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Abstract

Objective: To establish a rapid, cost-effective, accurate, and acceptable osteoporosis (OP) 
screening model for the Chinese male population (age ≥ 40 years) based on data  
mining technology.
Materials and methods: This was a 3-year retrospective cohort study, which belonged 
to the sub-cohort of the Chinese Reaction Study. The research period was from March 
2011 to December 2014. A total of 1834 subjects who did not have OP at the baseline 
and completed a 3-year follow-up were included in this study. All subjects underwent 
quantitative ultrasound examinations for calcaneus at the baseline and follow-ups 
that lasted for 3 years. We utilized the least absolute shrinkage and selection operator 
(LASSO) regression model to select feature variables. The characteristic variables 
selected in the LASSO regression were analyzed by multivariable logistic regression 
(MLR) to construct the predictive model. This predictive model was displayed through 
a nomogram. We used the receiver operating characteristic (ROC) curve, C-index, 
calibration curve, and clinical decision curve analysis (DCA) to evaluate model 
performance and the bootstrapping validation to internally validate the model.
Results: The predictive factors included in the prediction model were age, neck 
circumference, waist-to-height ratio, BMI, triglyceride, impaired fasting glucose, 
dyslipidemia, osteopenia, smoking history, and strenuous exercise. The area under 
the ROC (AUC) curve of the risk nomogram was 0.882 (95% CI, 0.858–0.907), exhibiting 
good predictive ability and performance. The C-index for the risk nomogram was 0.882 
in the prediction model, which presented good refinement. In addition, the nomogram 
calibration curve indicated that the prediction model was consistent. The DCA showed 
that when the threshold probability was between 1 and 100%, the nomogram had a 
good clinical application value. More importantly, the internally verified C-index of the 
nomogram was still very high, at 0.870.
Conclusions: This novel nomogram can effectively predict the 3-year incidence risk of OP in 
the male population. It also helps clinicians to identify groups at high risk of OP early and 
formulate personalized intervention measures.
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Introduction

Osteoporosis (OP) refers to a systemic bone metabolic 
syndrome in which bone strength is reduced and bone 
fragility is increased due to the loss of bone mass and 
destruction of bone tissue microstructure (1). In the 
United States, OP affects approximately 10 million people, 
including 2 million men (2). It is estimated that one in five 
white men will suffer from osteoporosis-related fractures in 
their lifetimes (3). In China, the overall prevalence rate of 
OP in people over 50 years old is 19.2%, and the prevalence 
rate in men is 6.0% (4); the overall prevalence rate in people 
with low bone mass who need prevention and treatment is 
46.4%, and in men, it is as high as 46.9% (4). China is one 
of the countries with the largest elderly population in the 
world (5). Currently, OP has become a major public health 
issue in China, and it is estimated that by 2050, the number 
of OP patients will reach 120 million (6). In addition, some 
studies have found that osteoporotic fractures in men 
have more serious consequences, and their morbidity and 
mortality are significantly higher than those in women 
(7, 8, 9). Unfortunately, the diagnosis rates and treatment 
rates of males suffering from the OP are insufficient (10).

The research of Si et al. (11) showed that osteoporosis-
related fractures will cause a huge economic burden, and 
it will increase significantly with the increase of aging. So, 
the health care system must urgently identify cost-effective 
screening and intervention measures. OP has become one 
of the chronic diseases that seriously threaten the health 
and life safety of middle-aged and elderly people. Dual-
energy X-ray absorptiometry (DXA) is the gold standard 
for diagnosing OP. However, due to its high operating costs 
and inconvenience to carry, it has not yet been popularized 
among the population. In addition, in some countries 
and regions with less economic development, screening 
and testing capabilities OP are even more inadequate. 
Therefore, in clinical work, it is very important to identify 
and intercept OP-related risk factors as early as possible.

The current assessment tools that have been adopted 
for early OP screening are primarily for female patients, 
and similar effective measurement tools for men are not 
available. Data mining technology is a new method widely 
used in disease diagnosis and prediction. In recent years, 
most methods for disease risk assessment involve data 
mining. Machine learning (ML), as a branch of artificial 
intelligence (AI), has been widely applied to solve complex 
problems in the scientific field (12, 13, 14). Logistic 
regression (LR) is one of the most commonly used ML 
techniques in the medical field. It can be used to analyze 
the risk factors related to the occurrence of a disease and 

to construct a clinical prediction model. Among the 
various models for predicting disease risk, the nomogram 
transforms the complex regression equation into a simple 
and visual graph. Its prediction results are highly readable 
and have very promising clinical application value (15). 
This study will combine the least absolute shrinkage 
and selection operator (LASSO) regression analysis and 
multiple LR analysis incorporate them into data mining 
technology to establish an OP prediction model and 
visualize it through a nomogram. To our knowledge, this 
article is the first study to use a nomogram to predict OP 
risk factors in male patients and provide guidance for  
early prevention.

Materials and methods

Participants

This study is a 3-year retrospective cohort study, which is 
part of the China REACTION study (16). The REACTION 
study is the largest prospective study of diabetes and cancer 
in China. From March 2011 to December 2011, we selected 
1988 male residents aged 40 and above in Wuyishan 
City, Fujian Province as the research objects. All subjects 
were fully informed and voluntarily signed the informed 
consent form before taking the test. The following cases 
were excluded: (i) patients who had been diagnosed with 
OP at baseline (n = 59); (ii) those with missing baseline 
data (n = 80); (iii) those who took drugs that affect bone 
metabolism within 2 week before the examination (n = 0). 
Finally, 1849 non-OP patients at the baseline were included 
for a 3-year non-interventional follow-up. The follow-up 
period was from December 2011 to December 2014. 
Ultimately, 1834 participants completed the second survey 
and were included in the study. The follow-up response 
rate was 99.2%, and the detailed research flow chart is 
shown in Fig. 1. At present, the study has been approved 
by the ethics committee of Fujian Provincial Hospital  
(ID: K2020-10-002).

Data collection

All patients completed a questionnaire survey. The survey 
content included age, past medical history (hypertension, 
diabetes, prediabetes, impaired fasting glucose (IFG), 
impaired glucose tolerance (IGT), dyslipidemia, obesity, 
abdominal obesity, osteopenia, fractures), personal history 
(histories of smoking, drinking, and tea consumption), 
and dietary habits (pork, beef, mutton, chicken, duck, 
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goose, seafood, dairy products, soy products). Exercise 
intensity was divided into three levels: light exercises (such 
as walking), moderate exercises (such as jogging, playing 
ping pong, and practicing tai chi), and strenuous exercises 
(such as playing basketball, swimming, and running), 
each having to last for more than 10 min. Past medical 
history had been clearly diagnosed by specialists from 
second-level and above hospitals. Smoking was divided 
into no (including never smoked or ex-smokers) and yes 

(current smokers); alcohol consumption was categorized 
as no (including never drank or previous drinkers) and 
yes (currently drinking). Tea consumption history was 
divided into three parts: frequent (more than three 
times a week), occasionally (one to three times a week), 
and never. Blood samples with fasting for more than 8 h  
were extracted to detect for hemoglobin A1c (HbA1c), 
high-density lipoprotein (HDL), low-density lipoprotein 
(LDL), total cholesterol (TC), triglycerides (TG), alanine 

Figure 1
Flow diagram of study design. OP, osteoporosis; LASSO, least absolute shrinkage and selection operator; MLR, multiple logistic regression; DCA, decision 
curve analysis; ROC, receiver operating characteristic.
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aminotransferase (ALT), aspartate aminotransferase (AST), 
gamma-glutamyl transferase (GGT), alkaline phosphatase 
(ALP), and uric acid (UA). All subjects underwent oral 
glucose tolerance testing (OGTT), and fasting plasma 
glucose (FPG) and postprandial plasma glucose (2hPG) 
were measured at fasting and 2 h after a glucose load. The 
glucose oxidase method was utilized to determine blood 
glucose. An automatic biochemical analyzer (Modular 
E170, Roche) was used to detect blood lipids, and liver 
and kidney functionalities. HbA1c was determined by 
high-performance liquid chromatography (automated 
glycohemoglobin analyzer, Bio-Rad).

The height, weight, waist circumference (WC), hip 
circumference (HC), neck circumference (NC), pulse, and 
blood pressure (BP) were measured by uniformly trained 
investigators. The subjects wore thin shirts and stood 
upright on the bottom plate of a stadiometer to measure 
their height and weight. WC was measured at the thinnest 
part of the waist (the horizontal circumference of the waist 
through the umbilical point), and NC was measured at the 
thinnest part of the middle of the neck. HC was measured 
at the most convex part of the pubic symphysis and gluteus 
maximums. BMI was then calculated by weight (kg)/height 
(m2), and the waist-to-height ratio (WHtR) was calculated 
by WC (cm)/height (cm). The waist-to-hip ratio (WHR) was 
calculated by WC (cm)/hip(cm), and BP and pulse were 
measured after the subjects rested for 10 min. An electronic 
sphygmomanometer (Omron) was used to measure BP 
and pulse three times, and the average value was taken 
as the data analysis. Calcaneus quantitative ultrasound 
(QUS) was used to measure bone mineral density (BMD) 
by the Achilles Express ultrasonic bone densitometer (GE 
Lunar Corp., Madison, WI, USA). The SI-derived T-score 
was the parameter we used to assess BMD. T-score could 
be obtained directly from the Achilles Express ultrasonic 
bone densitometer. And, we used the standard provided 
by the manufacturer as a reference to evaluate the T-score. 
The manufacturer’s standards were based on a database 
of young, healthy Chinese individuals in the same study 
area as the reference. The QUS instrument was calibrated 
daily according to the manufacturer’s recommendations 
before measurement. Data collection and analysis were 
performed by two collaborators (Yaqian Mao and Lizhen 
Xu); divergences were resolved through discussion.

Diagnostic and classification criteria

According to the diagnostic criteria from the World Health 
Organization (WHO) (17), the definition of osteopenia 
is –2.5 < T-score <–1, and the definition for OP is T-score 

≤ –2.5. In our study, according to the diagnostic criteria 
from the American Diabetes Association (ADA) in 2003 
(18), the definition of diabetes is FPG ≥ 7.0 mmol/L and/or  
2hPG ≥ 11.1 mmol/L; the definition for IFG is  
6.1 mmol/L ≤ FPG <7.0 mmol/L, and 2 hPG < 7.8 
mmol/L; the definition for IGT is FPG < 7.0 mmol/L, and  
2 hPG ≥ 7.8 mmol/L or <11.1 mmol/L; prediabetes 
including IFG and IGT. The definition for centric obesity is 
defined as (19, 20, 21): male WC ≥ 90 cm, male WHR ≥ 0.9, 
WHtR ≥ 0.5. We defined NC ≥ 35 cm as centric obesity.

Statistical analysis

R software (version 4.0.2; https://www.r-project.org) 
and IBM SPSS software (version 25.0 for windows, SPSS 
Inc.) were implemented for data analysis. Missing data 
were filled in by multiple interpolations (22). Categorical 
variables were shown as a percentage. Baseline data 
analysis was used by chi-square test, and the value of 
P < 0.05 (two-sided) was considered statistically significant. 
In the construction of the predictive model, we used the 
least absolute shrinkage and selection operator (LASSO) 
regression analysis to screen out characteristic variables 
with nonzero coefficients. The glmnet package in the R 
software was used to run LASSO. LASSO regression analysis 
causes the regression coefficients of some variables to 
approach zero by imposing constraints on the model 
parameters, thereby minimizing prediction errors. It uses 
the control parameter lambda for variable screening and 
complexity adjustments and is particularly suitable for 
high-dimensional data analysis and risk factor screening 
(23, 24). Then, MLR analysis was adopted to analyze the 
characteristic variables with nonzero coefficients. These 
characteristic variables in the MLR model were represented 
by a regressive coefficient (β), odds ratio (OR) with 95% CI, 
and P-value. The rms package in R software was used to run 
LR. LR is the most adopted technique in ML (25), which 
often analyzes the risk factors of disease and builds risk 
prediction models.

We verified the model performance, accuracy, 
and practicality through C-index, receiver operating 
characteristic (ROC) curve, decision curve analysis (DCA), 
and calibration charts. Bootstrapping validation (1000 
Bootstrap Resamples) calculated a relatively corrected 
C-index (26), and we used the ROCR package of R language 
to perform the ROC. The area under the ROC curve (AUC) 
can adequately distinguish performances across the risk 
spectrum (27). We used the rms package to draw the 
calibration curve, which was plotted to assess the calibration 
of the OP nomogram (28). Also, the R language rmda package 
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was applied for the clinical decision curve analysis. DCA is a 
novel method for evaluating predictive models, which can 
be used to evaluate the clinical utility of the model (29).

Results

Patient characteristics of the study cohort

This was a 3-year retrospective cohort study. The detailed 
research process is shown in Fig. 1. A total of 1834 baseline 
non-OP male patients completed this follow-up with 
a completion rate of 1834/1849 (99.2%). All patients 
have completed the relevant examinations. A total of 
187 patients developed OP after 3 years (10.2%), aged 
41–79 years. Supplementary Table 1 (see section on 
supplementary materials given at the end of this article) 
for the BMD value (T-score) of 1834 male patients who 
completed the 3-year follow-up. We defined these 187 male 
patients who developed OP as the OP group and 1647 male 
patients who had not developed OP as the non-OP group. 
The comparison of characteristic variables between OP 
group and non-OP group are shown in Table 1.

Feature selection

The variables in our study included demographic 
characteristics, anthropometric characteristics, blood 
biochemical indicators, auxiliary examinations, 
co-morbidities, and lifestyles. We selected 10 characteristic 
variables with nonzero coefficients from 44 variables 
through the LASSO regression model, including age, 
neck circumference, waist-to-height ratio, BMI, TG, IFG, 
dyslipidemia, osteopenia, smoking history, and strenuous 
exercises (see Fig. 2 for details).

Development of individualized 
prediction nomogram

We employed the feature variables selected from the LASSO 
regression model to construct the prediction model. 
The predictive model construction will use the multiple 
LR method (see Table 2 for details), and the predictive 
model constructed by the aforementioned predictors was 
represented by a nomogram (see Fig. 3 for details).

Model validation and clinical use

The area under the ROC curve (AUC) of the risk nomogram 
was 0.882 (95% CI, 0.858–0.907) (Fig. 4A), which suggested 

that the model had adequate predictive capabilities and 
performance. The C-index for the prediction model in the 
cohort was 0.882 (95% CI, 0.858–0.907) and was 0.870 by 
bootstrapping validation, indicating that the model had 
good refinement. Figure 4B shows the clinical DCA for 
the risk nomogram. The DCA shows that if the threshold 
probability of the DCA is >1 and <100%, using this risk 
nomogram to predict the 3-year risk for OP was beneficial 
in clinical work. Figure 4C shows the calibration curve for 
the risk nomogram, which exhibited good consistency in 
this cohort.

Discussion

OP is often considered a health problem for females, but its 
effects on males are often overlooked. In order to prevent 
and evaluate OP, various OP risk assessment tools have 
gradually appeared and developed. Taking the fracture risk 
assessment tool (FRAX) as an example, which is currently 
the most widely used standard for evaluating bone health. 
FRAX was released by the WHO Collaborating Center 
in Sheffield, UK, in 2008 to assess the individualized 
probability of hip and major osteoporotic fractures in 10 
years (30). FRAX is a questionnaire-based scoring tool, and 
its reference indicators include clinical risk factors and 
femoral neck BMD (30). Due to regional differences, lack 
of appropriate cohort data, and design flaws, some studies 
have found that FRAX has limitations in clinical use (31, 
32, 33, 34). The study of Harvey et  al. (35) showed that 
the accuracy of using FRAX to predict fracture risk in men 
may be lower than in women. At present, the risk factors 
for OP in male patients are still unclear, and targeted and 
personalized assessment tools are insufficient. Based on 
the data from the epidemiological surveys, we constructed 
a nomogram of the 3-year incidence risk of OP for Chinese 
adult males to provide a quantitative forecasting tool for 
the early identification of OP high-risk groups. Our research 
found that age, BMI, NC, WHtR, TG, IFG, dyslipidemia, 
osteopenia, smoking history, and strenuous exercise were 
risk factors for OP in males.

The risk factors related to OP occurrence in our 
study were similar to most previous studies. However, 
the difference is the statistical analysis method used. 
Most previous studies (36, 37, 38) usually used single-
factor analysis to initially screen risk factors and then 
implemented multi-factor stepwise regression to obtain 
significant variables. In this study, we implemented new 
statistical methods to identify OP risk factors and explained 
the issues from multiple perspectives while exploring 
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Table 1 Comparison of characteristic variables between OP group and non-OP group. Categorical variables were shown  
as percentage.

Variables
Non-OP OP

P-value Variables
Non-OP OP

P-valuen = 1647 n = 187 n = 1647 n = 187

Age (years) 0.002 ALP (U/L) 0.050
 <50 593 (36.00) 49 (26.20)  <100 1387 (84.21) 147 (78.61)
 50–70 976 (59.26) 120 (64.17)  ≥100 260 (15.79) 40 (21.39)
 ≥70 78 (4.74) 18 (9.63) UA (μmol/L) 0.737
SBP (mmHg) 0.606  ≤420 1016 (61.69) 113 (60.43)
 <140 1043 (63.33) 122 (65.24)  >420 631 (38.31) 74 (39.57)
 ≥140 604 (36.67) 65 (34.76) Hypertension 0.854
DBP (mmHg) 0.895  No 1383 (83.97) 158 (84.49)
 <90 1341 (81.42) 153 (81.42)  Yes 264 (16.03) 29 (15.51)
 ≥90 306 (18.58) 34 (18.58) Diabetes 0.035
Pulse (b.p.m.) 0.092  No 1393 (84.58) 169 (90.37)
 <60 97 (5.89) 4 (5.89)  Yes 254 (15.42) 18 (9.63)
 60–100 1501 (91.14) 176 (91.14) Prediabetes 0.105
 ≥100 49 (2.98) 7 (2.98)  No 1292 (78.45) 137 (73.26)
BMI (kg/m2) <0.001  Yes 355 (21.55) 50 (26.74)
 <18.5 25 (1.52) 9 (5.89) IFG 0.301
 18.5–24 716 (43.47) 100 (91.14)  No 1500 (91.07) 166 (88.77)
 24–28 709 (43.05) 58 (2.98)  Yes 147 (8.93) 21 (11.23)
 ≥28 197 (11.96) 20 (30.42) IGF 0.266
WC (cm) 0.108  No 1439 (87.37) 158 (84.49)
 <80 404 (24.53) 59 (24.53)  Yes 208 (12.63) 29 (15.51)
 80–90 724 (43.96) 76 (43.96) Dyslipidemia 0.181
 ≥90 519 (31.51) 52 (31.51)  No 545 (33.09) 71 (37.97)
HC (cm) 0.089  Yes 1102 (66.91) 116 (62.03)
 <90 318 (19.31) 48 (19.31) Overweight 0.018
 90–100 1032 (62.66) 112 (62.66)  No 971 (58.96) 127 (67.91)
 ≥100 297 (18.03) 27 (18.03)  Yes 676 (41.04) 60 (32.09)
NC (cm) 0.013 Obesity 0.335
 <35 513 (31.15) 75 (31.15)  No 1449 (87.98) 169 (90.37)
 ≥35 1134 (68.85) 112 (68.85)  Yes 198 (12.02) 18 (9.63)
WHR 0.513 Abdominal obesity 0.242
 <0.9 760 (46.14) 91 (48.66)  No 1277 (77.53) 152 (81.28)
 ≥0.9 887 (53.86) 96 (51.34)  Yes 370 (22.47) 35 (18.72)
WHtR 0.005 Osteopenia <0.001
 <0.5 505 (30.66) 76 (40.64)  No 1405 (85.31) 34 (18.18)
 ≥0.5 1142 (69.34) 111 (59.36)  Yes 242 (14.69) 153 (81.82)
FPG (mmol/L) 0.119 Fracture 0.845
 <6.1 1255 (76.20) 152 (81.28)  No 148 (8.99) 16 (8.56)
 ≥6.1 392 (23.80) 35 (18.72)  Yes 1499 (91.01) 171 (91.44)
2hPG (mmol/L) 0.672 Smoking history 0.005
 <7.8 1022 (62.05) 119 (63.64)  No 739 (44.87) 64 (34.22)
 ≥7.8 625 (37.95) 68 (36.36)  Yes 908 (55.13) 123 (65.78)
HbA1c (%) 0.117 Drinking history 0.566
 <6.0 1323 (80.33) 161 (86.10)  No 952 (57.80) 104 (55.61)
 6.0–6.5 168 (10.20) 16 (8.56)  Yes 695 (42.20) 83 (44.39)
 ≥6.5 156 (9.47) 10 (5.35) Tea drinking history 0.083
HDL (mmol/L) 0.228  Never 393 (23.86) 52 (27.81)
 ≥1.0 1399 (84.94) 165 (88.24)  Occasionally 516 (31.33) 44 (23.53)
 <1.0 248 (15.06) 22 (11.76)  Often 738 (44.81) 91 (48.66)
LDL (mmol/L) 0.849 Pork, beef, mutton 0.308
 <3.4 1219 (74.01) 142 (75.94)  No 14 (0.85) 3 (1.60)
 3.4–4.1 293 (17.79) 31 (16.58)  Yes 1633 (99.15) 184 (98.40)
 ≥4.1 135 (8.20) 14 (7.49) Chicken, duck, goose 0.916

(Continued)
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the risk factors for chronic diseases. The disadvantage 
inherent to this traditional variable selection is that the 
variance in the model is generally higher, and flexibility 
is poor. While exploring disease risk factors, there are 
generally multiple independent variables. If all variables 
are used, model overfitting is likely to occur. Meanwhile, 
the multicollinearity problem must be considered. A major 
breakthrough in regression analysis in recent years is the 
introduction of regularized regression, namely the LASSO 
regression (23, 39, 40). The most prominent advantage of 
LASSO regression is that by applying penalized regression 
to all variable coefficients, the relatively unimportant 
independent variable coefficients become zero and are 
thus excluded from modeling (23). In addition, LASSO 
regression is suitable for any data type and for reducing 
high-dimensional data (23). LASSO regression can perform 
variable screening and complexity adjustments while 
fitting a generalized linear model. Different from previous 
studies, our study used LASSO regression to screen OP risk 
factors and used the traditional LR regression method to 
build the model (23). The research results showed that 
the model constructed with the variables screened by the 
LASSO regression has good accuracy and predictive ability.

Currently, most studies (37, 38, 41, 42) on OP risk 
factors were cross-sectional surveys. The cross-sectional 

survey can only be used as a preliminary screening tool 
to assess the current OP risk but cannot predict OP risk 
in the future. In addition, most studies have proven that 
QUS is useful for predicting fracture risk in women (43, 44, 
45). However, there are still few prospective data on QUS 
and OP risk in men. At present, the largest study today in 
men is MrOS study, a multi-center prospective study of risk 
factors for fracture in 5995 older men (46, 47). In order to 
explore the risk factors for OP in Chinese male patients, 
we conducted this survey. This study is a retrospective 
cohort study based on 3-year follow-up data. The analysis 
is explained subsequently.

Age, osteopenia, and OP

There is no doubt that age is a definitive risk factor for 
OP. Our research indicated that as age increased, OP risk 
gradually increased alongside it, which was consistent 
with most previous studies (37, 38). The bone loss caused 
by age is related to the following factors (48). First, as age 
increases, the level of sex hormones in the body decreases; 
however, sex hormones are key to maintaining bone mass. 
Secondly, as age increases, skeletal muscle mass decreases 
and muscle fat accumulates, leading to decreases in muscle 
strength and muscle functions, which promotes bone loss 

Variables
Non-OP OP

P-value Variables
Non-OP OP

P-valuen = 1647 n = 187 n = 1647 n = 187

TC (mmol/L) 0.903  No 109 (6.62) 12 (6.42)
 <5.2 907 (55.07) 106 (56.68)  Yes 1538 (93.38) 175 (93.58)
 5.2–6.2 514 (31.21) 57 (30.48) Seafood 0.006
 ≥6.2 226 (13.72) 24 (12.83)  No 92 (5.59) 20 (10.70)
TG (mmol/L) 0.093  Yes 1555 (94.41) 167 (89.30)
 <1.7 913 (55.43) 116 (62.03) Dairy products 0.082
 1.7–2.3 278 (16.88) 33 (17.65)  No 788 (47.84) 102 (54.55)
 ≥2.3 456 (27.69) 38 (20.32)  Yes 859 (52.16) 85 (45.45)
ALT (mmol/L) 0.498 Soy products 0.008
 ≤25 1141 (69.28) 135 (72.19)  No 352 (21.37) 56 (29.95)
 25–50 432 (26.23) 42 (22.46)  Yes 1295 (78.63) 131 (70.05)
 >50 74 (4.49) 10 (5.35) Strenuous exercises 0.013
AST (mmol/L) 0.156  No 1509 (91.62) 181 (96.79)
 ≤20 684 (41.53) 76 (40.64)  Yes 138 (8.38) 6 (3.21)
 20–40 871 (52.88) 94 (50.27) Moderate exercises 0.192
 >40 92 (5.59) 17 (9.09)  No 1525 (92.59) 178 (95.19)
GGT (mmol/L) 0.344  Yes 122 (7.41) 9 (4.81)
 ≤30 735 (44.63) 92 (49.20) Light exercises 0.354
 30–60 551 (33.45) 53 (28.34)  No 781 (47.42) 82 (43.85)
 >60 361 (21.92) 42 (22.46)  Yes 866 (52.58) 105 (56.15)

P < 0.05 (two-sided) was considered statistically significant.
2hpg, 2 h plasma glucose; ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; DBP, diastolic blood pressure; 
FPG, fasting plasma glucose; GGT, gamma-glutamyl transferase; HbA1c, hemoglobin A1c; HC, hip circumference; HDL, high-density lipoprotein 
cholesterol; IFG, impaired fasting glucose; IGF, impaired glucose tolerance; LDL, low-density lipoprotein cholesterol; NC, neck circumference; Non-OP, 
non-osteoporosis; OP, osteoporosis; SBP, systolic blood pressure; TC, total cholesterol; TG, triglyceride; UA, uric acid; WC, waist circumference; WHR, 
waist-to-hip ratio; WHtR, waist-to-height ratio.

Table 1 Continued.
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and decreasing bone density. Osteopenia is an early state 
of OP, and our study found that patients with osteopenia 
have a significantly increased risk of developing OP after 3 

years. Therefore, active treatment and intervention while 
diagnosed with osteopenia before OP can occur reduce OP 
risk after 3 years.

Figure 2
Characteristic variables selection using the least 
absolute shrinkage and selection operator 
(LASSO) logistic regression model. (A) The partial 
likelihood deviance (binomial deviance) curve was 
plotted vs log (lambda). Optimal parameter 
(lambda) selection in the LASSO logistic regression 
model used cross-validation, and dotted vertical 
lines were drawn via minimum criteria and the  
1 s.e. of the minimum criteria. (B) LASSO 
coefficient profiles of the 44 features. A coefficient 
profile plot was produced against the log (lambda) 
sequence, where optimal lambda resulted in ten 
features with nonzero coefficients.
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BMI, central obesity, and OP

Previous studies (49) have shown that for both men and 
postmenopausal women, BMI, fat mass, and lean mass 
are conducive to increasing BMD. The study of Yang et al. 
(37) found that central obesity, BMI, and the prevalence 
of male OP were closely related. The studies from Wu et al. 
(50) and Lloyd et al. (42) also support this view, indicating 
that there is a strong negative correlation between BMI and 
OP. The above findings are consistent with our research. 
The protective effect of high BMI against OP is considered 
to be related to weight gain. The greater the body weight, 
the greater the mechanical load on the bones, which 
contributes to an increase in bone mass (51). On the 
contrary, the study of Zhao et al. (52) showed that increased 
fat mass may not benefit bone mass. Now, more and more 
studies have confirmed that higher fat mass may be an 
independent risk factor for OP and osteoporotic fractures.

TG, dyslipidemia, and OP

The relationship between blood lipids and OP has always 
been controversial. Hsu et  al. (41) discovered that after 
adjusting for body weight, fat mass, and other confounding 
factors, a significant negative correlation exists between 
body bone mineral content (BMC) and TC, TG, and 
LDL. Another study from Poli et  al. (53) found that after 
adjusting for BMI and age, postmenopausal women with 
high plasma LDL levels have a higher risk for osteopenia. 
On the contrary, a cohort study (54) conducted in Italy 
showed that both female and male body and buttocks BMD 

Table 2 The predictors for the 3-year incidence risk of OP in 
Chinese male patients.

Intercept and 
variable

Prediction model
β Odds ratio (95% CI) P-value

Intercept –3.279 0.038 (0.012–0.109) <0.001
Age (years)
 ≤50 Reference
 50–70 0.151 1.163 (0.776–1.757) 0.4692
 >70 0.465 1.591 (0.751–3.305) 0.2177
NC (cm)
 <35 Reference
 ≥35 –0.041 0.960 (0.601–1.535) 0.8626
WHtR
 <0.5 Reference
 ≥0.5 –0.061 0.941 (0.570–1.549) 0.8100
BMI (kg/m2)
 <18.5 Reference
 18.5–24 –0.330 0.719 (0.269–1.997) 0.5153
 24–28 –0.742 0.476 (0.158–1.482) 0.1913
 ≥28 –0.468 0.627 (0.187–2.143) 0.4501
TG (mmol/L)
 <1.7 Reference
 1.7–2.3 –0.083 0.921 (0.549–1.524) 0.7511
 ≥2.3 –0.246 0.782 (0.471–1.286) 0.3370
IFG: yes vs no 0.593 1.810 (0.979–3.255) 0.0521
Dyslipidemia:  

yes vs no
–0.295 0.744 (0.492–1.126) 0.1614

Osteopenia:  
yes vs no

3.299 27.094 (18.266–41.272) <0.001

Smoking history: 
yes vs no

0.371 1.450 (1.000–2.116) 0.0519

Strenuous 
exercises:  
yes vs no

–0.998 0.369 (0.135–0.852) 0.0312

IFG, impaired fasting glucose; NC, neck circumference; OP, osteoporosis; 
TG, triglyceride; WHtR, waist-to-height ratio.

Figure 3
Nomogram prediction for the 3-year risk of 
osteoporosis. Predictors contained in the 
prediction nomogram included age, NC, WHtR, 
BMI, TG, IFG, dyslipidemia, osteopenia, smoking 
history, strenuous exercises. NC, neck 
circumference; WHtR, waist-to-height ratio;  
TG, triglyceride; IFG, impaired fasting glucose.
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Figure 4
Receiver operating characteristic curve, clinical 
decision curve analysis, and calibration curves. (A) 
ROC curve of the predictive OP risk nomogram. The 
y-axis represents the TPR of the risk prediction, the 
x-axis represents the FPR of the risk prediction. The 
blue line represents the performance of the 
nomogram. (B) DCA curve of the predictive OP risk 
nomogram. The y-axis represents the net benefit. 
The thick solid line represents the assumption that 
no patients have OP, the thin solid line represents 
the assumption that all patients have OP, the blue 
line represents the OP risk nomogram. (C) 
Calibration curve of the predictive OP risk 
nomogram. The y-axis represents actual diagnosed 
cases of OP, the x-axis represents the predicted risk 
of OP. The diagonal dotted line represents a perfect 
prediction by an ideal model, the solid line 
represents the predictive power of the actual model, 
with the results indicating that a closer fit to the 
diagonal dotted line represents a better prediction. 
ROC, receiver operating characteristic; DCA, decision 
curve analysis; OP, osteoporosis; TPR, true positive 
rate; FPR, false positive rate.
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were closely related to blood lipids. HDL-C was negatively 
correlated with BMD, while TG, TC, and LDL-C were 
positively correlated with BMD. The study of Loke et  al. 
(55) found that in female patients, HDL-C and BMD were 
positively correlated, while in males, the opposite was true. 
In this study, we found that patients with dyslipidemia and 
high TG levels had a reduced risk for OP. It is worth noting 
that patients with abnormal blood lipid profiles are often 
accompanied by higher BMI levels. The positive effects of 
mechanical pressure may conceal the relationship between 
blood lipids and BMD (56). Therefore, when analyzing 
the relationship between blood lipid profiles and OP, BMI 
should be considered.

IFG and OP

At present, controversies abound regarding the 
relationship between T2DM and BMD. Some studies 
(57, 58, 59, 60) suggest that type 2 diabetes is associated 
with low BMD; a few report normal BMD; a few report 
increased BMD. Our study found that patients with 
impaired fasting blood glucose had an increased risk for 
OP. A study (61) from Japan reported that in elderly men 
in the community, there was a linear correlation between 
high blood sugar and increased fracture risk. Maddaloni 
et al. (62) found that serum osteocalcin levels negatively 
correlated with HbA1c, indicating that poor blood glucose 
control would affect osteoblast functionality. A study 
from Parajuli et al. (63) also found that hyperglycemia can 
damage bones and mechanical load response. Therefore, 
actively controlling blood sugar has a positive effect on 
preventing OP.

Exercise, smoking, and OP

Multiple studies (64, 65, 66, 67) have confirmed that 
exercise is beneficial to health, including reducing falls and 
fractures. The meta-analysis from Zhao et al. (64) found that 
combined exercise intervention was effective in preventing 
bone density loss in postmenopausal women, and another 
from Xu et al. (65) showed that lifelong exercise for different 
ages was an effective way to maintain bone health in girls 
and women. The aforementioned studies (64, 65, 66, 
67) were limited to female patients. The research from 
Wainstein et  al. (68) found that regular physical activity 
might improve BMD in men. Another study from Korea 
(69) also found that appropriate exercise might decrease 
the risk for low BMD in elderly men, which is consistent 
with our study. Our research has found that weight-bearing 
exercise can prevent male OP to a certain extent. It should 

be noted that for some patients, such as patients with 
diabetic peripheral neuropathy, exercise can increase the 
risk of falls. Therefore, doctors should formulate targeted 
health plans based on the risks to each patient individually. 
There is no doubt that smoking is harmful to the body. 
Most evidence (36, 37) suggests that smoking can reduce 
BMD in women and men, thereby increasing the risk of OP, 
which is consistent with our study.

Limitations

However, this paper still has the following shortcomings: 
First, QUS was used to measure bone density in this study, 
instead of DXA, the gold standard for diagnosing OP. But 
QUS has several advantages, such as portability, low cost, 
and ease of operation, making it more suitable for large 
epidemiological investigations. Secondly, the definition 
of OP and osteopenia in our study refers to the diagnostic 
criteria of WHO. Obviously, this will reduce the accuracy 
of diagnosis. Therefore, the BMD estimated by calcaneal 
QUS is suitable for the construction of predictive models 
rather than diagnostic models. In addition, patients 
diagnosed with OP by QUS of the calcaneus need to be 
further clarified by DXA in future research. Thirdly, model 
validation is achieved through bootstrapping validation in 
internal validation, which needs to be verified by external 
validation in future research.

Conclusion

Global research on OP primarily focuses on female 
patients, while there are few studies on male patients. 
Our study established a highly accurate nomogram to 
predict the 3-year incidence risk of OP in male patients. By 
assessing individual risks, clinicians can formulate effective 
interventions for patients and provide health education 
according to their lifestyles, diets, and exercise patterns.
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