

detected in a sample is less than the MRL, the sample needs no further inspection. 
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Immunochemical methods involve the use of antibodies, which are the key components of all 

immunoassays because their quality greatly contributes to the sensitivity and selectivity [9]. Some 

antibodies have been produced against single AVM [10–16], whereas few broad-specific antibodies 

have been reported. Schmidt et al. [17] described a monoclonal antibody (Mab) with high specificity, 

but the Mab could recognize only two AVMs. In our previous work [18], a broad-selective ELISA for 

three AVMs using a polyclonal antibody (Pab) was developed. Since Mab offered a more definite 

specificity than Pab and an unlimited production, in this work, a broad specific Mab was produced. 

Moreover, a broad-selective ELISA based on this Mab was developed, and applied to detect all the 

five AVMs in milk samples. 

2. Results and Discussion 

2.1. Antigen Synthesis 

AVMs are small molecules and must be conjugated to a carrier protein to elicit an immune 

response. The design of the required immunogen is critical for the success of rapid immunoassay. 

AVMs have three available hydroxy groups (Table 1), and especially the 4′-OH can be modified to 

conjugate with a carrier protein for the production of antibodies against AVMs [17]. Moreover,  

4′-O-succinoyl-ABM had been successfully used to produce broad-specific Pab against AVMs in our 

previous research [18]. In this study, the same immunogen was used for the Mab production, and the 

structure of ABM was used as the determinant group. 

For assay purposes, 4′-O-succinoyl-ABM-OVA, 5-ABM-OVA and 5-ABM oxime-OVA were 

synthesized as coating antigens. Conjugate formation was confirmed spectrophotometrically. UV-Vis 

spectra showed qualitative differences between the carrier protein and conjugates in the region of 

maximum absorbance of ABM. Molar ratios of the conjugates ranged from 2 to 15. 

2.2. Mab Production and Characterization 

Since a single B-lymphocyte produces a single type of antibody molecule, screening for the 

hybridomas which could secrete broad specific Mabs, would be a pivotal process. In order to choose 

broad specific Mabs, indirect ELISA for IVM detection was performed to screen hybridomas. Five cell 

fusion experiments were conducted. After screening, two selected Mabs (named 2C11, 3A9) showed 

good recognition towards IVM. The hybridomas were injected intraperitoneally into mineral oil-primed 

mice to produce ascites and then purified. Their sensitivity and specificity were investigated by 

indirect ELISAs using three coating antigens (Table 2). Neligible CR was observed from moxidectin, 

which belongs to milbemycins family and the structure is similar to AVMs but lacks the disaccharide 

group. Sensitivity results of ABM with the two Mabs and three coating antigens were very similar 

(IC50 values ranging from 38.97 to 65.62 ng/mL). When the CR of ABM was set as 100%, broad 

selectivity was evaluated by the other four AVMs. The combination of Mab 2C11 and 4′-O-succinoyl-

ABM-OVA was selected as the optimal assay for broad selective detection, with which the CR values 

were 50.46%, 14.17%, 19.82% and 47.81% for IVM, EPR, DOR and EMA benzoate, respectively. 
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Table 2. Characterization of the selected Mabs a. 

Mab Coating antigen 
IC50 (ng/mL) Cross reactivity (%) 

ABM IVM EPR DOR EMA benzoate 
2C11 4′-O-succinoyl-ABM-OVA 45.13 50.46 14.17 19.82 47.81 
2C11 5-ABM-OVA 38.97 37.69 10.33 14.55 30.66 
2C11 5-ABM oxime-OVA 65.54 47.07 16.98 19.12 50.11 
3A9 4′-O-succinoyl-ABM-OVA 50.36 26.84 7.89 21.48 25.43 
3A9 5-ABM-OVA 54.31 61.20 7.11 10.86 32.75 
3A9 5-ABM oxime-OVA 65.62 16.85 10.93 13.87 19.17 

a PBS was used to dissolve the Mab and standards, the incubation temperature was 37 °C. 

2.3. Assay Optimization 

Immunoassays are usually carried out under physiological conditions, and frequently influenced by 

several nonspecific parameters such as temperature, time, pH, ionic strength, and presence of organic 

solvent. With the aim of improving immunoassay performance, the influence of several nonspecific 

parameters on assay characteristics was examined. Maximal absorbance (Amax)/IC50 ratio was a 

convenient estimate of the influence of some factors on the ELISA sensitivity, the higher ratio 

indicating higher sensitivity [21]. 

2.3.1. Assay Buffer 

Four combinations of Mab dilution buffer and standard preparation buffer were performed to 

investigate the effect of assay buffer. As shown in Table 3, the IC50 value was significant increased 

when ABM standards were dissolved in PBS, which implied that the concentration of K+ had a great 

impact on the ELISA property. Apart from Amax/IC50 ratio, dynamic range, and limit of detection were 

also taken into account. Therefore, PB was selected to dissolve both Mab and standards. 

Table 3. Amax and IC50 values of ABM standard curves in different incubation buffers. 

Mab dilution 
buffer 

Standard preparation 
buffer 

Amax 
a 

(OD450nm) 
IC50  

(ng/mL) 
PBS PBS 1.98 42.34 
PB PBS 2.10 27.94 

PBS PB 1.81 8.31 
PB PB 1.78 4.82 

a Results were the means of four determinations performed in the same ELISA plate. 

2.3.2. pH Effect 

The plots of assay parameters (Amax, IC50) as a function of pH value were depicted in Figure 1. The 

ability of Mab to recognize the coating antigen (Amax) decreased gradually (from 1.89 to 0.38) as pH 

value increased from 5 to 9. In addition, the recognition of ABM (IC50) did not change markedly (from 

6.19 to 4.06 ng/mL) until pH value increased to pH 9. On the basis of the result that maximal Amax/IC50 
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ratio was 0.32 for pH 6, followed pH 6.5 and of the fact that antigen-antibody reaction was more stable 

in neutral environments, pH 6.5 seemed to be a reasonable choice for the competition step. 

Figure 1. Effect of pH on ELISA performance. For the competition step, standards and 

Mab were dissolved in PB of different pH, and the GαMHRP was diluted in PB of pH 7.1. 

Incubation temperature was 37 °C. 

 

2.3.3. Methanol Concentration 

Since AVMs are highly lipophilic, and organic solvents are often used to extract analytes from 

samples in the immunoassays, it is necessary to use a water-miscible organic solvent in the assay 

buffer for ELISAs. Methanol was the most popular solvent for immunoassays [22,23], and 10% 

methanol was selected previously for the Pab-based ELISA against AVMs [18]. In this work, the  

effect of solvent on the ELISA performance was evaluated by preparing standard curves in buffers 

containing various concentration of methanol (Figure 2). On the one hand, maximum absorbance went 

up as methanol concentration increased. On the other hand, the immunoassay showed a tendency  

to decrease the sensitivity of the immunoassay (lower IC50 value) with increase of methanol 

concentration. Judged by the Amax/IC50 ratio, the optimal concentration of methanol in buffer was 5%. 

2.3.4. Incubation Temperature 

Both temperature and time are important physical parameter for the immunoassay. In general terms, 

the higher temperature was, the shorter the incubation time needed, and an increase of the incubation 

time resulted in higher maximum absorbance [24,25]. To investigate the effect of incubation 

temperature on ELISA performance, the incubation time was set at 30 min, and competitive curves 

were performed at both 37 °C and 25 °C. As shown in Figure 3, higher sensitivity was observed when 

the incubation temperature was at 25 °C. Moreover, in the case of incubation at 37 °C, the intra-assay 

coefficient of variation (CV) increased evidently. Therefore, incubation temperature of 25 °C was 

selected for further study. 
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Figure 2. Effect of methanol concentration on ELISA performance. For the competition 

step, standards were prepared in PB (pH 6.5) containing different concentration of 

methanol and the Mab was diluted in PB (pH 6.5), incubation temperature was 37 °C. 

 

Figure 3. Effect of incubation temperature on ELISA performance. For the competition 

step, standards were prepared in 5% methanol-PB (pH 6.5) and the Mab was diluted in PB 

(pH 6.5). Each point represents the average of five replicates. 

 

Taking all these factors into account, the optimized conditions for the AVMs immunoassay 

summarized as follows: The coating antigen was 4′-O-succinoyl-ABM-OVA (diluted to 1:10,000), 

Mab was 2C11 (diluted to 1:70,000), room temperature (25 °C) for all incubations, overnight 

incubation (4 °C) for the coating step, an incubation time of 30 min for the competitive step, PB buffer 

(10 mM, pH 6.5) for Mab dilution and 5% methanol-PB for standard preparation. 
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ELISAs were performed under the above-selected conditions to establish standard curves for five 

AVMs. As seen from Figure 4, the IC50 value in assay buffer was 3.05 ng/mL for ABM, 13.10 ng/mL 

for IVM, 38.96 ng/mL for EPR, 61.00 ng/mL for DOR and 14.38 ng/mL for EMA benzoate. 

Concerning the reproducibility, average intra-assay CVs of the IC50 value were 4.87%, 12.01%, 

7.93%, 6.48% and 9.12% for ABM, IVM, EPR, DOR and EMA benzoate, respectively. The assay for 

ABM was the most sensitive compared with the literature [16–18], and the sensitivity for IVM was 

also higher than those reported in Refs. [12–14,18,20]. In our previous research [18], it was observed 

that EPR could be well recognized by the Pab, in which CR was 145.40% (CR for ABM was set as 

100%), whereas in this work, the weak recognition of EPR (CR = 7.82%) could be attributed to a  

more definite specificity of the Mab than the Pab. On the other hand, EMA benzoate could be also 

recognized by the Mab (CR = 21.21%), which meant that the Mab had broader selectivity than the Pab. 

Figure 4. Standard curves of the five AVMs in assay buffer. Each point represents the 

average of five determinations performed in different ELISA plates. 

 

2.4. Milk Analysis 

2.4.1. Sample Preparation by Simple Dilution 

Analysis of real samples by immunoassay usually requires some sort of sample pretreatment to 

circumvent the matrix effect. Dilution, which was considered as an effective means [26], significantly 

decreased matrix interference of samples, though it simultaneously caused reduction of assay 

sensitivity due to the shift of the dynamic range. In order to investigate the effect of milk matrix on the 

ELISA performance, different dilution factors were used to prepare ABM standard curves, and total 

factors were set comparing with the standard curve in buffer. As shown in Figure 5, the assay 

parameters showed no noticeable difference between ABM standard curves obtained at a dilution of 

1:10 (v/v) and in buffer. Therefore, to balance the sensitivity and the dynamic range of the 

immunoassay, milk samples were diluted to 1:10 (v/v) for detection of AVMs. 
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Figure 5. ELISA standard curves for ABM in matrix of milk sample. Milk samples were 

diluted by 5% methanol-PB (pH 6.5) and incubation temperature was 25 °C. 

 

To evaluate the detection capability of the ELISA, twenty blank samples were selected and 

replicates of the samples were spiked with ABM at 5 ng/mL, and the blank samples and the spiked 

samples were determined simultaneously by the developed ELISA. Results showed that none of  

the responses of the spiked samples overlap with the range of responses of the blank samples. Thus  

the detection capability (CCβ) of the ELISA was less than 5 ng/mL in milk with simple  

dilution preparation. 

The accuracy and precision of the ELISA were represented by recovery and coefficient of variation 

(CV), respectively (Table 4). To evaluate the LOD of the ELISA, twenty blank samples were 

systematically included in the analysis. For IVM and EPR, the values of blank samples were obviously 

lower than the lowest concentration of the corresponding standard curve. Thus the LOD for IVM and 

EPR was 7.81 and 15.60 ng/mL, respectively. On the other hand, based on the mean value of twenty 

blank samples plus three times of the mean standard deviation, the LOD for ABM, DOR and EMA 

benzoate was 3.97, 30.05 and 11.93 ng/mL, respectively. The mean recoveries at two spiked levels 

were 83.29%, 101.31%, 88.56%, 75.65% and 101.73% for ABM, IVM, EPR, DOR and EMA 

benzoate, respectively. The mean intra-assay CVs for ABM, IVM, EPR, DOR and EMA benzoate 

were 19.28%, 13.39%, 10.17%, 15.71% and 12.97%, respectively. Moreover, the mean inter-assay CV 

was also satisfactory, which was 14.10% in average and ranged from 6.40% to 20.64%. These results 

confirmed that the established Mab-based ELISA could detect IVM and EPR at their MRL levels 

(CAC, 2011) in milk sample with simple dilution preparation. 
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Table 4. Recoveries of AVMs from spiked milk samples with simple dilution preparation (n = 4). 

Analyte 
Spiked 

(ng/mL) 
Intra-assay Inter-assay 

Recovery (%)  CV (%) Recovery (%) CV (%) 
ABM 5 83.13 ± 23.07 28.32 89.65 ± 13.45 15.31 

10 86.02 ± 8.62 10.23 74.34 ± 4.66 6.40 
IVM 10 121.12 ± 16.90 14.24 113.75 ± 23.00 20.64 

20 101.32 ± 12.45 12.54 69.03 ± 13.26 19.61 
EPR 20 88.23 ± 11.94 13.81 88.16 ± 13.31 15.41 

40 73.02 ± 4.67 6.53 104.81 ± 11.27 10.97 
DOR 50 94.15 ± 20.55 22.28 75.53 ± 13.16 17.78 

100 63.73 ± 5.70 9.13 69.19 ± 11.29 16.65 
EMA benzoate 15 100.50 ± 16.38 16.63 102.62 ± 9.83 9.77 

 30 104.46 ± 9.52 9.30 99.33 ± 8.27 8.50 

2.4.2. Sample Preparation by Solvent Extraction 

To improve the detection capability of the ELISA in milk, the dilution factor was decreased by 

solvent extraction in sample preparation. The assay parameters showed no noticeable difference 

between ABM standard curves obtained in assay buffer and in extracted milk matrix (dilution factor 

was 1:4, v/v). Based on the mean value of twenty blank samples plus three times of the mean standard 

deviation, the LODs for ABM, IVM and EMA benzoate were 1.28, 2.94 and 3.15 ng/mL, respectively. 

For EPR and DOR, the values of blank samples were obviously lower than the lowest concentration of 

the corresponding standard curve. Thus the LOD for EPR and DOR was 6.24 and 12.50 ng/mL, 

respectively. When twenty blank samples were selected and replicates of the samples were spiked with 

ABM at 2 ng/mL, none of the responses of the spiked samples overlapped with the range of responses 

of the blank samples. Therefore, when milk was prepared by solvent extraction, the CCβ of the ELISA 

was less than 2 ng/mL. Additionally, milk samples were also analyzed by the ELISA after being 

fortified with AVMs. As shown in Table 5, the mean recoveries at two spiked levels were between 

69.05% and 130.89%. The mean assay CV, which was 16.63% on average and ranged from 7.08% to 

28.40%, was also satisfactory. These results confirmed that the established Mab-based ELISA was a 

potential screening tool for AVM monitoring in milk samples. 

Table 5. Recoveries of AVMs from spiked milk samples with solvent extraction (n = 4). 

Analyte 
Spiked 

(ng/mL) 
Intra-assay Inter-assay 

Recovery (%)  CV (%) Recovery (%) CV (%) 
ABM 2 106.60 ± 13.00 12.44 94.92 ± 20.27 21.79 

4 124.18 ± 8.93 7.33 112.39 ± 31.28 28.40 
IVM 5 114.84 ± 22.83 20.29 116.95 ± 15.93 13.90 

10 75.00 ± 16.57 22.55 95.72 ± 19.59 20.89 
EPR 10 87.50 ± 13.26 15.46 69.05 ± 8.22 12.15 

20 117.49 ± 14.55 12.64 84.19 ± 12.16 14.74 
DOR 15 130.89 ± 13.56 10.57 85.58 ± 21.56 25.70 

30 106.60 ± 7.39 7.08 106.88 ± 13.92 13.29 
EMA benzoate 5 98.14 ± 14.50 15.07 100.71 ± 18.98 19.23 

10 92.01 ± 24.91 27.63 114.28 ± 12.91 11.52 
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3. Experimental 

3.1. Reagents  

ABM (purity 98.27%) and DOR (purity 94.33%) were obtained from Pfizer Co. (New York, NY, 

USA), IVM (purity 95.64%) and EMA benzoate (purity 98.26%) were sourced from CAU Newtech 

Development Co. (Beijing, China), and EPR (purity 96.85%) was a gift from Prof. Ming Wang  

(China Agricultural University, Beijing, China). 

Ovalbumin (OVA, MW45000), bovine serum albumin (BSA, MW67000), peroxidase-labeled goat 

anti-mouse immunoglobulins (GαMHRP), culture media RPMI-1640, hypoxanthine-aminopterin-thymidine 

(HAT) and hypoxanthine-thymidine (HT) medium supplements, pristane, complete and incomplete 

Freund’s adjuvants, dimethyl sulfoxide (DMSO) and polyethylene glycol 3350 were purchased from 

Sigma-Aldrich (Madrid, Spain). SP2/0 mouse plasmacytoma line was from the Shanghai Institute of 

Cell Biology (Shanghai, China). 3,3′,5,5′-Tetramethylbenzidine (TMB), and Tween-20 were purchased 

from Shanghai Chemical Reagents Company (Shanghai, China). All of the other chemicals and 

organic solvents were of analytical grade. 

3.2. Instrumentation  

Ultraviolet-visible (UV-vis) spectra were recorded on a spectrophotometer (Xinmao, Shanghai, 

China). 96-well and 24-well cell culture plates, 96-well polystyrene microplates were purchased from 

Costar (Costar Inc., Milpitas, CA, USA). Immunoassay absorbance was read with a Multiscan Spectrum 

purchased from Thermo (Labsystems, Vantaa, Finland) in dual wavelength mode (450–650 nm). 

3.3. Buffers  

Unless otherwise indicated, PBS was10 mM phosphate-buffered saline (containing 137 mM NaCl 

and 2.7 mM KCl, pH 7.4). Coating buffer was 50 mM carbonate–bicarbonate buffer (CB, pH 9.6). 

PBST was PBS with 0.05% Tween 20. Blocking buffer was PBS with 0.5% casein and 5% fetal calf 

serum (FCS). PB was 10 mM phosphate buffer (containing 274 mM NaCl and 5.4 mM KCl, pH 7.1). 

Citrate buffer was a 40 mM solution of sodium citrate (pH 5.5). The substrate solution contained 

0.01% TMB and 0.004% H2O2 in citrate buffer. 

3.4. Immunogen and Coating Antigens 

4′-O-succinoyl-ABM-BSA (immunogen) and 4′-O-succinoyl-ABM-OVA had been prepared in a 

previous study [18]. According to Mitsui et al. [10], 5-O-[(4-nitrophenyl)oxyl carbonyl]-ABM and ABM 

oxime were conjugated to OVA to prepare 5-ABM-OVA and 5-ABM oxime-OVA as coating antigens. 

3.5. Mab Production and Characterization 

BALB/c female mice (8–10 week old) were immunized with 4′-O-succinoyl-ABM-BSA conjugate. 

Immunizing strategy and cell fusion procedure were the same as that we reported before [19]. Twelve 

to fourteen days after cell fusion, culture supernatants were screened with the coating antigen  

4′-O-succinoyl-ABM-OVA for the presence of antibodies that could recognize IVM. Selected 
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hybridomas were subcloned by limiting dilution. Stable antibody-producing clones were expanded and 

stored in liquid nitrogen. Hybridomas that could produce Mabs with broad-selectivity and high sensitivity 

were injected intraperitoneally into pristane-primed mice to produce ascites. Then, Mabs were 

separated and purified by salt precipitation (with caprylic acid-ammonium sulfate) as described by 

Svendsen et al. [20]. Selectivity of these Mabs was investigated by indirect competitive ELISA using 

all the three coating antigens. And the cross-reactivity (CR) was calculated by the following equation: 

CR = [IC50 (ABM) / IC50 (compound)] × 100% 

3.6. Competitive Indirect ELISA 

For competition assays, the concentrations of antibody and coating antigen were optimized by 

checkerboard titration. After each step, plates were washed four times with PBST. The ELISA was run 

as described in a previous paper [18]. Briefly, microtiter plates were coated with the optimized 

concentrations of antigens in CB (100 µL/well) by incubation at 4 °C overnight. Nonspecific binding 

sites were blocked with the blocking buffer (200 µL/well) at 37 °C for 2 h. Afterward, serial dilutions 

(50 µL/well) of the analyte were added, followed by adding 50 µL/well of Mab at a previously 

determined concentration. The mixture solution was allowed to incubate at 37 °C for 30 min and  

then 100 µL per well of diluted (1/10,000) GαMHRP was added. After another 30 min incubation,  

100 µL/well of substrate solution was added. After incubation for 15 min, the reaction was stopped by 

adding 50 µL of 2 M H2SO4 and absorbance at 450 nm was measured. 

Competitive curves were obtained by plotting inhibition (inhibition = B/B0 × 100%) against the 

logarithm of analyte concentration. Sigmoid curves were simulated by means of Origin 7.0 software. 

From the equations, IC50 values (i.e., analyte concentrations at which the binding of the antibody to the 

coating conjugate were inhibited by 50%) were determined to assess the assay sensitivity.  

3.7. ELISA Optimization  

Assay buffer. The effect of buffering capacity of assay solution on ELISA performance was studied 

using PB and PBS to dissolve Mab and ABM standards. Four competitive curves were performed with 

above Mab and ABM standards to assess the effect of the assay buffer (PB and PBS). 

pH effect. PBs were adjusted to different pH values (4.0–9.0) that were prepared by changing the 

amounts of Na2HPO4 and NaH2PO4, whereas the concentrations of NaCl and KCl remained at 274 and 

54 mM, respectively. These buffers were used to prepare ABM standard solutions and the antibody 

solutions that were employed for the competitive ELISA to obtain the standard curves. 

Methanol concentration. The assays’ tolerance to organic solvent was evaluated between 0 and 30% 

methanol concentration (v/v). In this case, competitive curves were performed from the ABM 

standards dissolved in PB (pH 6.5) containing different amounts of methanol and Mab in PB (pH 6.5). 

Incubation temperature. Competitive curves were performed from the ABM standards dissolved in 

5% methanol-PB (pH 6.5) and Mab in PB (pH 6.5). The incubation temperature was set at 37 °C and 

25 °C to assess the influence of incubation temperature. 
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3.8. Milk Analysis  

Different milk samples were purchased from local markets. All the control samples were previously 

checked as AVMs free using HPLC method at the National Reference Laboratory for Veterinary Drug 

Residue (Beijing, China). 

Two sample pretreatment procedures were performed. Simple dilution: To investigate the effect of 

milk matrix on assay performance, milk sample (0.5 mL) was diluted to different volumes (0.5, 1, 2.5, 

5 and 10 mL) with 5% methanol-PB (pH 6.5). Then 50 μL portions were used for the selected ELISA 

test to investigate the matrix interference on the ABM standard curve. For spiked samples, 1 mL of 

standard solution was spiked to 10 mL milk sample, and diluted to 1:10 (v/v) by 5% methanol-PB  

(pH 6.5). Solvent extraction: Milk sample (3 mL) was added acetonitrile (9 mL) and hexane (3 mL), 

and the mixture was shaken for 1 min with a vortex mixer. After centrifugation (4,000 rpm, 10 min), a 

portion of the acetonitrile layer (1 mL) was transferred and evaporated at 50 °C under a nitrogen 

stream. The dry residue was dissolved in 5% methanol-PB (pH 6.5, 1 mL). Determination of spiked 

samples was performed by interpolating their mean absorbance of triplicates in the standard curve run 

on the same plate. 

The assay validation of the ELISA was carried out according to the related content of Commission 

Decision 2002/657/EC and guidelines for the validation of screening methods for residues of 

veterinary medicines. The detection capability (CCβ) is the smallest content of the analyte that may be 

detected, identified and/or quantified in a sample with an error probability of β (<5%). 

The limit of detection (LOD) was defined as the lowest amount of analyte in a sample that could be 

detected but not necessarily quantified exactly, which was based on the mean value of 20 blank 

samples plus three times of the mean standard deviation. The accuracy and precision of the method 

were represented by recovery and coefficient of variation (CV), respectively. The precision of the 

ELISA method was analyzed by repeated analysis of the spiked samples and comparison of the intra- 

and inter-assay CVs. Intra-assay variation was measured by four replicates of each spiked 

concentrations. And the inter-assay variation was based on the results of four different days. 

4. Conclusions 

A broad-specific Mab (2C11) for AVMs was produced. The optimized Mab-based indirect 

competitive ELISA was sensitive and accurate. Recovery results proved this broad-selective ELISA 

would be useful for the multi-residue determination of AVMs in milk. 

Acknowledgments 

This study was supported by Special Fund for Agro-scientific Research in the Public Interest 

(No.201203040) and National “Twelfth Five-Year” Plan for Science & Technology (2011BAK10B01). 

References  

1. Faske, T.; Starr, J. Sensitivity of Meloidogyne incognita and Rotylenchulus reniformis to 

abamectin. J. Nematol. 2006, 38, 240–244. 



Molecules 2012, 17 7413 

 

 

2. Maximum Residue Limits for Veterinary Drugs in Foods Updated as at the 34th Session of the 

Codex Alimentarius Commission; 34th Session; Codex Alimentarius Commission, 2011. 

3. Maximum Residue Limits for Veterinary Drugs in Foods (in Chinese); 235th Bulletin; Ministry of 

Agriculture of China: Beijing, China, 2002. 

4. Giannetti, L.; Giorgi, A.; Necci, F.; Ferretti, G.; Buiarelli, F.; Neri, B. Validation study on 

avermectine residues in foodstuffs. Anal. Chim. Acta 2011, 700, 11–15. 

5. Hou, X.L.; Li, X.W.; Ding, S.Y.; He, J.H.; Jiang, H.Y.; Shen, J.Z. Simultaneous analysis of 

avermectins in bovine tissues by LC-MS-MS with immunoaffinity chromatography cleanup. 

Chromatographia 2006, 63, 543–550. 

6. Danaher, M.; Howells, L.C.; Crooks, S.R.H.; Cerkvenik-Flajs, V.; O’Keeffe, M. Review of 

methodology for the determination of macrocyclic lactone residues in biological matrices.  

J. Chromatogr. B 2006, 844, 175–203. 

7. He, J.H.; Hou, X.L.; Jiang, H.Y.; Shen, J.Z. Multiresidue analysis of avermectins in bovine liver 

by immunoaffinity column cleanup procedure and liquid chromatography with fluorescence 

detector. J. AOAC Int. 2005, 88, 1099–1103. 

8. Hennion, M.C.; Barcelo, D. Strengths and limitations of immunoassays for effective and efficient 

use for pesticide analysis in water samples: A review. Anal. Chim. Acta 1998, 362, 3–34. 

9. Piao, Y.; Kim, Y.; Kim, Y.; Lee, H.; Hammock, B.; Lee, Y. Development of ELISAs for the 

class-specific determination of organophosphorus pesticides. J. Agric. Food Chem. 2009, 57, 

10004–10013. 

10. Mitsui, Y.; Tanimori, H.; Kitagawa, T.; Fujimaki, Y.; Aoki, Y. Simple and sensitive  

enzyme-linked immunosorbent assay for ivermectin. Am. J. Trop. Med. Hyg. 1996, 54, 243–248. 

11. Crooks, S.R.H.; Ross, P.; Thompson, C.S.; Haggan, S.A.; Elliott, C.T. Detection of unwanted 

residues of ivermectin in bovine milk by dissociation-enhanced lanthanide fluoroimmunoassay. 

Luminescence 2000, 15, 371–376. 

12. Samsonova, J.V.; Baxter, G.A.; Crooks, S.R.H.; Elliott, C.T. Biosensor immunoassay of 

ivermectin in bovine milk. J. AOAC Int. 2002, 85, 879–882. 

13. Samsonova, J.V.; Baxter, G.A.; Crooks, S.R.H.; Small, A.E.; Elliott, C.T. Determination of 

ivermectin in bovine liver by optical immunobiosensor. Biosens. Bioelectron. 2002, 17, 523–529. 

14. Crooks, S.R.H.; Baxter, A.G.; Traynor, I.M.; Elliott, C.T.; McCaughey, W.J. Detection of 

ivermectin residues in bovine liver using an enzyme immunoassay. Analyst 1998, 123, 355–358. 

15. Wen, S.; Zhang, X.; Liu, Y.; Zhang, Q.; Liu, X.J.; Liang, J.S. Selection of a single chain variable 

fragment antibody against ivermectin from a phage displayed library. J. Agric. Food Chem. 2010, 

58, 5387–5391. 

16. Xu, S.W.; Li, S.; Sun, D.B.; Guo, D.H. Preparation and characterization of monoclonal antibodies 

against avermectin. Hybridoma 2009, 28, 173–176. 

17. Schmidt, D.J.; Clarkson, C.E.; Swanson, T.A.; Egger, M.L.; Carlson, R.E.; Van Emon, J.M.; 

Karu, A.E. Monoclonal antibodies for immunoassay of avermectins. J. Agric. Food Chem. 1990, 

38, 1763–1770. 

18. Shi, W.M.; He, J.H.; Jiang, H.Y.; Hou, X.L.; Yang, J.H.; Shen, J.Z. Determination of multiresidue 

of avermectins in bovine liver by an indirect competitive ELISA. J. Agric. Food Chem. 2006, 54, 

6143–6146. 



Molecules 2012, 17 7414 

 

 

19. Wang, C.M.; Liu, Y.H.; Guo, Y.R.; Liang, C.Z.; Li, X.B.; Zhu, G.N. Development of a  

McAb-based immunoassay for parathion and influence of the competitor structure. Food Chem. 

2009, 115, 365–370. 

20. Svendsen, L.; Crowley, A.; Ostergaard, L.H.; Stodulski, G.; Hau, J. Development and comparison 

of purification strategies for chicken antibodies from egg-yolk. Lab. Anim. Sci. 1995, 45, 89–93. 

21. Brun, E.M.; Garces-Garcia, M.; Puchades, R.; Maquieira, A.N. Highly sensitive enzyme-linked 

immunosorbent assay for chlorpyrifos. Application to olive oil analysis. J. Agric. Food Chem. 

2005, 53, 9352–9360. 

22. Abad, A.; Moreno, M.J.; Montoya, A. Development of monoclonal antibody-based immunoassays 

to the N-methylcarbamate pesticide carbofuran. J. Agric. Food Chem. 1999, 47, 2475–2485. 

23. Gui, W.J.; Liu, Y.H.; Wang, C.M.; Liang, X.; Zhu, G.N. Development of a direct competitive 

enzyme-linked immunosorbent assay for parathion residue in food samples. Anal. Biochem. 2009, 

393, 88–94. 

24. Lee, J.K.; Ahn, K.C.; Park, O.S.; Kang, S.Y.; Hammock, B.D. Development of an ELISA for the 

detection of the residues of the insecticide imidacloprid in agricultural and environmental 

samples. J. Agric. Food Chem. 2001, 49, 2159–2167. 

25. Liang, C.Z.; Jin, R.Y.; Gui, W.J.; Zhu, G.N. Enzyme-linked immunosorbent assay based on a 

monoclonal antibody for the detection of the insecticide triazophos: Assay optimization and 

application to environmental samples. Environ. Sci. Technol. 2007, 41, 6783–6788. 

26. Kim, Y.J.; Kim, Y.A.; Lee, Y.T.; Lee, H.S. Enzyme-linked immunosorbent assays for the 

insecticide fenitrothion—Influence of hapten conformation and sample matrix on assay 

performance. Anal. Chim. Acta 2007, 591, 183–190. 

Sample Availability: Not available. 

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


