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ABSTRACT

Several recent studies have portrayed DNA methy-
lation as a new player in the recruitment of tran-
scription factors (TF) within chromatin, highlighting
a need to connect TF binding sites (TFBS) with their
respective DNA methylation profiles. However, cur-
rent TFBS databases are restricted to DNA bind-
ing motif sequences. Here, we present MethMotif, a
two-dimensional TFBS database that records TFBS
position weight matrices along with cell type spe-
cific CpG methylation information computed from a
combination of ChIP-seq and whole genome bisul-
fite sequencing datasets. Integrating TFBS motifs
with TFBS DNA methylation better portrays the fea-
tures of DNA loci recognised by TFs. In particular,
we found that DNA methylation patterns within TFBS
can be cell specific (e.g. MAFF). Furthermore, for a
given TF, different DNA methylation profiles are asso-
ciated with different DNA binding motifs (e.g. REST).
To date, MethMotif database records over 500 TF-
BSs computed from over 2000 ChIP-seq datasets in
11 different cell types. MethMotif portal is accessi-
ble through an open source web interface (https:
//bioinfo-csi.nus.edu.sg/methmotif) that allows users
to intuitively explore the entire dataset and perform
both single, and batch queries.

INTRODUCTION

Nowadays, DNA methylation is recognised as a key compo-
nent in numerous biological mechanisms such as gene reg-
ulation, RNA splicing, nucleosome positioning and tran-
scription factors (TF) binding dynamics (1). Until recently,

it has been well accepted that the writing of a methyl group
into a cytosine can prevent TF binding events. Indeed,
methylation within the binding site of the insulator-binding
protein CTCF abrogates its DNA binding ability, resulting
in imprinted expression of H19 and Igf2 (2). Similarly, AP-1
and SP1 interactions with DNA can be inhibited by methy-
lating the CpGs adjacent to their respective DNA binding
sites (3, 4). Nonetheless, this rule is not universal. Accumu-
lating evidence during the last few years has shown that nu-
merous TFs require methylated DNA to bind to their mo-
tifs, whereas other TFs bind to DNA regardless the methy-
lation status (5–9). For example, Hu et al. characterised 41
methylated-DNA binding proteins among 1321 tested TFs
using a protein microarray-based approach (8). More re-
cently, by using methylation-sensitive systematic evolution
of ligands by exponential enrichment (SELEX), Yin et al.
segregated 519 TFs into five groups based on their bind-
ing strength to methylated DNA sequences (9). The first
group includes 175 TFs whose binding activities are en-
hanced by methylated DNA; the second group contains
117 TFs whose binding abilities are compromised by DNA
methylation; the third group is composed of 33 TFs that
bind to DNA regardless the methylation status; the fourth
group encompasses 25 TFs whose binding activities are dif-
ferently affected by DNA methylation depending on dif-
ferent sub-motifs or different CpG sites in the same motif;
and finally, the last group of TFs (169) does not contain
any CpG site within their motifs. These systematic in vitro
studies have unveiled the disparate mechanisms involved in
TFs/DNA interactions with DNA methylation being a key
leverage in this process. However, it has been shown that
only a small fraction of TF binding sites (TFBS) found in
vitro can be validated in vivo (10), due to a more complex
and crowded nuclear environment involving the chromatin
structure and non-DNA molecules such as RNAs, histones
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and non-histone proteins (11). Therefore, further efforts are
required to characterise the methylation status of TFBS in
the cell context.

Most of the current TFBS databases such as JASPAR
(12), HOCOMOCO (13) and GTRD (14) provide TFBS
motifs derived from in vivo ChIP-seq datasets. Neverthe-
less, none of these databases have combined TFBS motifs
with a precise depiction of their respective DNA methyla-
tion profiles yet. This is the reason why we have developed
MethMotif (Methylation in Motif), a TFBS database that
combines both position weight matrices (PWM), and DNA
methylation profiles, in a cell specific manner.

MATERIALS AND METHODS

Data collection and pre-processing

Raw ChIP-seq datasets (fastq files) in different cell types
were downloaded from ENCODE consortium and GEO
databases (Figure 1A, Table 1). After read quality checking
with FastQC (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/) and read trimming when required, using
Trimmomatic (15), short reads were aligned to the human
genome assembly hg38, using STAR (16) with the spliced
function blocked, for its speedy and accurate aligning per-
formance (BioRxiv: https://doi.org/10.1101/053686). Re-
lying upon the Irreproducibility Discovery Rate (IDR)
pipeline (17), TF genomic occupancy regions with high con-
sistency in replicates were called by MACS2 (18) using de-
fault parameters.

We took advantage of Whole Genome Bisulfite Sequenc-
ing (WGBS) datasets to measure the genome-wide DNA
methylation levels in each cell type at the CpG resolution.
WGBS datasets were obtained from ENCODE consortium
and GEO databases (Table 2). Raw datasets underwent read
quality check using FastQC, as well as quality and adapter
trimming using Trim Galore. High quality short reads were
aligned to hg38 using Bowtie2 with Bismark (v0.16.3) and
default parameters (19,20). Methylation states in CpG con-
text were extracted with the Bismark methylation extractor
module. Whenever their correlation coefficients were con-
firmed over 0.8, as recommended by ENCODE standards,
WGBS datasets with biological replicates were merged to
increase the sequencing coverage using methylKit (21).

In house WGBS data generation

We complemented the existing published datasets from EN-
CODE and GEO by generating a WGBS of the HCT116
cell line (human colorectal carcinoma). HCT116 cells were
grown in RPMI 1640 medium with 10% FBS. The DNA
was extracted using Qiagen DNeasy Blood & Tissue Kits.
After sample DNA testing, negative control DNAs were
added into the initial DNA pool, and then fragmented into
a 200–300 bp range using Covaris S220. Next, terminal re-
pairing, A-ligation, methylation sequencing adapters liga-
tion were performed on DNA fragments. Then, DNA frag-
ments underwent a bisulfite treatment using the EZ DNA
Methylation Gold Kit from Zymo Research. Library con-
centration was firstly quantified by Qubit 2.0, before a dilu-
tion to 1 ng/ul followed by insert size verification using the
Agilent Bioanalyzer 2100 and qPCR. Finally, the library

was paired-end sequenced using the Illumina HiSeq 4000.
Raw and processed data are available through the GEO por-
tal under the accession number GSE118030. We will use
this GEO SuperSeries ID for sharing our future in-house
datasets.

Profiling the DNA methylation landscapes surrounding EN-
CODE ChIP-ed protein binding regions

Integrative analyses of ChIP-seq and WGBS datasets were
performed to profile DNA methylation landscapes sur-
rounding the genomic occupancy regions across all EN-
CODE ChIP-ed proteins. For each DNA binding protein,
methylation scores (beta scores) (22) of CpGs within ±100
bp surrounding peak summits were collected using the in-
tersectBed module of bedtools (23). For each cell type, the
distributions of the collected CpG methylation scores across
all ChIP-ed proteins were shown in a heatmap, and proteins
were clustered into different groups based on their DNA
methylation landscapes surrounding their binding regions,
using hierarchical clustering with the Euclidean distance.
This representation allows us to classify ENCODE ChIP-ed
proteins according to the DNA methylation levels of their
respective binding loci (Figure 1B).

Characterisation of DNA methylation levels within TFBS

We employed the MEME-ChIP package with the default
parameters to identify TF motifs in ±100 bp surrounding
TF peak summits (24). Since the actual binding sites for
the ChIP-ed TFs are prone to central enrichment and max-
imum probability in occurrence at peak centres (25), each
TF motif was determined based on its centrally enriched
propensity profiled by CentriMo from the MEME-ChIP
package. Then, the exact TF binding sites were localised us-
ing the FIMO module, while the methylation states of CpGs
within the binding motif were assessed based on the WGBS
dataset using the intersectBed module from bedtools (23).

In order to intuitively exhibit the DNA methylation levels
within all TFBSs, we adopted a novel MethMotif logo com-
bining the classical motif logo commonly used, with a cu-
mulative bar chart describing the methylation level of each
CpG present in the motif (Figure 1C, D). CpG methyla-
tion scores were segregated into three interval groups: (i)
methylation scores <10% (i.e. homogenously hypomethy-
lated); (ii) methylation scores >90% (i.e. homogenously hy-
permethylated) and (iii) methylation scores ranging from
10% to 90% (i.e. heterogeneously methylated). We utilised
WebLogo3 (26) to generate the motif logo, while the bar
chart above the motif logo describing the methylation score
was generated using a custom R script. While the usage of
stringent methylation score thresholds prevents mis-scoring
DNA methylation in TFBS due to cell heterogeneity, a
more direct genome-wide investigation by sequential ChIP-
bisulfite sequencing (ChIP-BS-seq) (27) will be necessary to
validate these methyl-TFBS characteristics.

Web interface

A web-based interface has been established at https://
bioinfo-csi.nus.edu.sg/methmotif allowing an intuitive ex-
ploration of our datasets and facilitating queries to the
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Figure 1. Construction of MethMotif database. Integrative analysis of ChIP-seq and WGBS datasets, downloaded from ENCODE and GEO databases,
allows the profiling of the DNA methylation landscapes surrounding transcription factor binding regions in various cell types (A). Firstly, the methylation
levels (beta scores or methylation scores) of CpGs located within all ChIP-ed protein peak regions are captured over the 200 bp surrounding peak summits.
The distribution of the corresponding CpG methylation scores is then profiled in a heatmap for each cell type, to present the DNA methylation levels
surrounding peak regions across all ChIP-ed proteins (methylation score less than 10% is defined as homogenously unmethylated, while methylation score
more than 90% is regarded as homogenously hypermethylated). These heatmaps are accessible from the ‘Explore’ section of the MethMotif website (B).
Finally, the direct binding motifs of sequence-specific TFs are identified. The DNA methylation level within TFBS is captured and shown in a MethMotif
logo. MethMotif logos are collected in ‘MethMotif database’ section of the MethMotif website (C). The methylation levels within each logo can be displayed
according to three states: (i) all methylation levels compiled, (ii) methylated only and, (iii) unmethylated only (D).
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Table 1. ChIP-seq datasets used in MethMotif database

Cell ID Organism Cell type/tissue
Number of ChIP-seq
experiments Source Download date

HeLa-S3 Human Cervix 57 ENCODE 20 August 2017
HEK293 Human Kidney 199 ENCODE 12 March 2018
IMR-90 Human Lung 15 ENCODE 26 March 2018
SK-N-SH Human Brain 30 ENCODE 26 March 2018
A549 Human Lung 42 ENCODE 26 March 2018
K562 Human Blood 279 ENCODE 2 April 2018
HepG2 Human Liver 138 137-ENCODE,

1-GEO
7 April 2018

GM12878 Human Blood 143 ENCODE 12 April 2018
MCF-7 Human Breast 99 ENCODE 13 April 2018
H1-hESC Human Stem cell 65 ENCODE 16 April 2018
HCT116 Human Colorectum 22 ENCODE 16 April 2018

Table 2. WGBS datasets used in MethMotif database

Cell ID Organism Cell type/tissue Source ID Release date

HeLa-S3 Human Cervix GSM2175341 30 January 2017
HEK293 Human Kidney GSM1254259 11 December 2015
IMR-90 Human Lung ENCSR888FON 31 July 2013
SK-N-SH Human Brain ENCSR145HNT 13 December 2017
A549 Human Lung ENCSR481JIW 4 December 2017
K562 Human Blood ENCSR765JPC 22 March 2016
HepG2 Human Liver ENCSR881XOU 13 October 2015
GM12878 Human Blood ENCSR890UQO 23 February 2016
MCF-7 Human Breast GSM1328112 3 July 2014
H1-hESC Human Stem cell ENCSR617FKV 13 October 2015
HCT116 Human Colorectum GSM3317488 10 August 2018

database. Users can freely access MethMotif via these three
modes:

1. ‘Motif database direct query’. Like many TFBS web-
servers, MethMotif includes a search engine that allows
users to query any DNA binding protein present in our
database using either its official gene name or its Meth-
Motif ID (see an example of MethMotif ID in Figure
1C). Queries can be refined by selecting a given cell line
or tissue of interest. Query results include the Meth-
Motif logo, information about the cell type, ChIP-seq
and WGBS assays, as well as motif distributions, motif
locations and downloadable processed files (PWM and
methylation matrices), along with links to JASPAR 2018
and HOCOMOCO (Figure 1C and D).

2. ‘Explore’. Users can intuitively explore all DNA bind-
ing proteins available in the released cell types in our
database via dynamic heatmaps that classify each protein
according to its CpG methylation pattern in a ±100 bp
window surrounding ChIP-seq peak summits. Details
about any DNA binding protein of interest can be easily
obtained by hovering over the corresponding heatmap’s
row (Figure 1B). To date, we have made available 11 dy-
namic heatmaps corresponding to the 11 analysed cell
types. The heatmap dynamic interface takes advantage
of InCHlib, an open source interactive JavaScript library
(28).

3. ‘Batch query’. MethMotif allows users to analyse the oc-
currences of TFBSs along with their respective methyla-
tion states across a given list of genome loci. This func-
tionality is particularly useful to characterise binding
sites for co-factors of a protein of interest, along with

their respective DNA methylation levels. Here, Meth-
Motif generates de novo DNA binding motifs based
only on the sequences that overlap with the input ge-
nomic regions. TFBS methylation profiles are repre-
sented as beeswarm boxplots, where each dot represents
the methylation level of a CpG from a given binding site
in the genome (Figure 2).

Batch query module

The functionality of batch query module implemented in
MethMotif website is achieved by mapping the given list
of genome loci to all TFBS genomic coordinates, together
with their respective CpG methylation scores, in MethMo-
tif database using in-house python scripts. The visible re-
sults, namely beeswarm boxplots and de novo generated
MethMotif logo, are produced using WebLogo3 (26) and
in-house R scripts with the grImport package (29).

Database maintenance

Established ChIP-seq working standards and guidelines in
ENCODE consortium foster reliable ChIP-seq data (17).
Since the beginning of the project, MethMotif database has
been regularly updated with ChIP-seq datasets from EN-
CODE. We plan to further enrich the MethMotif database
by expanding cell types using newly generated WGBS
datasets from ENCODE, GEO and in-house experiments.
Furthermore, we intend to take advantage of the Gene
Transcription Regulation Database (GTRD), which is a
comprehensive compendium of ChIP-seq experiments cov-
ering the existing multiple ChIP-seq databases (14), to ex-
pand the coverage of TFs in MethMotif.
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Figure 2. Workflow of MethMotif Batch Query. MethMotif Batch Query is available via the MethMotif website, which allows users to study the occurrences
of TFBSs along with DNA methylation states in a given list of genomic loci. Users can upload the coordinates of the regions of their interest in BED
format (A). MethMotif database will be queried (B) and the presence of TFBSs together with respective DNA methylation levels is then analysed using
the MethMotif Enrichment Tool (C) in the given regions. If loci from the input regions overlap with any TFBS present in the MethMotif database, the
Batch Query tool will output these overlapped loci along with their respective TFBS DNA methylation information via a beeswarm boxplot (where each
dot represents the methylation level of a CpG site within the TFBS) and a MethMotif logo generated de novo (D).
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RESULTS

MethMotif classifies DNA-interacting proteins according to
DNA methylation profiles

The integration of WGBS with ChIP-seq datasets allowed
us to profile the DNA methylation landscapes surrounding
binding loci of DNA-bound proteins in vivo, at the genome
scale. We employed this strategy to capture the CpG methy-
lation patterns in a ±100 bp window surrounding the peak
summits of ENCODE ChIP-ed proteins with high repro-
ducibility in different cell types (Figure 1A). As described
previously (9), DNA-binding proteins exhibit distinct DNA
methylation levels around their occupancy regions and ac-
cordingly can be classified into different sub-groups (Figure
1B, Supplementary Figure S1). In myelogenous leukaemia
K562 cells, we were able to classify 250 ChIP-ed proteins
based on DNA methylation landscapes around binding re-
gions into three groups (I, high; II, medium and III, low
methylated DNA binding affinity) and one outlier (very
high methylated binding affinity –– ZBTB33) (Supplemen-
tary Figure S1). Notably, our ZBTB33 epigenetic binding
profile corroborates previous in vivo studies performed with
a limited number of loci (30,31), and generalises the ability
of ZBTB33 to bind methylated DNA at the genome scale.
Furthermore, group III includes TFs known to bind specif-
ically to non-methylated DNA such as RUNX1 (32) and
SP1 (4). As shown in the MethMotif website, this distinct
binding propensity to methyl-CpGs among different DNA-
binding proteins is not a unique observation in K562, but a
widespread phenomenon across different cell types.

MethMotif introduces a new dimension to Position Weight
Matrix (PWM)

A key feature of TFs is their ability to bind DNA by
the recognition of a specific DNA motif. However, ChIP-
seq peak regions are not necessarily associated with direct
binding sites (25) and DNA methylation profiling around
all aforementioned peaks may not reflect the influences of
DNA methylation on the recruitment of TFs onto DNA se-
quences. Therefore, we inferred TFBSs by selecting genomic
loci that contained a centrally enriched DNA motif sur-
rounding ChIP-seq centres (25). TFBS was characterised
using the MEME-ChIP package (24) in ±100 bp regions
surrounding peak centres discovered by the IDR pipeline.
This strategy allowed us to capture the DNA methylation
landscape within each TFBS motif. In order to intuitively
illustrate TFBS coupled with DNA methylation, we intro-
duced a novel graphical representation combining a motif-
logo (26) with cumulative bar charts displaying three dif-
ferent DNA methylation levels: (i) homogenously low (less
than 10% sequenced CpGs of a given site are methylated);
(ii) homogenously high (more than 90% of sequenced CpGs
of a given site are methylated) and (iii) heterogeneously
methylated (10–90% sequenced CpGs of a given site are
methylated) (Figure 1C and D). The MethMotif logo rep-
resents these three DNA methylation levels as a cumulative
bar chart where the blue, orange and green colours denote
the proportions of CpGs falling in the group 1, 2 and 3,
respectively. Additionally, we display the number of total
CpGs covered by WGBS on the top of each bar. We believe

that adding an epigenetic dimension to the sequence TFBS
information will improve our understanding of TF binding
dynamics.

Numerous TFs exhibit distinct binding site sequences and/or
distinct binding site methylation profiles across different cell
types

In contrast to pre-existing TFBS databases, MethMotif
records TFBSs computed in a cell specific manner. Our
meta-analysis shows that numerous TFs exhibit either dis-
tinct TFBSs, or distinct DNA methylation profiles, or both,
depending on cell types. Notably, when comparing ChIP-
seq performed in K562 and GM12878 cells, we found
that the basic leucine zipper factor NFE2 has the abil-
ity to bind distinct DNA motifs (Figure 3A). Indeed,
in K562, NFE2 recognises an extended AP-1-like motif,
(T/C/A)GCTGA(C/G)TCA(T/C), while the motif identi-
fied in GM12878 is similar to the USF binding site (Sup-
plementary Figure S2A). Interestingly, both motifs are sup-
ported by the literature. Specifically, NFE2 has been shown
to bind an AP-1-like motif as a heterodimer with MAF fam-
ily members, such as MAFF and MAFK (33); and, in an-
other context, NFE2 was characterised to belong to a com-
plex including USF (34). We were able to corroborate these
facts by using the MethMotif batch query module with all
NFE2 binding sites in K562 and GM12878 cells (Supple-
mentary Figure S2B).

In addition, we found that the length of spacers of leucine
zipper dimers, such as JUN, varies with cell types. For exam-
ple, in hepatocyte carcinoma HepG2 and embryonic stem
cell line H1-hESC, the main motif spacer of JUN is a CG
dinucleotide, while it amounts to only a single base, ei-
ther C or G, in breast cancer MCF-7, lung adenocarci-
noma A549 and myelogenous leukaemia K562 cells (Fig-
ure 3B). Interestingly, the UniProbe TFBS database, which
records in vitro characterised DNA binding sites, contains
another AP-1 leucine zipper TF, JUNDM2 (Jun dimerisa-
tion protein 2), that recognises motifs similar to JUN with
a spacer that can vary from 1 to 2 nucleotides (UniProbe
accession number: UP00103) (35). Such variations in spac-
ers’ size can be explained by different dimerisations of JUN
or JUNDM2 with other TFs (36), or by post-translational
modifications and modified secondary structure.

We further noticed that some TFs have a conserved DNA
motif with distinct DNA methylation profiles across cell
types. This is the case for the leucine zipper MAFF. In K562,
CpGs sites composing the MAFF motif are prone to hy-
pomethylation, while in HeLa-S3 and HepG2, we observed
a significant number of motifs with methylated CpGs (Fig-
ure 3C). To the best of our knowledge, MAFF was not pre-
viously described to play different roles across these cell
lines. However, ChIP-seq results clearly show that MAFF
targets distinct loci, and consequently regulates distinct bi-
ological functions (Supplementary Figure S3).

Finally, a group of TFs such as the zinc finger REST re-
vealed distinct binding profiles at the DNA sequence and
DNA methylation levels. Remarkably, in this specific ex-
ample, changes in DNA methylation levels correlate with
changes in DNA sequence. Indeed, REST is known to
bind a sequence of 6 and 7 conserved nucleotides linked



Nucleic Acids Research, 2019, Vol. 47, Database issue D151

methylation score > 90% methylation score 10%~90% methylation score < 10%

4 2 5 0 1

205

7 68
5 0 1 3 2 14 2 6 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 12 14 16 18

2 4

168

1 1 2 4 0 0

198

8
62

9 0 5 4 4 13 4

11 13 15 17 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

26 0

610

0 0 0 0 0 0

335

0
13311141 60

1 2 3 4 5 6 7 8 9 11 13 15 17 19 21

351

51 27

1109

0 1 19 3 0 3

705

55
307253

39
18299140

203
143103

10 12 14 16 18 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 10 7 0 1

358

18
128

18 0 1 3 9 28 7

1 2 3 4 5 6 7 8 9 11 13 15 17 19 21

22 16

202

2 14 8 16 1 5

253

28
97

14 0 4 5 5 14 8 13 23

10 12 14 16 18 20

1 2 3 4 5 6 7 8 9 10 11

0 0

378

0 0 2 0 0 0

244

6

1 2 3 4 5 6 7 8 9 10 11

16 0

767

0 0 2 0 0 2

367

25

1 2 3 4 5 6 7 8 9 10 11 12

11 0

335

0 0 0 1 0 0

189

7 69 23

13

A549

HEK293

H1-hESC

K562

GM12878

HeLa-S3

HCT116

MCF-7

HepG2

U
nm

et
hy

la
te

d 
co

nt
ex

t
M

et
hy

la
te

d 
co

nt
ex

t

HepG2 H1-hESC

A549 K562MCF-7

A

B

REST

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

51 0 0 0 0

2952

0 0 0 0 5424368 79 53

1 2 3 4 5 6 7 8 9 10 11

11 0 0 0 0

141

0 0 0 0 7

1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0
125

211

1 2 3 4 5 6 7 8 9 10 11

78 53 0 0 0 0 0 0 0 0 36

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

79 46
172

9
122

31 0
67

3 0

306

9 32 20 15K562

1 2 3 4 5 6 7 8 9 10 12 14 16 18

321

33 63

228

44

195

0 0
72 4 0

290

7 32 37 23
88123

11 13 15 17

1 2 3 4 5 6 7 8 9 10 12 14 16 18

167

459

69
164

406

56

412

0 0

137

0 0

442

5 32 16 23
122108

11 13 15 17 19

HepG2

HeLa-S3

MAFF

JUN

C

D

2nt

2nt

1nt
1nt 1nt

2n
t s

pa
ce

r
1n

t s
pa

ce
r

U
nm

et
hy

la
te

d 
co

nt
ex

t

M
et

hy
la

te
d 

co
nt

ex
t

1 2 3 4 5 6 7 8 9 11 13 15 17 19 21

65
5 5

283

3 2 12 5 0 0

317

13
122

14 0 2 0 12 18 7 6

10 12 14 1816 20

SK-N-SH

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

35 45 50 56
3 0 1 0

559

0 0 0 0
67 30

NFE2

GM12878

K562

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

582

0 0
186

0
155

0 0 0 0

319 267196190 79

Figure 3. Distinct motifs and DNA methylation levels in motifs across cell types. Examples of MethMotif logos from the MethMotif database show that
TF binding propensities can be altered in terms of motifs (A and B), DNA methylation levels inside the motifs (C), or even both (D), across different cell
types.



D152 Nucleic Acids Research, 2019, Vol. 47, Database issue

by a 2-nucleotide spacer: CTGTCCNNGGTGCTG (cf.
JASPAR accession number: MA0138.1; HOCOMOCO ac-
cession number: REST HUMAN.H11MO.0.A). Although
this motif is confirmed in A549, GM12878, K562 and H1-
hESC cells, where REST binds unmethylated DNA, we ob-
served that REST requires only the first part of its conserved
motif (CTGTCC) to bind methylated DNA, as shown in
HEK293, HeLa-S3, HCT116, MCF-7 and HepG2 cells
(Figure 3D). It is interesting to note that, in another con-
text, non-CpG methylation facilitates REST binding events
(37).

MethMotif batch query: a case study

MethMotif portal includes a batch query tool which al-
lows users to study the occurrences of TFBSs and their re-
spective DNA methylation states within a given list of ge-
nomic loci. As a proof of concept, we ran MethMotif batch
query using a list of CEBPB binding sites characterised by
a ChIP-seq experiment in HCT116 cells (Supplementary
Data 1). As expected, the most enriched TFBS found by
MethMotif is CEBPB (4846 overlapped occurrences, Figure
2D and Supplementary Figure S4). Furthermore, MethMo-
tif batch query brought to light 12 co-factors that overlap
our input list from 1 to 300 co-occurrences (Supplemen-
tary Figure S4). Results include known CEBPB co-factors
such as ATF3 (300 co-occurrences) (38) and JUND (74 co-
occurrences) (39). Interestingly, only CEBPB binding loci
harbour methylated CpG sites (Supplementary Figure S4).
This observation is in line with its pioneer factor function
(40). Indeed, here we can hypothesise that CEBPB is firstly
recruited within methylated DNA across repressive chro-
matin, and then, once the DNA is demethylated and more
accessible, co-factors are recruited.

DISCUSSION

In contrast to the previously widely accepted assumption,
DNA methylation is not necessarily associated with the
inhibition of TF binding activities (6,8,9). Interestingly,
in some contexts, the recruitment of methyl-CpG specific
binding TF can be abrogated by erasing DNA methylation
using drugs such as 5-aza-2′-deoxycytidine (5-aza-dC) (41).
Therefore, DNA methylation becomes a key event for the
recruitment of certain TFs. As DNA methylation is also
portrayed as an epigenetic mark of cellular memory (42),
we can speculate that this memory requires the recruitment
and/or interaction of specific factors that either inhibit or
prime the chromatin. This is the reason why the investiga-
tion of methyl-TFBS has to be done in vivo and in a cell
specific manner. MethMotif brought to light that, for given
factors, TFBSs can vary according to the DNA methylation
patterns.

The DNA binding ability regardless of DNA methylation
is a reminiscence of pioneer factors, which form a specific
class of TFs required and sufficient to trigger enhancer com-
petency (43). MethMotif is able to detect this capacity for
some pioneer factors such as CEBPA (44) and CEBPB (40).
Moreover, numerous zinc finger proteins have been charac-
terised with methyl-DNA recognition ability (45,46). With
MethMotif, we can systematically reveal that occupancy at

methylated cytosine by zinc finger proteins is not a sporadic
event but a widespread phenomenon. Interestingly, the po-
sition weight matrices encompassing methylated CpGs are
inclined to be specifically enriched in TpG dinucleotide at
the same position, corroborating the fact that a methylated
cytosine base structurally resembles a thymine (47) (Supple-
ment Figure S5).

Identification of methyl-cytosine binding TFs by Meth-
Motif is the initial but crucial step to study the crosstalk be-
tween TFs and DNA methylation. While we provide com-
pelling evidence that numerous TFs bind differentially to
methylated and non-methylated DNA, ChIP-BS-seq exper-
iments (27) will be required to confirm these interactions.
Nonetheless, the current version of MethMotif remains a
valuable resource for guiding researchers in the usage of
ChIP-BS-seq as an alternative to ChIP-seq for studying
methyl-binding TFs.

In conclusion, MethMotif complements current TFBS
databases by integrating DNA methylation as a new epi-
genetic dimension with TFBS, thereby providing a useful
resource for the study of DNA methylation and TF recruit-
ment dynamics.
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