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Abstract: Wearable technology and mobile healthcare systems are both increasingly popular solutions
to traditional healthcare due to their ease of implementation and cost-effectiveness for remote health
monitoring. Recent advances in research, especially the miniaturization of sensors, have significantly
contributed to commercializing the wearable technology. Most of the traditional commercially
available sensors are either mechanical or optical, but nowadays transdermal microneedles are also
being used for micro-sensing such as continuous glucose monitoring. However, there remain certain
challenges that need to be addressed before the possibility of large-scale deployment. The biggest
challenge faced by all these wearable sensors is our skin, which has an inherent property to resist
and protect the body from the outside world. On the other hand, biosensing is not possible without
overcoming this resistance. Consequently, understanding the skin structure and its response to
different types of sensing is necessary to remove the scientific barriers that are hindering our ability
to design more efficient and robust skin sensors. In this article, we review research reports related to
three different biosensing modalities that are commonly used along with the challenges faced in their
implementation for detection. We believe this review will be of significant use to researchers looking
to solve existing problems within the ongoing research in wearable sensors.
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1. Introduction

Advancements in miniaturization technology have resulted in a variety of wearable sensors,
which are being used currently for various biomedical applications. Some of them have become a
part of people’s everyday life. One example includes smart bands and smart watches integrated with
heart rate monitors, pulse oximeters, accelerometers, gyroscopes, etc. [1–3]. Implantable devices have
actually been used since the 1950s, when the first pacemaker was used to restore a normal heart rate by
continuously pulsing only the ventricle [4]; then the evolution of implantable technology began leading
to most recent implants such as Ocular and Cochlear implants [5–7]. Although biomedical implants
do have great importance in advancing healthcare, they often require some expertise or a skilled
technician to operate. In contrast, wearable technology is more user-friendly that may also be easily
operable without the requisite medical or technical expertise [8]. The goal of wearable technology is to
extract the information without involving any surgical procedures or implantation of materials that
have a higher probability of leaving long-term side effects.
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Recent advances in fabrication and packaging techniques enables to embed an enormous number
of microelectronic devices and sensors on a chip at a very low cost. Moreover, with a blend of wireless
3G and 4G technology, these chips are widely used in different forms of physiological, biomechanical,
biochemical sensing, monitoring and collecting biomedical data remotely [9]. This has significantly
reduced the healthcare costs and has improved continuous monitoring of vital parameters, especially for
athletes, thus improving their performance [10]. The future of remote biomedical sensing will be
further transformed with the rolling out of 5G networks, combined with technologies such as the
internet of things (IoT), machine learning, and artificial intelligence [11].

Today, physicians are using portable devices for diagnosis, such as glucometers, which provides
instantaneous results and are generally invasive or minimal invasive in nature. However,
completely noninvasive glucose monitoring technology is still in progress. Thus, the core idea
here is to develop wearable sensors for these types of diagnoses that are non-invasive and hence, can be
used in continuous monitoring systems. Furthermore, the population is increasing at an enormous
rate, and there is shortage of physicians throughout the world [12]. This has forced the common
man to seek out potential alternative solutions that would aid towards efficient usage of physicians’
time. Wearable technology can help individuals track their vital physiological parameters; with the
option to consult a doctor only when needed [10,13]. A good indicator of the benefits of wearable
technology is the day-by-day increasing demand for personal diagnosis and monitoring [14]. Its usage
is currently not limited to monitor glucose levels, but has recently been proposed as an alternative
method to perform fast HIV diagnoses [15], early detection of Alzheimer disease [16], and perspiration
monitoring through wearable paper-based sweat sensor [17], thus leading personalized medicine to a
new level [18].

Miniaturization of microelectronics along with stretchable microelectronics and telecommunication
enables the production of wearable sensors leading to many novel clinical applications.
Wearable technology consists of three processes: sensing, data processing, and wireless transmission of
data [19]. Data processing is a crucial step because it involves noise reduction and feature extraction of
clinically relevant physiological data [20]. One such example is the flexible electrocardiograph (ECG)
sensor shown in Figure 1. Currently, sensing technology is not only limited to electrophysiological
measurements such as ECG, electromyography (EMG), or electroencephalography (EEG), rather, it has
expanded to electrochemical, electromechanical, and transdermal (minimal invasive by measuring
fluid in between tissue) sensing [21].
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This article aims to address the hurdles in extracting information from the body by reviewing
some of the recently developed wearable sensors, their merits, construction, challenges, and the
future outlook. There are many different types of wearable sensors available for various applications,
but the discussion in this article is limited to only three major common types: transdermal, optical,
and mechanical (piezoelectric, piezoresistive, piezocapacitive, and triboelectric).

2. Skin: First Defense of the Immune System

The skin, largest organ of the human body, is made of soft tissue with an average weight of
4 kg and an area of 2 m2. The importance of skin is illustrated by the high mortality associated with
extensive skin loss due to injuries such as burning [22]. Like most other organs, skin can also be divided
into different layers: the hypodermis (deepest layer), the dermis, and the epidermis (superficial layer)
as shown in Figure 2. The major part of the skin is the epidermis that is the uppermost or outer layer
of skin. Underneath the epidermis lies the dermis, a vascularized region that provides support and
nourishes the blood to distribute the cells in the epidermis. The dermis also has nerves, hair follicles,
sweat glands, and sebaceous glands. The third layer and a deeper layer of the skin is the fat layer,
also called subcutaneous fat [23].
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The structure of the skin may differ slightly depending on the location, age of the person,
illness, gender, etc. [22,24–26]. The epidermis (the outermost layer a skin) has a thickness ranging
between 0.05 to 1.5 mm (thicker in palms and soles). It mainly consists of keratinocytes (keratin
producing cells) that make up 95% of this layer and about 5% of other cells (Merkel, melanocytes,
and Langerhans cells) [23,27], as shown in Figure 2. The epidermis can be divided from strata to
dermis surface as: corneum, lucidum, granulosum, squamous, and basale. The basale stratum contains
melanocytes, which produce melanin that gives color to the skin and protects the lower layers against
the harmful effects of sun rays. More mature keratinocytes are present in squamous stratum and
this layer, dendritic Langerhans, are used to alert the immune system, which is particularly attached
to antigens in the damaged portion of skin. The lucidum and granulosum layers provide the main
mechanical barrier because they have more mature keratinocytes that secrete proteins and lipids into
the extracellular matrix, which results into a hydrophobic lipid envelope [23]. Going down from
the surface, about 20 thin under layers, the dying keratinocytes are dry, merge without their nuclei
and become stiff to form hexagonal-shaped corneocytes in the corneum stratum (the horny layer,
so-called because they are like the horns of animals). Around the cells, in this layer, several sub-layers
of fats are present (cholesterol, sphingolipids, fatty acids) to store ~3X the weight of the layer in water.
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Natural moisture present is about 30% and seems to burst when it drops to less than 10% because of
the collapse of filaggrin into protein-specific enzymes that lead to control of osmotic pressure and
water. The keratinocyte cycle, depending upon age, lasts from 28 to 50 days. The potential effect of
the epidermis, in particular the stratum corneum, has been investigated in the general mechanical
behavior of the skin [28–30].

2.1. Resistance to Mechanical Sensing

As discussed earlier, the human skin is the first line of defense; especially epidermis playing a
pivot role in it. The special structure of the epidermis makes a barrier to collect information. It protects
the underlying soft tissue from harmful ultraviolet radiation, and the corneum stratum is electrically
resistive because of its oily nature [31]. Moreover, the epidermis is soft and stretchy that slides over the
underlying soft tissues, producing a damping effect in response to mechanical forces making it more
difficult to extract vital information (mechanical sensing). The complex anisotropic composition of the
skin produces a nonlinear stress-strain curve in response to elongation. The Young’s modulus is highly
variable and depends upon the hydration, age, and location [32]. It has been calculated that Young’s
modulus of human skin is between 0.10 and 18.8 MPa at about 30% of strain within seven days of
autopsy [33,34].

The human skin because of its frequency response to varying loads can be modeled as a spring-mass
system, which consists of springs, masses, and dampers. At the point when the human skin is exposed
to variable mechanical loads, the resistance of the skin to mechanical load changes in accordance
with the frequency. As the recurrence of mechanical load increases, the resistance of the skin to that
load (dampening effect) increases, and the skin’s elasticity (spring and mass effect) would become
stiffer [35]. Moreover, the low and high frequency responses are distinct from each other. For example,
at low frequencies, the shear waves spread along the surface of the skin. In contrast, shear waves
proliferate through the mass medium in the dermis (that contains water-gel like segments called
mucopolysaccharide) at higher frequencies. Shear wave engendering is transmitted using thick
coupling inside the human skin medium [36]. Subsequently, water, which influences the viscoelastic
properties of human skin (stratum corneum), can straightforwardly influence the mechanical properties
of the inside physiologically with related frequencies [35,37,38].

2.2. Attachment of Sensors to the Skin

For the attachment of the sensors to the skin, first, an identification of the best match to its modulus
is sought. An example would be silicone-based elastomer such as poly (dimethylsiloxane) (PDMS)
that can be utilized as a sensor material. PDMS has a Young’s modulus of ∼3 MPa [39]. However, it is
very firm in comparison with the human skin, which can prompt delamination. On the other hand,
a milder or softer material, like Ecoflex, the silicone elastomer (Smooth-On) can be broadly utilized
because of its Young’s modulus of 125 kPa that is closer to the human skin, taking into account better
contact with the human body [40–42].

The common noises on wearable mechanical sensors can be grouped based on their sources:
(a) noise due to movement, and (b) sensor inherent noise. The movement initiated noise is usually
observed when applying mechanical sensors to a body when it is moving, for example, due to breathing
or twisting impacts that produce significant pressure on the sensors [43,44]. These kinds of noises
can be reduced by using a special type of sensors or modified algorithms that remove unwanted
signal or noise when analyzing the extracted data [45,46]. Sensors have some own noises (inherent
noise), adding to the challenges in wearable mechanical estimations. For example, the resistive sensors
have temperature limitations whereas capacitive sensors have inherent parasitic noises that should be
considered [47,48].
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2.3. Resistance to Optical Measurements

Noninvasive biomedical measurements are usually obtained optically; the light source at a
particular wavelength is exposed to the part of the skin where measurement is sought. The sensor
measures the reflected and absorbed light or sometimes refracted light and thereafter the biomedical
data can be characterized and quantified (the same phenomena as used by spectrophotometer).
In transmission of an optical signal through the skin, the major factor is wavelength that determines,
how deep the light can reach (Figure 3). The skin can likewise be used as a window to research the
physiological state of the hidden organs. One such technique is the usage of functional near-infrared
spectroscopy (fNIRS) [49] to observe the oxygenation changes in the human brain.
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Sometimes, the skin offers a passive path for physiological data collection from hidden vascular
structures and organs through its optical interfaces. Therefore it is important to evaluate, the skin’s
optical properties when designing optical sensors [50]. Absorption, transmission, and scattering
related to the human skin can be discussed by isolating the skin into three layers of particular optical
characteristics [50,51]: (1) the stratum corneum, which is exceedingly keratinized due to the presence
of dead squamous cells, (2) the hidden epidermis, which contains skin pigmentation (mostly melanin)
that absorbs shorter wavelengths, for example UV, and visible light to some degree [52], and (3) the
dermis, which is exceptionally vascularized and can be characterized using visible light, includes
carotene, blood hemoglobin, and bilirubin [53]. Most of the visible light attenuates in the dermis
because of its thickness as compared to the layers above as shown in Figure 3.

The optical attributes of the stratum corneum are basically characterized by its unpleasant surface,
which results in diffuse reflection. Interfacial Fresnel reflection occurs 4–7% for typical light because of
the difference in refractive index (n) of air (typically 1) to the stratum corneum i.e., ~1.55 [54]. In the
epidermis, the light scatters with melanosomes (>300 nm in the distance across) [52], that shows
mostly forward scattering, and within the melanin particles (30–300 nm in measurement) also called
Mie scattering (the scattering of light with larger particles or about the same size of wavelength of
light) [55]. In the dermis, scattering mainly results from collagen bundles and fibrils that create both
Mie and Rayleigh scattering (the scattering of light with very small particles sometimes 10 times or
more smaller than the wavelength of light) [55]. In short, the overall scattering of the skin is mainly
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due to the dermis layer because of its thickness that is considerably greater than that of the stratum
corneum and the epidermis.

2.4. Stretching of the Skin

Another important challenge encountered in manufacturing strong mechanical sensors is material
used in fabricating these sensors that extend and stretch along with the skin. The human skin has
the inherent property of stretching to withstand large forces and aids in movement with flexibility.
Any material, which is being used to attach to the surface of the skin must have the same or closely related
properties of stretching, i.e., materials made of thin films that can withstand larger strains (ε = d/2r).
Research has demonstrated that materials often fail due to high strain caused by slipping, breaking,
or delamination of the thin film [56,57]. These happen because of the weak grip between the substrate
and the film. Enhancing the grip of the substrate to the thin film with better adhesion essentially
increases the mechanical properties due to strain delocalization [56,58,59]. Li et al. demonstrated in
detail the significance of interfacial firmness between the substrate and thin film in strain delocalization
theoretically [60,61]. Their results show that interfacial firmness enables the metallic film to deform
consistently over huge strains, while weaker interfacial strengths prompt necking at zones of metal
detachment and sometimes slipping from the substrate [61]. The adhesiveness can be increased without
losing biosensing capability by the use of special polymers such as ethoxylated polyethyleneimine
(PEIE) mixed with PDMS [62]. In brief, enhancing the bond of the sensor to the substrate will increase
the reliability and dependability of the mechanical sensor.

3. Wearable Sensors

There are several types of wearable sensors currently in use. In this section, three major and
commonly used types (i.e., transdermal microneedles, optical, and mechanical) will be discussed
including their usage, construction, and recent developments.

3.1. Transdermal Microneedles

Microneedles were at first created by Prausnitz and collaborators to upgrade penetration of
medications and vaccines over the stratum corneum that anticipates the development of some charged,
as well as polar operators over the skin [63]. Microneedles produce almost no pain or very little
pain because they penetrate up to where no large ending nerves are present and are minimally
invasive [64]. The prevalent utilization of microneedles to this point has been for transdermal drug
and vaccine delivery [65]. But in recent times, researchers are focusing on expanding the application of
microneedles as diagnostic sensors by accessing the interstitial fluid [66–68]. Transdermal sensing has
great importance since they have the ability to obtain real-time clinical data for daily health monitoring.
The schematic diagram of the porous microneedles system for fluid extraction is shown in Figure 4.
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3.1.1. Extracellular Fluids in the Skin

The avascular region of the skin, the epidermis, can be normally separated into the stratum
corneum and viable epidermis. The stratum corneum is viewed as a physical obstruction of dead cells
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with a “block and mortar” structure [70]. The viable epidermis has several epidermal layers, for which
a specific enzyme and metabolic activity has been accounted for, with the exception of the recently
reported biochemical activity inside the stratum corneum [70]. A critical difference between the viable
epidermis and stratum corneum is the difference in polarity of these two layers; the viable epidermis is
primarily hydrophilic, and stratum corneum is lipophilic in nature [71,72].

The dermis is the most vascularized area of the skin. Capillaries of dermis mostly feed blood to
the dermis, with a little amount from venules and arterioles. Huge contrasts in healthy adults between
the different constituents’ concentration in capillary blood have been reported [73]. An important fact
to be noted here is that the blood contributes just 5% of the skin volume, and ISF (interstitial fluid)
contributes to about 45% of the volume fraction with a higher proportion in the dermis as compared to
subcutaneous tissue [69]. ISF is shaped by blood transcapillary filtration and excess fluid is taken away
by the lymphatic vessels [74]. The exchange of fluid between the capillaries and the development of
ISF is dictated by the capillary wall properties, hydrostatic pressure, and the concentration of protein
in the interstitium and blood. ISF helps in the transportation of waste products and nutrients to the
blood capillaries and cells, and antigens and cytokines to nearby lymph nodes contributing to the
regulation of the immune system. Its organization and biophysical properties shift among organs and
during tissue pathogenesis, remodeling, and inflammation [75]. The protein concentrations in ISF
are about 33% lower than in plasma, with a lower concentration of magnesium, calcium, potassium,
and sodium [76]. The most important element to consider here is the similarity of glucose in ISF and
whole blood at steady-state conditions. Rapid changes in blood glucose levels in ISF at different lag
times reflect glucose diffusion from the endothelium of capillary to ISF within the specific concentration
gradient [77,78].

3.1.2. Microneedle Insertion into the Skin

The productivity of the microneedles in recognizing analytes, either local or external to the inside
of the skin, are subject to a viable and solid insertion of the needles into the skin tissue at a particular
depth. To effectively accomplish this objective, a specific test is to be tailored to observe the insertion of
the needles through the skin based on skin’s mechanical properties, basically Young’s modulus and
puncturing stress. An interesting factor is that these mechanical properties have been found to change
according to the skin strata, and furthermore, with the radius of the needle [79,80], and produced strain
rate [81,82]. From a mechanical perspective, the skin is an anisotropic, heterogeneous, and viscoelastic
material. Moreover, the dermis and epidermis of the human skin are diverse in nature and have different
thickness as well as mechanical properties, which are still under investigation. Another important
factor identified along with mechanical properties is its viscoelasticity, which has a greater significance
in the insertion of microneedles into the skin [83]. To enhance the applicability of microneedles,
hydrogel and polymer-based microneedles are used that allow rapid extraction of ISF. Mandal et al.
recently developed a microneedle patch technology using biocompatible crosslinked coating on the
surface of microneedle. When it is inserted into the skin, the coated microneedles would gradually swell
to form a porous matrix for combined recovery of ISF and leukocytes [67]. Furthermore, the swellable
polymeric needles were also developed by Chang el al. for timely metabolic analysis of ISF [66,84].

A noteworthy application of a microneedle-based sensor is the monitoring of blood glucose levels.
Mukerjee et al. developed a variety of 200 empty silicon microneedles and showed interstitial fluid
extraction from the human ear using wicking [85]. Glucose is then detected by a colorimetric glucose
strip. The glucose level outcomes from the microneedle sensor were matched with the simultaneous
detection of the subjects’ blood glucose, and the microneedle-based sensor results indicated similar
level of accuracy. This demonstrates that a minimally invasive technique such as the microneedle can
successfully extract ISF, which gives precise measurements of the glucose levels. Figure 5 shows the
microneedle design and interstitial fluid extraction.
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Different investigators have demonstrated the existence of a lag time associated with intravenous
glucose level compared to ISF and it fluctuates between 6–45 min. For instance, F. Ribet et al.
reported approximately 10 min of lag time between intravenous glucose and interstitial glucose for
their continuous glucose monitoring system [68]. This lag time is subjected to different variables,
i.e., blood flow rate, metabolic rate, sampling method, etc. [86,87]. Wang et al. analyzed this lag time
and developed correlations between the interstitial glucose level and blood glucose level [88].

Recently a glucose detecting smart patch was developed that utilized, poly(3,4-ethylene
dioxythiophene) PEDOT, a conductive polymer to entangle glucose oxidase specifically on the
surfaces of strongly treated microneedle arrays of steel [89]. PEDOT provided an environment
that is biocompatible and suitable to extract the dynamic enzyme and enabled glucose to diffuse
into the polymer grid. Moreover, its electrical properties gave a low voltage transduction pathway.
This novel technique allows the microneedles to utilize interstitial liquid without confounding complex
microfluidic segments or sensor architectures [89].

Jina et al. also researched on microneedles that measured glucose continuously for up to 72-h in
human skin [90]. The device comprised 200 empty silicon microneedles, each of which was 300 µm
in length and 50 µm in lumen breadth, making an aggregate area of 6 × 6 mm2 [91]. This technique
was applied to 10 diabetic subjects that precisely measured the glucose level with 15% MARD (mean
absolute relative difference) in a 72-h period. In this ongoing research of microneedles, Li et al.
developed a touch-activated microneedle-based sensor [92]. A single touch of a finger measured blood
glucose through a nickel microneedle on a rabbit as a model.

3.2. Optical Sensors

Optical sensors are being utilized in a wide variety of applications [8,93–96]. Optical measurements
can be taken from equipment such as the spectrophotometer, which are intended for use in a large-scale
setup such as a clinic or a laboratory. On the other hand, measurements may be taken at a very
small scale such as in electronic products including wrist smart watches (for heartbeat detection)
and pulse-oximeter wearable sensors. In either setting, light is introduced into the body through the
skin by the light source. Through the changes in the light properties (e.g., scattering or absorption),
the body uncovers data by the light that is reflected on to the detector. The light sources range
from single-wavelength laser to narrow bandwidth LEDs, depending upon the application [55].
Their wavelength can extend from deep infrared to UV, contingent upon the penetration depth
requirement for the respective detecting application [97].

Optical sensor equipped gadgets are commonly available in the market nowadays. The most
common optical sensors used in wearable electronics are used to detect oxygenation of blood and heart
rate monitoring [98,99]. In diagnosing any clinical or biological event, the absorption and scattering
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properties of light concerning the location of the body, define the event. The most noticeable example
is the oximetry technique that takes advantage of changes in the optical properties of hemoglobin in its
deoxygenated and oxygenated state [99]. Analysis of the pulsatile part of bloodstream permits the
estimation of key physiological parameters, for example, pulse inconstancy or variability through
photoplethysmography (PPG) and oxygen saturation in arterial blood using pulse oximetry [100–102].

Photoplethysmography (PPG) is the optical technique that can be utilized to quantify blood
volume changes in the microvessels of tissues (Challoner 1979). It has a broad clinical application
and innovation, used in financially accessible medicinal gadgets, for instance, in pulse oximeters and
digital blood pressure monitors for heart beat detection. The fundamental type of PPG only requires a
couple of optoelectronic parts: a light source (typically mounted on the skin as shown in Figure 6A,
to transmit light into the skin, and a photodetector to detect the light intensity variation related to
the changes in volume (Figure 6B). PPG is usually a non-invasive technique and operates at a close
infrared or red wavelength. The most perceived extracted features are the peripheral pulse waveform
and is synchronized to every heartbeat (Figure 6C). The light interaction with biological tissue has
already been investigated comprehensively by Anderson and Parrish in 1981 [51]. Some scientists
have examined the optical procedures related to PPG estimations [103–110]. They have featured the
key factors that can influence the measurement of light achieved by the photodetector: the movement
of the walls of blood vessels, blood volume, and the red blood cell orientation. The example of PPG
signal extracted from a different location in the body is given in Figure 6D.
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One of the vital parameters in the optical detection is the wavelength of light source because of
these three major reasons: (1) passage of light through water- the fundamental constituent, water,
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in tissues, have high light-absorbing characteristics in the longer wavelength regions of infrared and
ultraviolet. Hence visible red region and near-infrared region can be used to penetrate more easily and
allow measurement of blood flow and its volume. Thus, the red or closer infrared wavelengths are
regularly dedicated in PPG light source [111]; (2) isosbestic wavelength- huge contrasts exist between
oxyhemoglobin (HbO2) and hemoglobin (Hb) in absorption except at the isosbestic wavelengths [112].
For the measurement performed near 805 nm for the near-infrared region, the signal remains unaffected
by blood oxygenation saturation change; and (3) penetration depth of the tissue- the penetration depth
for a given sensing power threshold at a particular depth depends upon the working wavelength
range [113].

Optical sensors, especially photoplethysmography, exhibits its extraordinary potential for use
in an extensive variety of clinical measurements and detections. Currently, many researchers are
exploring this technique due to its cost-effectiveness, portability, accessibility of its little semiconductor
components, and simplicity or easiness to use in clinical settings. PPG-based innovation can be
found in an extensive variety of economically accessible medicinal gadgets for measuring blood
pressure, oxygen saturation, pulse, cardiovascular output, and its peripheral diseases. The success
in this technology is still not absolute, challenges still exist, including its reliability, standardized
measurements, and setting up regularizing ranges of data for correlation with patients, and for
assessing different actions for treatment. Future research is additionally liable to see improvements
in the measurements and detection, including home detection, PPG imaging, and basic endothelial
evaluations [114–116].

3.3. Mechanical Sensors

Mechanical sensors are used to track the physical activity of the human body. Any irregular or
even habitual movement can provide useful information about human health. The human gait is
also considered as biometric property, tracking physical activity and periodic analysis of it can lead
to detection of any abnormal patterns such as sudden tremors that are precursor of various diseases
like Parkinson’s and Alzheimer’s disease. Hence, these mechanical sensors can contribute towards
early detection of such fatal diseases [117]. Moreover, these sensors also have potential applications in
rehabilitation, sports training, and prothesis [118]. The wearable mechanical sensors are widely used
for detection of movements either on large scale (like arm, hand, and knee movement) or on small
scale (like chest movement during breathing) [119,120].

In general, mechanical sensors can be categorized as stretchable strain sensors and pressure/tactile
sensors. Stretchable strain sensors are used to detect motion through quantifying mechanical
deformation by corresponding change in the electrical signal (piezoelectric or piezoresistive).
The sensitivity or gauge factor (GFs) is an important parameter that influences the design of small-scale
movement detection applications such as pulse monitoring and tracking respiration. However,
the applications related to tracking the bending of joints in fingers, arms or legs demands high
flexibility and stretchability of strain sensors. Some recent developments in strain sensors can be
found in references [121–128]. Stretchable tactile sensors are designed to mimic the human perception
of touch in response to external stimuli such as pressure, force, vibration, torsion etc. Human skin
can sense as low as 5 Pa of pressure [129]. The human skin’s ability to sense this minute pressure
and to withstand strong mechanical forces poses engineering challenges in designing flexible tactile
sensors and fully functional stretchable electronic skin for health monitoring. Several stretchable tactile
sensors have been developed recently [130–135]. The transduction principle that have potentially been
used in these types of sensors are based on these effects: piezoelectric, piezocapacitive, piezoresistive,
and triboelectric [131].

3.3.1. Piezoelectric

Since last decade in material research, inorganic materials such as nanowire, nanoparticles,
and nano-membranes are being considered for high-tech electronic devices on uncommon kinds of
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substrates, including elastic, rubber sheets, and plastic foils [136]. Further advance in wearable sensors
can result in sensors that can easily fit in the human body and have the capacity to collect biological
data [137]. One of its best known form is the piezoelectric-based mechanical sensor, which converts
mechanical signal generated within the body to an electrical signal [138,139].

The mechanism of sensing of the piezoelectric sensor depends on the piezoelectric effect generated
by the materials, producing electrical charges under mechanical stress, weight, or strain [138,140–142].
When a piezoelectric material comes under mechanical load or stress, the electrical polarization inside
the material changes that leads to a change in surface charge or voltage at the piezoelectric material
surface. Figure 7 better illustrates the working of piezoelectric sensors. They are mostly used as skin
mounted tactile sensors i.e., for detection of bending of finger [138,140], body movement detection [143],
detection of heartbeat by measuring arterial pulse, and other biomechanics characterization [144].
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3.3.2. Piezocapacitive

Piezocapacitive sensors are obtained by implanting conductive metal plates in adaptable materials,
for example, poly(dimethylsiloxane) (PDMS) polymer. The conductive plates are commonly fabricated
by utilizing deposition techniques like electroplating, evaporation, or sputtering [145–147]. Even though
the polymeric packaging generally can sustain the chemical degradation and mechanical deformation,
the conductive plates underneath with its interconnections can fail due to overstress and fatigue [148].
Indeed, even a little break in a plate or an interface can lead to the breakage of electrical connectivity,
and hence failing the sensor [149].

The capacitive pressure sensor is generally applied to take advantage of its low-power consumption
ability [150] and its long haul stability [151]. The structure of the capacitive sensor normally involves
two parallel plates as an electrode with interlayer sandwiched between acting as a dielectric. Recently,
silver nanowire (AgNW) integrated mesh emerged as a favorable electrode for capacitive sensors,
because of its remarkable adaptability, cost-effectiveness, and simplicity of use [152–154]. In interlayer
materials cases, the capacitance C depends mostly on the interlayer material dielectric permittivity εr,
the separation between the two plates, and the functional electrode area A:

C =
ε0εrA

d
(1)

where ε0 is the vacuum permittivity [155].
With the goal to enhance the sensitivity, extensive endeavors have been dedicated to the choice

of appropriate interlayer material. Dielectric elastomers like polyurethane (PU) or PDMS have
been utilized, since it is easy to change the distance ‘d’ by applying external pressure [151,156].
From Equation (1), aside from the parameters distance (d), and area (A), one can manipulate the
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dielectric permittivity (εr) by using reasonable materials to change the sensitivity of the capacitive
sensor. Utilizing the adaptable properties of graphene, a group of researchers have developed an
extensive, stretchable, transparent touch capacitive sensor that would not just work in the multi-touch,
scroll, and spread modes (as generally used in cell phones) but also recognizes the 3D shapes near its
surface [157]. Figure 8A and B shows its layer by layer structure while 8C and 8D shows the change in
capacitance for a multi-touch applied stimulus.Biosensors 2020, 10, x FOR PEER REVIEW 12 of 22 
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3.3.3. Piezoresistive

Piezoresistive effect occurs when conductive materials exposed to mechanical deformation change
their electrical properties due to the change in resistance. Because of the Poisson ratio (v), materials that
are stretched likewise contract in the transverse direction of extension. Thus, the resistance R for a
conductive material is given by:

R =
ρL
A

(2)

where, L is the length, ρ is the resistivity, and A is the cross-sectional area of the conductor.
The piezoresistive effect is generally used for the detection of the physiological movement of
humans in the form of wearable electronics because of its simple design, high sensitivity, and simple
readout [158,159].

A functioning resistive sensor in wearable technology must have adaptability, stretchability,
sensitivity, and low hysteresis [160,161]. A device that can stretch and is flexible will be mechanically
robust during attachment on to the body and can be used for longer terms. In wearable electronics,
the strain sensor usually should not exhibit broad plastic deformation during repeated or continuous
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strain. In particular, strain sensors must have the sensitivity to strain to enhance signal extraction and
dynamic strain detection. The sensitivity of strain is usually described by a measuring factor (GF):

GF =
∆R/R0

∆L/L
=

∆R/R0

ε
(3)

where ∆R is the adjustment in opposition, R0 is the unstrained obstruction, and ε is the strain for change
in length ∆L as compared to its original length L. In order to measure or monitor human movement,
the sensor should be flexible and stretchable within the capacity of maintaining high sensitivity at large
dynamic range [162,163]. Typically strain sensors are developed using patterned thin-film on flexible
elastomer substrates. With the advancing research in materials, now strain sensors are fabricated using
nanowires, nanotubes, nanoparticles, and graphene. However recently, carbon nanotubes (CNTs) were
used to make a highly flexible sensor (Figure 9), which shows promising results under high strain
rates [41].
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Figure 9. (A) Flexible carbon nanotubes (CNT)-based piezoresistive strain sensor, (B) change in relative
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Figure 9 illustrates the superior performance of a CNT-based sensor placed at separate joints.
Figure 9a shows a thin CNT film on the substrate. Figure 9b–d illustrate the placement of the sensor
on the finger, elbow, and knee, respectively showing the corresponding changes in resistance values.
Initially all sensors in the original position are set to straight with respect to each joint. The joints
are then bent, and then returned to the original position to evaluate the performance under strain.
The success of the resistance value returning to the original baseline value in all the three scenarios
demonstrates the potential effectiveness of the sensor for epidermal use. To study more of the recently
developed strain sensors, the readers are referred to references [48,164–168].

3.3.4. Triboelectric

With the development of wearable smart electronics, there is immense need of self-powered systems
for the purposes of durability, portability, and comfort. Researchers, with the help of nanotechnology,
have developed various nanogenerators [169] including the triboelectric nanogenerator (TENG)
invented by Prof. Wang’s group in 2012 [170]. Triboelectric effect is the electrification of a material
induced by friction; it becomes electrically charged after coming into frictional contact with a different
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type of material. TENG is based on the coupling effect of electrostatic induction and triboelectrification.
The working principle can be explained by simple composition of TENG with two materials having
electrodes fabricated on one side separated by elastic spacers as shown in Figure 10. In response to the
external mechanical force or deformation, triboelectric charges are produced on the surfaces due to
contact. Once the mechanical force is released, the surfaces gets separated producing a gap between
them, and the opposite charges on the surfaces produce a potential difference [171,172]. Therefore,
it can also be considered as a mechanical energy harvesting device because it has the capability to
monitor touch stimuli without any external power source [173].
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Figure 10. Flexible triboelectric sensor’s schematic illustration (A) transduction principle when force is
applied, (B) potential difference produced when force is released.

The output of triboelectric effect depends upon the relative position of the two materials that
contribute different polarities for electrostatic induction. Moreover, the surface structure of the materials
also plays an important role. An increase in roughness produces more friction resulting in an enhanced
electrical output [174–176]. Recently, various TENGs have been invented based on different triboelectric
materials, substrates, spacers, and electrodes [173,177]. However, polymer films are considered as the
best choice because of their flexibility, light weight, robustness, and better triboelectric output [177–179].

4. Conclusions

In this review, three important and most commonly utilized wearable skin sensors, i.e., transdermal
needles, optical, and mechanical are discussed, specifically related to the challenges encountered
during biosensing. Although the progress in wearable technology has been significantly accelerated
by advancement of research in materials sciences and printed electronics, challenges still remain.
The biggest hurdle that these sensors are facing is the inherent protective structure of the skin that
creates a barrier between the sensors and the available information below the surface. Some of the
skin sensors, like stretchable mechanical sensors, also need additional disposable components such as
adhesives that are functional as long as the stratum corneum refreshes itself completely. In many cases,
it is difficult to last longer because of bathing, skin oils, irritation, etc. Therefore, to produce these
sensors commercially, these challenges must be considered, and we need to come up with procedures
and techniques that make attaching and detaching easy.

Self-calibration of wearable devices is another challenge since every person is unique and various
other factors (diet, family history, etc.) responsible for personal health needs to be considered. Hence,
the early symptoms for disease diagnostics might change for different people based on the above factors.
Thus, the self-calibration of wearable devices with incorporation of machine learning technology for
analysis of data can provide accurate health monitoring. Another technical challenge is the robustness
and durability at varying weather-related conditions (humid, wet, warm, etc.) and during different
activities (swimming, running, sunbathing, etc.). This can be addressed by a new smart design and
suitable material to build sensors that can tolerate such conditions.

In short, it is important that researchers overcome the skin-penetration problem while developing
sensors and incorporate some form of communication technology. We expect that this review has
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given researchers a guide on how to fill those gaps by pinpointing the challenges for the specific type
of sensor they are developing pertaining to the application.
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