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Summary

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sar-

coma (KS), the most common AIDS-related malignancy. It also causes other rare, but cer-

tainly underreported, KSHV-associated pathologies, namely primary effusion lymphoma,

multicentric Castleman disease and KSHV inflammatory cytokine syndrome. Epidemiol-

ogy and pathogenicity studies point to the potential for host genetic predisposition to

KSHV infection and/or the subsequent development of KSHV-associated pathologies

partly explaining the peculiar geographic and population-specific incidence of KSHV and

associated pathologies and discrepancies in KSHV exposure and infection and KSHV

infection and disease development. This review consolidates the current knowledge of

host genetic factors involved in the KSHV-driven pathogenesis. Studies reviewed here

indicate a plausible connection between KSHV susceptibility and host genetic factors that

affect either viral access to host cells via entry mechanisms or host innate immunity to

viral infection. Subsequent to infection, KSHV-associated pathogenesis, reviewed here

primarily in the context of KS, is likely influenced by an orchestrated concert of innate

immune system interactions, downstream inflammatory pathways and oncogenic mecha-

nisms. The association studies reviewed here point to interesting candidate genes that

may prove important in achieving a more nuanced understanding of the pathogenesis

and therapeutic targeting of KSHV and associated diseases. Recent studies on host

genetic factors suggest numerous candidate genes strongly associated with KSHV infec-

tion or subsequent disease development, particularly innate immune system mediators.

Taken together, these contribute toward our understanding of the geographic prevalence

and population susceptibility to KSHV and KSHV-associated diseases.

Abbreviations: ART, antiretroviral therapy; CCL2, C-C chemokine ligand 2; CCND1, cyclin D1; CDKN1A, cyclin dependent kinase inhibitor 1A; CFLAR, CASP8 and FADD-like apoptosis regulator;
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1 | INTRODUCTION

Kaposi's sarcoma-associated herpesvirus (KSHV, or human

herpesvirus-8) is a gammaherpesvirus with a particularly high sero-

prevalence in sub-Saharan Africa (SSA, 30%-50%) and the Mediterra-

nean region (20%-30%).1-3 It is the etiological agent of the most

common AIDS-related malignancy, Kaposi's sarcoma (KS),4 as well as

the rare (although most certainly under-reported5) primary effusion

lymphoma (PEL), multicentric Castleman disease (MCD) and KSHV

inflammatory cytokine syndrome (KICS) which all primarily occur in

HIV-infected patients.6-11 Exposure to and infection with KSHV is

thought to occur early in life via saliva,12 whereupon the virus estab-

lishes long-term persistent infection which is usually clinically silent

even during intermittent lytic reactivation, likely controlled by T cell

responses.10,13,14 However, with a decline in T cell immunity, most

markedly in the context of HIV co-infection but also in medically

immunosuppressed and elderly people, KSHV-infected patients

become more likely to develop KSHV-associated pathologies.15-18

KSHV seroprevalence exhibits peculiar geographical epidemiology

and incidence of KS and other KSHV-associated diseases outside the

setting of HIV are population-specific.3,19,20 Furthermore, there are

discrepancies in KSHV exposure vs infection and KSHV/HIV co-

infection vs KS development in addition to evidence of familial aggre-

gation of KSHV seroprevalence.12,21,22 This growing body of evidence

points to a potential underlying genetic risk of susceptibility to KSHV

infection and associated disease development. In this review, we

focus on studies reporting familial aggregation of susceptibility to

KSHV infection and/or KSHV-associated diseases and particular

genetic polymorphisms in candidate susceptibility genes or haplotypes

found to be statistically associated with aspects of KSHV pathogene-

sis. Further, we identify the limitations of gene association studies in

isolation and suggest further research directions to elucidate the

potential for targeted interventions in genetically susceptible

populations.

2 | EVIDENCE FOR THE EXISTENCE OF A
GENETIC LINK

KSHV prevalence varies geographically and is particularly high in SSA

(30%-50%) and the Mediterranean region (20%-30%).1-3 Higher prev-

alence has been noted in people of specific ethnicities regardless of

HIV infection where KSHV (and KS) was endemic even before the

HIV/AIDS epidemic, such as in Uganda (14%-95%), the Ivory Coast

(43%-100%), Cameroon (≥80%), the Amazonian basin in Brazil (53%),

Peru (56%) and among people of Uygur and Han ethnicity in Xinjiang,

China (40%-60% and 21%-31%, respectively).3,20,23-28 In HIV-infected

people in the USA on antiretroviral therapy (ART), prevalence was

38%.29 Furthermore, exposure to KSHV does not always result in

KSHV infection; seroconversion even in areas of high exposure is

30% to 50%.21 An epidemiological population-based study on 1337

individuals of African origin in French Guinea where KSHV is endemic,

showed strong correlation of KSHV seroprevalence between mother-

child and sibling-sibling pairs, suggestive of familial aggregation.12

KSHV infection is necessary for the development of KS, MCD,

PEL and KICS but insufficient for tumorigenesis. Precipitating factors

such as HIV infection or immune suppression are required for KSHV-

associated oncogenesis. Even so, HIV/KSHV co-infection does not

always result in cancer development. The most common of the KSHV-

associated pathologies, KS, is distinguished into four epidemiological

forms. Classic KS primarily occurs in men from the Mediterranean and

Eastern European region due to immune suppression related to old

age, while endemic KS is found in Central Africa mostly in younger

males.17,30 Further, iatrogenic KS is associated with transplant-related

immunosuppression and therefore regresses with immune reconstitu-

tion.31,32 With the onset of the AIDS epidemic, the incidence of an

AIDS-related or epidemic KS form, the most clinically aggressive, has

burgeoned, driven by HIV/AIDS-related immune suppression and HIV

itself.33,34 Within these epidemiological groupings, KS occurs with

specific geographic distribution.19 Risk of classic KS is threefold higher

in men from the South of Italy than the North.35 Transplant recipients

of Mediterranean, Jewish and Middle Eastern ancestry (at risk for clas-

sic KS) are also overrepresented among iatrogenic KS patients regard-

less of their residence at the time of the transplant.19,35,36 Among

HIV-positive patients, risk of developing AIDS-KS is reported to be

higher in South Africa than in Europe, North America and Latin Amer-

ica and the trend of decreased risk concomitant with increased CD4

count after initiation of ART evident in these regions was not

observed in South Africa.22 Geographic and population-specific preva-

lence of KSHV and incidence of KS suggest a potential role for host

genetic factors in susceptibility to KSHV infection and subsequent

development of KS. Similarly, African ancestry has been shown to be

a significant independent predictor of MCD incidence in HIV patients,

suggesting a putative genetic susceptibility.37

These observations point to genetic susceptibility to KSHV infec-

tion following exposure and/or progression to KS or other KSHV-

associated pathologies.3,38-40

3 | CANDIDATE SUSCEPTIBILITY GENES—
CURRENT KNOWLEDGE

Thus far, immune-modulatory genes have been the focus of investiga-

tions of candidate susceptibility genes. In particular, published studies
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have reported significant associations of KSHV infection or its associ-

ated pathologies with genetic polymorphism in genes encoding inter-

leukins IL6, IL8 and IL13,41-44 vascular endothelial growth factor

(VEGF),45 nuclear factor kappa B (NFκB),46 mannose-binding lectin

(MBL)-2,47 Fc gamma receptors (FcγR),48 HLA killer cell

immunoglobulin-like receptors (KIR)49,50 and their HLA ligands and

linked genes50-56 and homologues of human genes pirated by KSHV,

namely cyclin D1 (CCND1), IL6, C-C chemokine ligand 2 (CCL2) and

FADD-like apoptosis regulator (CFLAR).57 Additionally, we identified

genetic variants in the KSHV entry receptor Eph receptor A2 (EPHA2)

to be significantly associated with KSHV infection and KS develop-

ment.58 Conversely, tumour necrosis factors (TNF)-α and -β,41,44

IFNγ,44 stromal-derived factor 1 (SDF1), cyclin dependent kinase inhib-

itor 1A (CDKN1A),59 C-C chemokine receptor type 5 (CCR5)41 and

caspase 8 (CASP8)57 have been investigated in relation to KS and

KSHV but have not yielded statistically significant results. The above-

mentioned studies reporting statistically significant associations of

host genetic polymorphisms or haplotypes with KSHV or KSHV-

associated pathologies are summarised in Table 1.

3.1 | Susceptibility to KSHV infection

A foundational study conducted by Plancoulaine et al65 identified, by

segregation analysis of KSHV seroprevalence among a French Guin-

ean population, the presence of an unidentified recessive major gene

that affects, in combination with age, KSHV seroconversion in chil-

dren under 10 years of age. This was mapped to chromosome region

3p22 which encodes the following genes: programmed cell death

6 interacting protein (PDCD6IP), ubiquitin-specific protease (UBP), F-

box and leucine-rich repeat protein (FBXL2), cyclic AMP-regulated

phosphoprotein 21 (ARPP-21), leucine-rich repeat flightless-

interacting protein 2 (LRRFIP2) and C-C motif chemokine receptor

4 (CCR4).66 Several studies assessing genetic factors underlying sus-

ceptibility to KSHV infection have since been conducted.

Two triplet infants have been reported with familial

hemophagocytic lymphohistiocytosis related to compound heterozy-

gous perforin mutations and KSHV infection; in these cases, a defec-

tive perforin-granzyme pathway is suggested to have led to reduced

viral clearance ability and therefore to the onset of symptoms related

to lytic KSHV infection.67 Other studies have similarly focused on viral

immune response genes. MBL2 haplotypes (based on combinations of

two promoter region genotypes (−550 H/L and −221 Y/X) and a

structural region genotype (exon 1 A/O)) associated with intermediate

expression of MBL, an innate immune system protein, were found to

be associated with lower CD4 count in HIV and KSHV co-infected

patients compared to patients with only HIV infection.47 Additionally,

polymorphisms in the NFκB1 promoter (NG_050628.1:g.4670_

4673ATTG[1], reference SNP (rs)28 362 491) and the 30 UTR region

of the NFκB1 inhibitor alpha (NM_020529.3:NFκBIA c.*126G>A,

rs696) were found to be associated with the presence of antibodies

to KSHV lytic antigens.46 Natural killer (NK) cell activation is impor-

tant in the immune response to viruses and proposed to be protective

against KSHV infection.50,68 NK cells are regulated by killer Ig-like

receptors (KIR) which are activated by interaction with HLA mole-

cules. The combination of KIR3DS1 (an activating haplotype of KIR)

and HLA-B Bw4-80I (the Bw4 haplotype with an isoleucine at position

80) as well as HLA-C group 1 (HLA-C*01, *03, *07, *08) homozygosity

was indeed found to be protective against KSHV infection.50 Con-

versely, HLA-A*6801, HLA-A*4301 and HLA-DRB1*04 were associ-

ated with KSHV shedding in saliva in mothers in rural South Africa,60

while HLA-DRB1 alleles investigated in relation to KSHV susceptibil-

ity in a Sardinian population were not shown to be statistically associ-

ated although HLA-DR2 antigens were slightly overrepresented in

KSHV-positive patients (but did not withstand statistical correction

for multiple testing).69

Key molecules involved in the initial stages of KSHV entry are

interesting candidate genes for KSHV association studies. We investi-

gated sequence variants in a major KSHV entry receptor in endothelial

cells, EPHA2, in relation to KSHV infection. Mutation analysis revealed

a novel heterozygous transition (NM_004431.5:c.2572C>T) associ-

ated with KSHV infection in a cohort of HIV-infected South African

patients stratified by KSHV status.58 The angiogenesis-related VEGF,

shown to augment entry of KSHV into target cells,70 harboured a pro-

moter region SNP (NG_008732.1:g.4822C>A, rs59260042) associ-

ated with KSHV viremia in kidney transplant recipients, and a SNP in

the 50 untranslated region (UTR, NM_001025366.3:c.-94C>T,

rs2010963) was likewise associated with KSHV viremia but in females

only.45

As the necessary etiological agent for the development of KS,

MCD, PEL and KICS, enhanced susceptibility to KSHV infection sub-

sequently increases the risk for KSHV-associated pathologies. How-

ever, KSHV-associated tumorigenesis may be caused by additional

underlying genetic factors as described below.

3.2 | Susceptibility to KSHV-associated
pathologies

As the most prevalent of the KSHV-associated pathologies, KS, also

the most common AIDS-related malignancy worldwide, has been the

focus of most studies concerning genetic susceptibility to KSHV-

associated pathology. Other KSHV-associated pathologies, namely

MCD, PEL and KICS, are considered rare although are almost certainly

underreported due to difficult diagnoses, particularly in resource-

limited regions where HIV burden is high. Consequently, there is a

lack of research into the rarer KSHV-associated pathologies and par-

ticularly on potential host genetic contributors; therefore, only few

reports were identified for inclusion in this review.

3.2.1 | Kaposi's sarcoma

There is evidence from several case reports to suggest that genetic

primary immunodeficiency predisposes to KS.71-75 Three unrelated

Turkish children, aged 2, 9 and 9, born to consanguineous parents
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were reported to develop classic KS in early childhood, an

extremely rare occurrence in the Mediterranean basin, strongly

suggesting autosomal recessive predisposition.73 One of these chil-

dren, who died from severe disseminated KS at the age of two,

harboured a homozygous splice-site stromal interaction molecule

1 (STIM1) mutation resulting in T cell immunodeficiency.74 A further

case report describes a Turkish boy with inherited IFNγR1 defi-

ciency due to homozygous INFGR1 mutation (NP_000407.1:p.

Cys77Tyr, rs104893974) who developed and died from classic

KS.71 A cryptic splicing mediated CTLA4 haploinsufficiency, associ-

ated with defective NK cell function, has recently been shown to

have facilitated classic KS development in the case of a 52-year-old

HIV-negative male of Italian ancestry.75 A Tunisian boy with

Wiskott-Aldrich syndrome caused by a WAS deletion (NP_000368.1:

p.Asp130_Glu131del) provides further evidence of a possible predis-

position to classic KS.72

Several notable associations have been identified in genes

encoding proteins that are known to be pro-inflammatory. A SNP in

the IL6 promoter (XM_011515390.2:c.-84-153C>G, rs1800795)

which is associated with increased levels of IL6 was noted in a familial

clustering of classic KS and was further associated with KS in HIV-

infected men and renal transplant recipients.39,41,42 IL6 potently pro-

motes the growth of KS spindle cells in an autocrine and paracrine

manner.76 Additionally, a SNP in the IL13 promoter region

(NM_002188.3:c.431A>G, rs20541) was associated with classic KS in

patients latently infected with KSHV.44 Similarly, an IL8 promoter

SNP (NG_029889.1:g.4802A>T, rs4073), linked to below normal IL8

expression, was identified in a cohort of patients with classic KS44;

however, it was conversely found to decrease the risk of AIDS-KS in

HIV-positive patients.43 An IL8 SNP (NM_000584.4:c.65-204C>T,

rs2227306) was reported to decrease risk of classic KS44 and the

combination of two SNPs (NM_001557.4:c.*127T>C, rs1126579 and

NM_001557.4:c.*359G>A, rs1126580) in the human homologue to

the KSHV-encoded viral G-protein coupled receptor (vGPCR), IL8

receptor beta (IL8RB), were similarly found to be protective against

the development of classic KS.44

Immunoregulatory genes have also been implicated in KS devel-

opment in addition to KSHV susceptibility. A polymorphic form

(NM_000569.8:c.526T>C, rs396991) of the IgG binding receptor,

FcγRIIIA, was associated with AIDS-KS in a cohort of HIV-positive

men and was found to enhance IgG affinity in vitro and promote NK

cell activation.48,77 Inflammation mediated by NK cell activation is

postulated to promote KS oncogenesis.50,68 Goedert et al50 reported

that the combination of KIR3DS1 (an activating haplotype of KIR) and

HLA-B Bw4-80I (the Bw4 haplotype with an isoleucine at position 80)

was protective against KSHV seroprevalence (see Section 3.1) but

increased the risk of classic KS among KSHV-positive patients in a

cohort of HIV-negative patients without KS, however, this association

was not corroborated in a HIV-infected cohort investigated for KS

development61 nor a smaller cohort of Italian classic KS patients, in

which the KIR3DS1+/Bw4*80I-genotype was statistically more fre-

quent among classic KS cases than control.49 Additionally, activating

KIR haplotypes, KIR3DS1 and KIR2DS1, were associated with classic

KS.49 Similarly, Goedert et al50 found HLA-C group 1 (HLA-C*01, *03,

*07, *08) homozygosity to be protective against KSHV infection (see

Section 3.1), but once infected to confer increased risk of KS develop-

ment through a proposed mechanism of NK cell activation and

induced inflammation.

Additionally, several HLA class I and II haplotypes have been thor-

oughly investigated. KS development post kidney transplant was asso-

ciated with HLA-CW4 in a small study.54 In a familial clustering of

classic KS, the homozygous HLA-A*24/B*18/Cw*12/DRB1*11/

DQB1*03 haplotype was present in family members with KS and not

in those without KS, with the DRB1*11 subtype present in most family

members.39 In a study of classic KS in a Sardinian population (high risk

for classic KS), a number of class I and class II HLA haplotypes were

associated with an increased (class I: HLA-CW7; Class II: HLA-

DRB1*1104, HLA-DRB1*1302, HLA-DQA1*0302, HLA-DQB1*0604) or

decreased (class I: HLA-A30, HLA-CW5, HLA-B58; class II: HLA-

DRB1*1601, HLA-DQB1*0502) risk of classic KS.55 HLA-C*07:01 has

also been associated with classic KS, while HLA-A*11:01 was found to

decrease risk50 and HLA-B*2705 was similarly reported to be protec-

tive.51,53 HLA-B14 has been reported to be underrepresented among

AIDS-KS cases,62 but the specific allele, HLA-B*14:01, was found to

be a risk allele for AIDS-related KS.51,52 HLA-DRB1*1302 in linkage

disequilibrium with DQB1*0604 was identified as a risk haplotype for

AIDS-related KS53 as were HLA-DRB1 alleles with a phenylalanine res-

idue at position 13.56 HLA-DR5 has been noted to be present at an

increased frequency among (presumed) AIDS-related KS,78 classic KS

patients78,79 as well as among iatrogenic KS patients80-82 while other

studies have not found this to be the case.62

Several variants identified in a SNP screening of the HLA-DMB

gene region were found to increase AIDS-KS risk. Most significantly, a

SNP in the HLA-DMB intronic region (NM_002118.4:c.55+649T>C,

rs6902982) was associated with a four-times higher risk of AIDS-KS

in HIV-KSHV co-infected men.51 Non-synonymous SNPs in tripartite

motif-containing protein 31 (TRIM31, NM_007028.3:c.1261G>A,

rs1116221) and lymphotoxin alpha (LTA, NM_000595.4:c.-10

+90A>G, rs909253) were observed to be protective whereas SNPs

within HLA-DMB linked genes, transporter associated with antigen

processing 1 (TAP1, NM_000593.5:c.2090A>G, rs1135216;

c.1177A>G, rs1057141), TAPSAR1 microRNA (NG_011759.1:

g.13891T>C, rs2071541), G-patch domain and ankyrin repeats

1 (GPANK, NM_001199237.1:c.*90T>C, rs7029) and lymphocyte anti-

gen 6 family member G6C (LY6G6C, NM_025261.3:c.243C>T,

rs1065356), were associated with increased risk of AIDS-KS.51

Recently, human genes that are cellular homologues of KSHV-

expressed genes have been investigated hypothesising that virally

expressed homologues, which promote immune-silent proliferation,

may be advantaged by genetic SNPs in their cellular counterparts.57 A

SNP screening in AIDS-KS patients including several cellular homo-

logues identified SNPs in CCND1, IL6, CCL2 and CFLAR (homologues

of KSHV-encoded vCyclin, vIL6, viral FLICE-inhibitory protein (vFLIP)

and viral CC chemokine ligand (vCCL), respectively). Various combina-

tions of these SNPs (but not a single SNP alone) were associated with

AIDS-KS.57
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EPHA2, in addition to being a key entry receptor for KSHV into

endothelial cells, has been implicated in oncogenesis via alteration of

its canonical signalling pathway and noncanonical signalling pathway

mediated by phosphorylation of key tyrosine and serine residues.83,84

Indeed, mutation analysis revealed two novel, non-synonymous het-

erozygous variants (NM_004431.5:c.2099T>C and NM_004431.5:

c.2835G>T) in the EPHA2 tyrosine kinase domain to be significantly

associated with KS in a cohort of HIV-infected South African patients

stratified by KS status.58

3.2.2 | Other KSHV-associated pathologies

In addition to KS, rare (although likely underreported) KSHV-

associated pathologies MCD, PEL and KICS may develop in KSHV-

infected patients, particularly in the context of KSHV/HIV co-

infection.

Childhood MCD, like classic KS, may be favoured by rare inborn

errors of immunity against KSHV infection as suggested by Leroy

et al85 in their report of a Comorian child born to consanguineous par-

ents who presented with MCD at the age of 7. However, a study from

Japan including 342 MCD patients found no evidence of family his-

tory.86 A toll-like receptor 4 (TLR4) SNP (NM_138554.5:c.896A>G,

rs4986790) which results in decreased surface expression of TLR4, an

important pattern recognition receptor in activation of the innate

immune system, was associated with increased incidence of MCD in

KSHV+ HIV-1+ patients compared to non-KSHV cancer controls and

patients with KS63; this SNP was further linked to patients with Afri-

can ancestry.87

KICS and PEL, under-researched in themselves, are yet to be

investigated in relation to genetic associations.

4 | LIMITATIONS OF CURRENT REPORTS
AND GENETIC ASSOCIATION STUDIES

The major limitation of genetic association studies, including those

reported in this review, is lack of consistent replication due to the

small number of studies conducted and difficulties related to case-

control association studies. Indeed, few associations reported here

have been satisfactorily replicated yet, with the exception of the

reported association of an IL6 promoter polymorphism

(XM_011515390.2:c.-84-153C>G) with increased risk of AIDS-related

KS and iatrogenic KS,41,42 the HLA-B*1401 allele with increased risk

of AIDS-KS51,52 and the HLA-B*2702/5 haplotype with decreased risk

of AIDS-related KS.51,53

Observed associations may well be ethnicity- and geography-spe-

cific, especially with regards to HLA haplotypes, as allele frequencies

vary and as such may not be able to be replicated in studies con-

ducted in different populations. Even so, replicability is hindered by

heterogeneous study populations, with proposed associated genetic

polymorphisms potentially being artefacts of population stratification

or other confounding factors between cases and controls.88 Some

populations included in studies reviewed here are ethnically diverse,

particularly recently admixed populations, such as those from

Brazil,46,47 South Africa58 and the United States.51 Family studies,

such as the report by Guttman-Yassky et al39 of the IL6 promoter GC

genotype and the HLA-DRB1*11 allele in a familial clustering of classic

KS, are thought to bypass this limitation although these are limited in

population applicability and statistical power and also require

validation.

A narrowly defined phenotype to test in candidate association

studies is important for consistent results. Lagging diagnostics, partic-

ularly of KSHV-associated pathologies other than KS, are an issue.

Even diagnosis of KSHV infection (by antibody response using various

serological assays23,46,58 or viral load in peripheral blood leukocytes45)

or KS (by clinical examination with or without indicated biopsy and

histological confirmation,50,52,58 with or without investigations for vis-

ceral KS and with or without tumour staging) is heterogeneously per-

formed or not reported at all. For example, KSHV seropositivity may

not be a consistently defined phenotype between studies, as Newton

et al23 noted disparity in KSHV seroprevalence estimates between

their study and those previously reported due to the sensitivity of dif-

ferent serological assays (peptide based EIAs, protein ELISA and

immunofluorescent assays). This highlights an underlying disjunction

between the clinical and laboratory aspects of research. Clear and

consistent diagnostic frameworks and phenotype standardization

implemented in the clinical research setting is needed to overcome

this in future studies. Further variability is introduced through differ-

ing laboratory techniques used to identify genetic polymorphism (eg,

SNP screening using a commercial BeadArray genotyping platform of

selected SNPs from candidate genes51 vs Sanger sequencing of the

entire coding region of candidate genes with a discovery approach58),

and future research would benefit from established guidelines to pro-

mote consistency. For instance, the numerous studies investigating

HLA haplotypes reported here are certainly indicative of an associa-

tion with KS, particularly in class I and II HLA types. However, the het-

erogeneity of studied populations and different HLA genotyping

techniques (eg, targeted next generation sequencing method52 vs

PCR-sequence based typing50) used has led to inconsistent reports

that require validation.52 Careful attention should be paid to the

design of future studies to ensure validity and reproducibility.

5 | POTENTIAL TARGETS FOR FUTURE
INVESTIGATION

While a significant amount of research has been conducted into

genetic polymorphisms associated with KS development, it would be

beneficial for future research to address the possibility of a host

genetic contribution to a broader range of KSHV-associated patholo-

gies. As the prerequisite for all KSHV-related disease developments,

emphasis should be placed on understanding susceptibility to KSHV

infection. KSHV entry (most recently reviewed by Kumar and Chan-

dran89 and Dollery90) is therefore an interesting target for study, and

recent advances in understanding these mechanisms offer many new
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candidate susceptibility genes for investigation. Further insights into

KSHV infection mechanisms provide new potential candidate genes

such as the androgen receptor, recently described by Wang et al,91 to

promote KSHV endocytosis and trafficking via EPHA2 serine

phosphorylation.

While classic p53 mutations have not been implicated in KSHV-

associated pathologies, p53-linked genes are under-researched. A

plausible candidate SNP for future studies is a homozygous variant

(309 G/G) of the p53-modulator, MDM2, which has been suggested

as a potential risk factor for development of visceral KS, PEL or MCD

after the heterozygous form was found to be associated with cutane-

ous classic KS in Caucasians and the homozygous form identified in a

number of PEL cell lines.59,92

Improved understanding of specific genes involved in KSHV

infection and KSHV-related disease causation may have implications

in the development of new therapeutic targets, and candidate gene

association studies are therefore a relevant avenue of research.

Although many different genetic variants predisposing individuals to

F IGURE 1 Summary figure depicting the reviewed genetic factors associated with KSHV infection and KS development. KSHV infects
endothelial cells and following lytic infection, establishes latency from which reactivation events can occur; KS develops from latently infected
endothelial cells (grey box). Gene names in green text indicate an association with decreased risk; red text an association with increased risk.
Details of the single nucleotide polymorphism or haplotype involved in these associations are found in Table 1 or in text. *Various HLA
haplotypes are either protective or increase risk of KS development as detailed in Table 1. Figure created with BioRender.com

BLUMENTHAL ET AL. 9 of 13

http://biorender.com


either KSHV infection and/or KSHV-associated diseases appear to

exist which makes designing a therapy against all of them rather diffi-

cult, there are a few promising candidate genes: familiar KS has been

linked to inborn defects in T cell immunity, in particular T cell effector

functions and possibly interferon signalling,71,74 while genetic poly-

morphism associated with differing sensitivities to cytotoxic drugs

have been reported, such as the EPHA2 substitution, NP_004422.2:p.

Gly391Arg, which showed increased sensitivity to rapamycin93,94 and

low dose resistance to cisplatin94 in human lung epithelial cells.

Selected validated genetic variants conferring KSHV and KS suscepti-

bility should therefore be assessed for drug sensitives.

6 | CONCLUSIONS

The rationale for an underlying genetic risk of KSHV infection and

subsequent KSHV-associated disease development is well established

in the literature through epidemiological observation. The numerous

association studies reviewed here point to interesting candidate genes

that may prove important in achieving a more nuanced understanding

of the pathogenesis and therapeutic targeting of KSHV. Taken

together (Figure 1), the studies reviewed here indicate a plausible con-

nection between KSHV susceptibility and host genetic factors that

may affect either host immunity to viral infection (perforin-granzyme

pathway, MBL, NK cell activation) or viral access to host cells via entry

mechanisms (EPHA2 entry receptor). KSHV-associated pathogenesis

subsequent to infection is likely influenced by an orchestrated concert

of innate immune system interactions (NK-KIR-HLA), downstream

inflammatory pathways (interleukins, NK cell activation) and onco-

genic mechanisms (EPHA2 oncogenic pathways). Infectious diseases

and related pathologies are likely to become an increasing global pub-

lic health burden, particular in parallel with the HIV epidemic and in

the era of HAART.95 Identifying genetically susceptible populations

and affected genes in the pathogenesis of KSHV therefore remains an

important scientific goal.
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