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Abstract
The stress inducible transcription factor, NF-κB induces genes involved in proliferation and
apoptosis. Aberrant NF-κB activity is common in cancer and contributes to therapeutic-resistance.
Poly(ADP-ribose) polymerase-1 (PARP-1) is activated during DNA strand break repair and is a
known transcriptional co-regulator. Here, we investigated the role of PARP-1 function during NF-
κB activation using p65 siRNA, PARP siRNA or the potent PARP-1 inhibitor, AG-014699.
Survival and apoptosis assays showed that NF-κB p65−/− cells were more sensitive to ionizing
radiation (IR) than p65+/+ cells. Co-incubation with p65 siRNA, PARP siRNA or AG-014699
radio-sensitized p65+/+, but not p65−/− cells, demonstrating that PARP-1 mediates its effects on
survival via NF-κB. Single strand break (SSB) repair kinetics, and the effect SSB repair inhibition
by AG-014699 were similar in p65+/+ and p65−/− cells. Since preventing SSB repair did not radio-
sensitize p65−/− cells, we conclude that radio-sensitization by AG-014699 is due to downstream
inhibition of NF-κB activation, and independent of SSB repair inhibition. PARP-1 catalytic
activity was essential for IR-induced p65 DNA binding and NF-κB-dependent gene transcription,
whereas for TNF-α treated cells, PARP-1 protein alone was sufficient. We hypothesize that this
stimulus-dependent differential is mediated via stimulation of the Poly(ADP-ribose) polymer,
which was induced following IR, not TNF-α. Targeting DNA-damage activated NF-κB using
AG-014699 may therefore overcome toxicity observed with classical NF-κB inhibitors without
compromising other vital inflammatory functions. These data highlight the potential of PARP-1
inhibitors to overcome NF-κB-mediated therapeutic resistance and widens the spectrum of cancers
in which these agents may be utilized.
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INTRODUCTION
The stress-inducible transcription factor, NF-κB is known to regulate genes involved in
apoptosis, cell proliferation, angiogenesis and metastasis. NF-κB is the heterodimeric
complex of Rel family proteins (p50, p52, p65, c-Rel and Rel B) that is held inactive in the
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cytoplasm through its interaction with inhibitor κB (IκB) proteins. Upon stimulus, by DNA
damage or inflammatory cytokines, the canonical pathway of NF-κB activation is induced.
Briefly, signaling cascades converge at the inhibitor of kappa-B kinase (IKK) complex
which phosphorylates IκBα, targeting this for degradation and promoting nuclear
translocation of the p65/p50 heterodimer, activating transcription of many genes, including
the anti-apoptotic Bcl-XL and XIAP. (Ghosh and Karin, 2002).

Constitutively active NF-κB is common in many cancers and leukemia (Basseres and
Baldwin 2006) and has been shown to be associated with a poor prognosis in CLL
(Hewamana et al. 2009). Aberrant NF-κB activation correlates with increased metastatic
potential, more rapid disease progression, a higher proportion of tumor recurrence and
therapeutic resistance (Prasad et al., 2009). Cellular NF-κB activity is known to be induced
by varying doses of ionizing radiation (IR) and this differential is likely to be both cell type
and tissue specific (Brach et al., 1991; Criswell et al., 2003). DNA damage-activated NF-κB
induces anti-apoptotic genes, thereby inhibiting apoptosis (Barkett and Gilmore, 1999;
Wang et al., 1998). Aberrant NF-κB contributes to radio- and chemo-resistance in breast
tumors (Biswas et al., 2001; Wu and Kral, 2005) and loss or inhibition of NF-κB has been
shown to chemo- or radio-sensitize in many different tumour types (Hewamana et al. 2008a
and b, Criswell et al., 2003; Jung and Dritschilo, 2001; Russo et al., 2001). However, is it
important to note that the dose of IR required to active NF-κB may be cell type or tissue-
dependent. For example, Brach et al., (1991) showed that the clinically relevant dose of 2
Gy could induce NF-κB activation in the myeloid cell line, KG-1. Furthermore, in the EBV-
transformed 244B human lymphoblastoid cell line, 0.5 Gy IR was shown to activate NF-κB
activation (Sahijdak et al., 1994). Whereas, other studies, such as Stilmann et al. (2009),
used hyper-lethal doses, of 80 Gy when inducing an NF-κB response.

Thus, inhibition of NF-κB represents a potential therapeutic strategy in cancer, and there are
a number of inhibitors targeting various pathway components in development. These include
inhibitors of the IKK complex, such as Parthenolide or proteosomal inhibitors like
Bortezomib which may prevent degradation of IκB. (Gilmore and Herscovitch 2006). A
novel strategy may be to inhibit DNA damage induced NF-κB activity to overcome toxic or
off-target effects often encountered with IKK or proteosmal inhibitors. Here we describe a
novel function for the Poly(ADP-ribose) polymerase (PARP) inhibitor, AG-014699,
developed at Newcastle University in collaboration with Pfizer, in specifically inhibiting
DNA damage induced NF-κB activity.

PARP-1 is a nuclear enzyme which modulates the cellular response to DNA damage (Smith,
2001) and we have previously shown that PARP-1 acts as a sensor for both single and
double stranded DNA breaks in response to IR (Veuger et al,. 2003). More recently, there is
evidence for a role of PARP-1 in the co-regulation of transcription factors. This may be via
through local modification of chromatin structure (Althaus et al., 1994) and/or modulation
of transcription factor activity via direct binding to gene regulating sequences, or physical
interactions with proteins including transcription factors including Oct-1, NF-κB, AP-1 and
HIF-1α (Kraus and Lis, 2003; Martin-Oliva et al., 2006). We have previously demonstrated
that PARP-1 activity is vital for NF-κB activation following IR using panel of breast cancer
cell lines and the small molecule inhibitor of PARP-1, AG-14361 (Veuger et al. 2009).

The role of PARP-1 catalytic activity in the activation of NF-κB is somewhat contentious,
and is likely to be mainly dependent on stimulus, but also on cell type (Hassa et al., 2001;
Hassa and Hottiger, 1999; Oliver et al., 1999). In this study, we have tested this by
comparing two canonical activators of NF-κB, IR and TNF-α. TNF-α is a cytokine released
during the immune response which is capable of initiating both death receptor-mediated cell
death and canonical activation of the NF-κB (Clevers, 2004). We illustrate that PARP-1 is
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differentially required in the induction of NF-κB, and this is dependent on the ability of the
stimuli to activate the Poly(ADP-ribose) (PAR) polymer. To this end, the recent work of
Stilmann et al. describes the formation of a PARP-1 signaling scaffold via direct protein-
protein interactions with NEMO, PIASγ and ATM in response to DNA damage. This
signalosome formation requires binding with the PAR polymer and leads to pro-survival
NF-κB activation (Stilmann et al., 2009).

The potent and specific PARP-1 inhibitor, AG-014699 has been used in Phase I and II
clinical trials for solid tumours in combination with standard chemotherapeutics and also as
a standalone treatment. (Plummer et al., 2008). Studies have also shown that AG-014699
enhances tumor regression in xenograft models (Daniels et al., 2009). However the effect of
this agent upon NF-κB transcriptional activity remains undetermined. Here we show, by
using AG-014699 and siRNA targeting NF-κB p65 and mouse embryonic fibroblasts
(MEFs) proficient and deficient for NF-κB p65, that inhibition of PARP-1 positively
modulates the apoptotic response to IR. Strikingly, we show that radio-sensitization by
PARP-1 inhibition is exclusively due to inhibition of NF-κB and not due to the prevention
of DNA repair. We also illustrate that PARP-1 is differentially required in the induction of
NF-κB, and this is dependent on the activation stimulus and the ability of such stimuli to
activate the PAR polymer.

RESULTS
Characterisation of cell lines

We have previously confirmed, using Western analyses the p50, p65, and PARP-1 status in
all the cell lines. Briefly, the knock out MEFs lacked the relevant proteins, whilst showing
bands of similar intensity for the other proteins (Veuger et al., 2009). PARP-1 activity is
very similar in PARP+/+, p65+/+ and p65−/− MEFs and very low (< 5%) in the PARP-1−/−

MEFs used here (Veuger et al., 2009). Transient transfection of 50nM p65 siRNA resulted
in knockdown of p65 protein, and this was maximal (95% reduction) by 48 h (Figure 1A),
and persisted up to 72 h. Similarly transfection of 50nM PARP-1 siRNA (Figure 1A)
resulted in approximately 75% protein knockdown at 48 h, and this persisted up to 72 h.
Non-specific (NS) siRNA had no effect on protein expression.

To confirm PARP knockdown and specificity of AG-104699, PARP activity was assessed in
p65+/+ and p65−/− MEFs following transfection with PARP-1 or p65 siRNA, or following
treatment with AG-014699 (Figures 1C and 1D). A combination of p65 siRNA and
AG-014699 was also assessed. Cells treated with AG-014699, or a combination of
AG-014699 and p65 siRNA exhibited very low (< 5%) PARP activity (p=0.03 and p=0.02
respectively, compared with NS siRNA controls). PARP-1 siRNA exhibited 25% PARP
activity compared with controls (p=0.004), in both cell lines, which confirms Western
analysis. siRNA targeting p65 does not have any significant effect on PARP-1 activity in
either cell line, when compared with NS siRNA controls. It must be noted that there appears
to be some effect when comparing NS siRNA with Mock treated controls. Other groups
have documented effects on cellular processes including cell viability, proliferation, cell
cycle distribution, apoptosis, and migration (Jackson and Linsley, 2004, Tschahatganeh,
2007). We suggest here that this could perhaps to due to the increased nucleic acid ratio in
NS siRNA treated cells versus Mock transfected controls, causing the cells some stress.

Radio-sensitization by p65 knockdown, PARP-1 knockdown or AG-014699 is associated
with the induction of apoptosis

We investigated the ability of p65 knockdown, PARP-1 knockdown or AG-014699 to
sensitize p65+/+ and p65−/− MEFs, and PARP-1+/+ and PARP-1−/− MEFs to IR using colony
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forming assays. We also assessed a combination of p65 siRNA and AG-014699. In our
previous study PF50 values illustrated that the p65−/− MEFs were 1.3-fold more sensitive to
IR alone compared with p65+/+ MEFs (Veuger et al., 2009) (Figure 2A versus B). This is
consistent with NF-κB conferring radio-resistance (Biswas et al., 2001; Wu and Kral, 2005).
Here we show that, co-incubation with either AG-014699, p65 siRNA or PARP-1 siRNA
radio-sensitized p65+/+ MEFs 1.4-fold compared to mock-transfected cells treated with IR.
Significantly, a combination of p65 siRNA and AG-014699 showed no further sensitization
(Figure 2A). Markedly, these treatments had no effect in p65−/− MEFs (Figure 2B).
PARP-1−/− MEFs were 2.7-fold more sensitive to IR compared with PARP-1+/+ MEFs
(Figure 2C versus D). PARP-1+/+ MEFs exhibited a 1.3-fold sensitization to IR by
AG-014699, p65 knockdown or PARP-1 knockdown, compared with IR alone controls
(Figure 2C).

We have also repeated these colony forming assays with IR alone, or in combination with
AG-014699, in p65−/− cells that had been genetically complemented with wild-type (WT)
p65, and in relevant control cells (Supplementary Figures 1B and 1C). Together with the
data in Figures 1A and 1B, the results from the reconstituted cells confirm that AG-014699
radio-sensitized cells containing WT p65 but not the p65 null cells.

To assess the effects on apoptosis, we used FITC-conjugated Annexin V which has a high
affinity for membrane phospholipid phosphatidylserine. Firstly, we found that p65−/− MEFs
have a 3-fold higher intrinsic levels of apoptosis following IR, compared with p65+/+ (33.73
± 3.1 for p65−/− versus 12.60 ± 2.7 for p65+/+, Data not shown). This is consistent with
reports that NF-κB activation increases survival following DNA damage (Criswell et al.,
2003, Russo et al., 2001, Wang et al., 1996). We then measured the levels of apoptosis
following IR (2 Gy or 5 Gy) and either p65 knockdown or AG-014699 in p65+/+ and p65−/−

MEFs (Figure 2E versus F). We also assessed a combination of p65 siRNA and AG-014699
(Figure 2E). Compared to IR alone (mock), both p65 knockdown and AG-014699
significantly increased apoptosis following IR (approx 2.5-fold) in the p65+/+ MEFs (p=0.03
and p=0.04 respectively). Importantly, when AG-014699 was used in conjunction with p65
knockdown, there was no change in the level of apoptosis in the p65+/+ MEFs, compared to
either agent alone. No increase in apoptosis was seen in the p65−/− MEFs (Figure 2F) with
any of the treatments, compared with IR alone. This data was confirmed using a caspase
activity assay (Promega, Southampton, UK), (data not shown.)

AG-014699 inhibits Single strand break (SSB) repair to a similar extent regardless of
cellular NF-κB status

The alkaline Comet assay was used to examine IR-induced SSB formation and repair at the
individual cell level. The kinetics of repair were assessed in the p65+/+ and p65−/− cell lines
(Figures 3C and 3D). Figure 3 shows that immediately following 10 Gy IR, both cell lines
had the same initial level of SSBs. There was no significant difference in the SSB levels
remaining in the two cell lines 60 min post-IR, with > 85 % of breaks rejoined despite the
difference in radio-sensitivity. Importantly, AG-014699 inhibited SSB repair (as
demonstrated by increased residual SSB levels at all time-points post-IR) to the same extent
in both cell lines (Figure 3A versus Figure 3B). Furthermore, we repeated these experiments
in p65−/− cells that had been genetically complemented with WT p65, and also in p65 null
controls. Importantly, we found that both the SSB repair kinetics and the extent of SSB
inhibition by AG-014699 were very similar in both cell lines (Figure 3E versus Figure 3F).
For all Comet assays, percentage tail DNA is shown in supplementary figure 2.
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PARP activity is essential for NF-κB activation following IR, not TNF-α
We investigated the ability of p65 to bind with its consensus sequence following either IR or
TNF-α in p65+/+ or p65−/− MEFs. It was determined that 2 h post either stimuli p65 DNA
binding activation was maximal (Supplementary Figures 3C and 3D). Binding was
specifically competed out by excess wild type oligonucleotide, and unaffected by co-
incubation with excess mutant oligonucleotide (data not shown). 10 Gy IR increased DNA
binding activity 2-fold compared with Mock treated p65+/+ cells (Figure 4A). Also, siRNA
targeting p65 or a combination of p65 siRNA and AG-014699 reduced DNA binding > 85%
following IR in p65+/+ cells (p=0.008 and p=0.009, compared to IR alone, respectively).
PARP-1 siRNA inhibited DNA binding by approximately 60% (p= 0.03, compared to IR).
Significantly, AG-014699 also reduced IR-induced DNA binding to levels comparable with
untreated controls (p=0.05, compared to IR). Non-specific siRNA had no effect on DNA-
binding following IR. 10 ng/μl TNF-α increased p65 DNA binding activity 2.3-fold
compared with Mock treated p65+/+ cells. p65 siRNA or a combination of p65 siRNA and
AG-014699 reduced DNA binding to levels relative to Mock treated controls, following
TNF-α (p= 0.009 and p=0.007, compared to TNF-α alone, respectively). Importantly,
PARP-1 siRNA also reduced DNA binding 25% after TNF-α treatment (p=0.02, compared
to TNF-α). In marked contrast, AG-014699 had no effect on p65 DNA binding following
TNF-α. Negligible p65 DNA binding activity was seen after any treatments in the p65−/−

cells with either IR or TNF-α (data not shown).

In order to assess the role of PARP-1 on NF-κB-dependent reporter gene transcription
following IR or TNF-α, a luciferase reporter assay was used. Luciferase activity was found
to be maximal 8 h post- IR or TNF-α treatment, and also to be dose-dependent in p65+/+

MEFs (data not shown). Consistent with the increased DNA binding, following either 10 Gy
IR or 10 ng/μl TNF-α, luciferase activity was increased 2- and 2.5-fold respectively,
compared to Mock treated controls (Figure 4B). Also, siRNA targeting p65 or a combination
of p65 siRNA and AG-014699 reduced luciferase activity > 80% following IR (p=0.008 and
p=0.007, respectively) or TNF-α (p=0.02 and p=0.03, respectively) in p65+/+ cells. PARP-1
siRNA inhibited luciferase activity by approximately 70%, following either stimulus
(p=0.01 compared to IR, p=0.04 compared to TNF-α). Significantly, AG-014699 also
reduced IR-induced luciferase reporter activity to levels comparable with untreated controls
(p=0.02). However, AG-014699 had no effect on luciferase activity following TNF-α
compared with TNF-α alone, consistent with other reports (Hassa et al., 2001). We have
also previously shown that constitutive luciferase expression was about 10-fold lower in
PARP-1−/− MEFs compared with PARP-1+/+ MEFs, and that IR failed to activate gene
transcription in the PARP-1−/− MEFs, but clearly stimulated luciferase expression in the
PARP-1+/+ MEFs (Veuger et al., 2009).

Furthermore, we show here that nuclear translocation of p65 in the p65+/+ MEFs observed 2
h after IR or TNF-α (Figures 4C and D), was unaffected by AG-014699 or PARP-1
siRNA.Cytoplasmic controls are shown in Supplementary Figures 3A and 3B.

IR, not TNF-α stimulates PAR polymer formation
The induction of PARP activity, by formation of the PAR polymer was determined using a
validated assay (Plummer et al 2005, Zaremba et al., 2009). It is well documented that IR
stimulates PARP activity, and consistent with that we show here that IR-induces PAR
polymer formation in a dose-dependent manner in p65+/+ MEFs (Figure 4E). However, we
found that, at a range of doses (5 - 50 ng/μl), TNF-α fails to stimulate PAR formation
compared to basal levels in p65+/+ MEFs (Figure 4F).
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Persistence of NF-κB DNA binding following PARG inhibition
Poly (ADP-ribose) glycohydrolase (PARG) is the enzyme responsible for the catabolism of
the PAR polymer. It is ubiquitously expressed at low levels in all cells and tissues (reviewed
in Bonicalzi et al., 2005). Here, we have used the potent and specific inhibitor of PARG,
ADP-HPD, (Slama et al., 1995) and the validated PARP assay (Zaremba et al., 2009) to
show that co-incubation with ADP-HPD results in increased stability of the PAR polymer in
IR-treated cells. Under normal conditions, polymer is degraded and returns to basal levels
1-2 hours following IR, whereas in ADP-HPD treated cells the polymer persists for upto 4-
hours post-IR treatment.

Moreover, increased polymer stability correlates with a persistence in NF-κB DNA binding
as shown in Figure 5B. DNA binding is maximal 2 hours post-IR before decreasing rapidly
and returning to basal levels post-IR. Markedly, in cells treated with ADP-HPD DNA
binding is maximal 2 hours post-IR and this persists up to 8 hours. Consistent with increased
NF-κB DNA binding confers radio-resistance (Biswas et al., 2001; Wu and Kral, 2005), we
show here, using the clonogenic survival assay (Figure 5C), that treatment with ADP-HPD
protects against cell IR-induced cell kill in p65+/+ cells. Furthermore, there is no effect on
survival in p65−/− cells (data not shown). In order to demonstrate that these findings were
physiologically relevant we went on to determine whether PARG inhibition leads to an
increase in the expression of some known NF-κB-mediated anti-apoptotic genes, in the
p65+/+ cells. Using qRT-PCR, we show that IR significantly increases expression of Bcl-xL
(p=0.04 compared with untreated controls) and this is further increased by co-incubation
with ADP-HPD (p=0.0089 compared with ADP-HPD alone controls) (Supplementary
Figure 4A). cFLAR expression (Supplementary Figure 4B) was also increased following IR
(p=0.103) and this was significantly increased by co-incubation with ADP-HPD (p=0.0098).
We also observed a similar trend with XIAP expression (Supplementary Figure 4C).

AG-014699 overcomes NF-κB-mediated therapeutic resistance in glioblastoma
Using Western blotting, we have confirmed the status of p65, and PARP-1 in U251
glioblastoma cells. We used siRNA to target either p65 or PARP-1 to knockdown these
proteins (Figure 6A and 6B), and investigated the ability of p65 knockdown, PARP-1
knockdown or AG-014699 to sensitize U251 cells to IR using colony forming assays. We
also assessed a combination of p65 siRNA and AG-014699. Similarly to the results
observed in the p65+/+ MEFs, we show here that, co-incubation with either AG-014699, p65
siRNA or PARP-1 siRNA resulted in a 2.4-fold radio-sensitization compared to mock-
transfected cells treated with IR. Again, a combination of p65 siRNA and AG-014699
showed no further sensitization (Figure 6D).

We then determined the effect of the treatments described above on NF-κB DNA binding
using the ELISA-based method and found that our observations were consistent with those
seen in the p65+/+ MEFs. 10 Gy IR increased DNA binding activity 2-fold compared with
Mock treated cells (Figure 6C). Also, p65 siRNA alone or in combination with AG-014699
reduced DNA binding > 85% following IR in U251 cells (p=0.0003 and p=0.005, compared
to IR alone, respectively). Importantly, both PARP-1 siRNA and AG-014699 reduced IR-
induced DNA binding to levels comparable with untreated controls (p=0.0053 and
p=0.0079, compared to IR, respectively). Non-specific siRNA had no effect on DNA-
binding following IR.

The alkaline Comet assay was used to examine IR-induced SSB formation and repair in the
U251 cells. Immediately following 10 Gy IR, cells treated with IR alone or IR in
combination with p65 siRNA had the same initial level of SSBs (Figures 6E and F). There
was no significant difference in the SSB levels remaining in U251 cells or U251 cells with
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p65 siRNA 30 min following IR, with > 95 % of breaks rejoined despite the observed
differences in radio-sensitivity shown in Figure 6D. Importantly, AG-014699 inhibited SSB
repair (as demonstrated by increased residual SSB levels at all time-points post-IR) to the
same extent in cells regardless of the p65 status (Figure 6E versus Figure 6F).

DISCUSSION
In this study we demonstrate that PARP-1 knockdown and the PARP inhibitor, AG-014699
significantly decreased survival and induced apoptosis following IR in p65+/+ MEFs whilst
having no effect in p65−/− MEFs. Sensitization was 1.3-fold and importantly occurred at
clinically relevant doses of IR. A combination of AG-014699 and p65 knockdown did not
further enhance this response, which is consistent with reports that PARP-1 and NF-κB are
mechanistically linked in a common pathway (Chang and Alvarez-Gonzalez 2001, Hassa
and Hottiger 1999, Stilmann et al., 2009, Veuger et al., 2009). The levels of SSBs in p65+/+

and p65−/− MEFs induced by IR were similar and both were equally proficient at their
repair. AG-014699 was also able to increase the level of breaks to the same extent in both
cell lines, consistent with the known role of PARP-1 in base excision repair (Durkacz et al.,
1980). Thus, we can conclude that the potentiating effect of AG-104699 when used in
conjunction with IR is not primarily due to the widely reported transient inhibition of SSB
repair but a consequence of PARP-1 downstream signaling to NF-κB. This is consistent
with the observation that cells severely compromised in DNA repair (e.g. PARP-1−/−) are
able to divide and go on to survive despite having consistently higher levels of breaks
compared to their wild type counterparts, even in the absence of exogenous damage (Trucco
et al.,1998). These data, coupled with our previous findings that IR-induced DNA damage
initiates signaling events in the nucleus and continues in the cytoplasm, resulting in the
activation of NF-κB (Veuger et al.,2009), support the existence of an intermediary signaling
protein/complex as described by Stilmann et al., (2009).

There is strong evidence that the effects we have observed using the Comet assay are likely
to be due to SSBs, even though the alkaline Comet assay can detect a small amount of
double strand breaks (DSBs) as well as SSBs. Firstly, Ogorek and Bryant (1985) showed
that at the low doses of IR as used in our experiments, the ratio of SSB to DSB is
approximately 20:1. Furthermore, we have previously shown that PARP-1 has a minor role
in the repair of DSBs by non-homologous end joining (NHEJ) in the absence of the DNA-
dependent protein kinase (DNA-PK) (Veuger et al., 2003). However the p65+/+ and p65−/−

cells used here have functional DNA-PK, and thus any DSBs would be repaired by NHEJ,
with AG-014699 being solely responsible for the inhibition of SSBs.

To investigate the effects on NF-κB activity induced by stimuli other than IR, we used TNF-
α. While knockdown of the PARP-1 protein abrogated NF-κB activation following the
inflammatory stimulus, PARP-1 enzymatic inhibition had no effect. In contrast, PARP
protein and activity were necessary to inhibit the IR-induced NF-κB response. The role of
PARP-1 protein rather its catalytic activity as a co-activator of NF-κB is contentious. Our
data are consistent with some studies (Hassa et al., 2001) but others have shown that
PARP-1 inhibition was able to alleviate TNF-α-stimulated NF-κB-dependent MMP-9-
mediated neurotoxicity in microglia in a model of brain injury (Kauppinen and Swanson,
2005). This may be cell line or model system dependent and may also vary depending on the
activation other NF-κB subunits. For example, we have recently shown that subunit
activation is complex balance in CLL (Mulligan et al., manuscript submitted). However, is it
also possible that in this case PARP-1 may facilitate a structural role in the NF-κB
transcriptional complex, as Hassa et al., (2005) illustrated by demonstrating that the
acetylation of PARP-1, by HDAC1 and p300, regulated NF-κB activity. A further
explanation is that PARP inhibition may produce different physiological effects compared
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with protein knockdown. Although inhibition of other PARP family proteins, such as
PARP-2 by AG-014699 cannot be rigorously excluded, the consistency in the data obtained
from both the inhibitor studies and PARP-1 knockdown studies shown here indicate that this
is not the case. We have also previously shown that the PARP-1−/− cells have negligible
PAR formation using the PARP activity assay (Veuger et al., 2009), thus supporting our
findings here that AG-014699 radio-sensitizes cells via inhibition of PARP-1, not PARP-2.

Since both stimuli resulted in similar amounts of p65 nuclear translocation, and this was
unaffected by either AG-014699 or PARP-1 knockdown, then the differential requirements
of PARP-1 for IR- and TNF-α-activated NF-κB must occur at the DNA binding and
transcription stage. The requirement of the PAR polymer in DNA damage-activated NF-κB
has been demonstrated (Stilmann et al., 2009) and this is consistent with our data that IR, not
TNF-α stimulates polymer formation. Stilmann et al. (2009) clearly indentified a novel
mechanism of pro-survival NF-κB activation mediated via the PAR polymer. Based on our
observations we can propose a further mechanism (Figure 7). The DNA binding interface of
p65 is buried until a conformational change is induced, usually when p65 is in close
proximity to the negatively charged region of its DNA consensus sequence (Ghosh et al.,
1999). The PAR polymer is known to have a large overall negative charge (Uedo and
Hayaishi, 1985). Since we showed no change in levels of nuclear p65 following DNA
damage or treatment with AG-014699, but yet that p65 DNA binding increased upon
stimulation of polymer formation, we can postulate that the negative charge on the polymer
induces this conformational change in p65, thus leading to increased binding and
transcriptional activation (Figure 5). The data we present here using the PARG inhibitor,
ADP-HPD, supports this hypothesis. We show that increased polymer stability, by virtue of
inhibition of polymer degradation, leads to a persistence of NF-κB DNA binding, an
increase in anti-apoptotic gene expression and a protection against IR-induced cell death.
This confirms a role for the PAR polymer in the activation of NF-κB following DNA
damage.

Inhibition of NF-κB is clearly an attractive target for cancer therapeutics (Gilmore and
Herscovitch 2006). However, global inhibition may also have some negative aspects. For
example, NF-κB plays a vital role in the inflammatory response, and thus complete
inhibition of NF-κB, for example with an IKK inhibitor, may have adverse effects. The IKK
complex has many known functions within the cell (Chariot, 2009, Criollo et al., 2010), and
inhibition may be cytotoxic. Long-term NF-κB inhibition may also increase the likelihood
of immunodeficiency, since it plays a pivotal role in the innate and adaptive immune
response, and can possibly delay bone marrow recovery due to some reports of
chemotherapeutic induced apoptosis of hematopoietic progenitors (Grossman et al., 1999,
Turco, et al, 2004). The data here suggest that AG-014699 inhibits IR-induced NF-κB
activation but not an inflammatory stimulus and thus may overcome these potential
toxicities. Furthermore, ongoing gene expression analysis shows that AG-014699 has no
effect on vital inflammatory response genes following TNF-α treatment (data to be
published separately). Consequently, blockade of DNA-damage activated NF-κB by
AG-014699 may therefore represent preferable therapeutic strategy, since we demonstrate
here that the survival function of NF-κB can be directly inhibited without compromising
other functions, such as the immune response.

AG-014699 has been shown to be efficacious both in vitro and in vivo (Daniels et al., 2009,
Drew et al., 2010, Plummer et al., 2008, Zaremba et al., 2009) and is currently in phase II
trials for BRCA defective breast and ovarian cancer as a single agent
(www.clinicaltrials.gov). AG-014699 was the first PARP inhibitor to enter clinical trial for
cancer therapy and Phase I trials showed that profound and sustained PARP inhibition could
be achieved after a single intravenous infusion (Plummer et al., 2005). Phase II trials
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combining AG-014699 with temozolomide in metastatic melanoma patients showed an
improvement in the response rate in comparison with temozolomide alone (Plummer et al.,
2006). A number of pharmaceutical companies are now undertaking clinical trials of PARP
inhibitors for the treatment of cancer (Drew and Plummer 2009); however, this is the first
investigation of the clinically relevant PARP inhibitors in the context of their potential
utility as inhibitors of DNA-damage induced NF-κB activation.

Radio-therapy is one of the main-stays of therapy for Glioblastoma multiforme, the most
frequent and refractory adult brain tumour (Burger et al., 1985). Aberrant activation of NF-
κB is known to play a role in the tumourigenesis of both diffuse and high-grade gliomas
(Kawanza et al., 2003, Wang et al., 2004). Hence, here we have used the glioblastoma cell
line, U251, to highlight the potential utility of AG-014699 in inhibiting DNA-damage
activated NF-κB in tumor cells.

In summary, this is the first report to demonstrate that a very potent and specific PARP-1
inhibitor, AG-014699, can re-sensitise cells to irradiation and that this is mediated directly
via NF-κB, rather than the inhibition of SSB repair. These data present a novel mechanism
for PARP-1 in the regulation of NF-κB and highlight important new therapeutic avenues for
the use of PARP inhibitors, which may prove useful in overcoming NF-κB-mediated
therapeutic resistance.

METHODS
Cell lines and Reagents

The p65+/+ and p65−/− MEFs were kindly provided by Professor Ron Hay, Dundee
University, UK. PARP-1+/+ and PARP-1−/− MEFs were a gift from Professor Gilbert de
Murcia, École Superieure de Biotechnologie de Strasbourg, France. All of the above cell
lines were cultured in RPMI-1640 medium (supplemented with 10 % (v/v) FCS and 2 mM
glutamine). The p65−/− control MEFs, and the MEFs which have been genetically
complemented with WT protein were a kind gift from Professor Neil Perkins, Newcastle
University, UK. These were cultured in DMEM medium (supplemented with 10% (v/v)
FCS, 2 mM glutamine and 4 μg/ml Puromycin). The U251 glioblastoma cell line was
donated by Dr Gareth Veal, Newcastle University, UK, and was cultured in DMEM medium
(supplemented with 10% (v/v) FCS and 2 mM glutamine).

PARP-1 Inhibitor
AG-014699 was synthesised by Pfizer GRD, CA. AG-014699 was dissolved in anhydrous
DMSO (Sigma, UK) at a stock concentration of 10 mM and stored at −20 °C. AG-014699
was added in cell culture such that the final DMSO concentration was kept constant at 0.1 %
(v/v), and was used at a final concentration of 0.1 μM in all experiments.

PARG Inhibitor
ADP-HPD was purchased from ENZO Life Sciences, Exeter, UK. It was dissolved in sterile
H2O (Gibco, Paisley, Scotland) at a stock concentration of 5 mg/ml and stored at −20°C.
ADP-HPD was added in cell culture at a final concentration of 1 μM in all experiments.

SiRNA Transfection
Cells were seeded in 6-well cell culture plates at a density of 5×104 in 2mls and incubated
overnight. SiRNA targeting human p65 (GCCCUAUCCCUUUACGUCA); or PARP-1
(GGAGGAAGGUGUCAACAAA; both from Dharmacon, Cramlington, UK) was
transfected at a final concentration of 50nM using Lipofectamine 2000 (Invitrogen, UK),
according to the manufacturer’s instructions. Controls used included non-specific (NS)
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siRNA and mock/vehicle only transfected cells. p65 or PARP-1 knock down was confirmed
by Western analysis (Figure 1).

PARP activity assay
PARP activity was determined in cells transfected with siRNA (or relevant controls, as
described above), that had been treated with AG-014699 or DMSO, using a validated assay
(Plummer et al., 2005, Zaremba et al., 2009). Briefly, basal PARP activity present in cells
was measured in 1×104 permeabilized cells that had been incubated with NAD+ and
oligonucleotide (to maximally stimulate PARP activity) (Sigma, UK). PARP activity was
also assessed following treatment with IR or TNF-α, by omitting the oligonucleotide
stimulation step. The reaction was terminated with excess AG-014699, and replicate
samples (n=3) were blotted onto nitrocellulose membrane (Hybond N, Amersham, UK). A
standard curve of purified PAR polymer (pmol of PAR) (Biomol, UK) was also blotted to
aid with quantification. The membrane was probed with PAR-specific antibody (10H, a kind
gift of Prof Burkle, University of Konstanz, Germany) and chemiluminescence was detected
using a 5 min exposure on the Fuji-LAS 3000 CCD camera. Images were anaylzed using
Aida Imaging Analyzer. Data was normalized to mock (vehicle alone) treated controls and
results shown are the mean of 3 independent experiments.

Western Blotting
Proteins were resolved on 4-20 % (v/v) Tris-glycine gradient gels (Invitrogen Ltd, Paisley,
UK) and electrotransferred onto nitrocellulose (Hybond C, Amersham, UK). Antibodies
against PARP-1 (H-250), p50 (8414), p65 (8008) were purchased from Santa Cruz
Biotechnology, (Santa Cruz, CA). As loading controls, actin antibody (CP01; Calbiochem)
was used for whole cell extracts, lamin A/C (7293; Santa Cruz Biotechnology, Santa Cruz,
CA) for nuclear extracts and -tubulin for cytoplasmic extracts (Sigma). This was followed
by binding of peroxidase-conjugated goat anti-mouse/rabbit antibody (DAKO, Ely, UK) and
detection by enhanced chemiluminescence (Amersham, UK). Cells were pre-treated with
AG-014699 for 1 h and exposed to IR. Cells were harvested at different time points and
whole cell extracts were taken using SDS lysis buffer (100 mM Tris-Hcl pH 6.8, 20 % v/v
glycerol, 4 % w/v SDS). Nuclear and cytoplasmic extracts were prepared using the NE-PER
extraction kit as per manufacturer’s instructions (Pierce-Perbio science, Cheshire, UK). α-
tubulin was not detected in nuclear extracts and conversely, lamin was absent in all
cytoplasmic extracts thus demonstrating the efficient separation of nuclear extracts. Bands
were quantified and normalized to their relevant loading controls using densitometry (Fuji
LAS 3000 Imaging).

Cytotoxicity Assay
Clonogenic assays were carried out as described previously (Veuger et al., 2003) and
cloning efficiencies were normalized to untreated controls. PF50 (potentiation factor at 50%
cell kill) values were calculated from the ratio of the individual LD50 (lethal dose producing
50% cell kill) values:- i.e., LD50 divided by LD50 in the presence of AG-014699.

Annexin-V Flow Cytometry
Apoptosis was measured using the FITC Annexin V Apoptosis Detection Kit I (BD
Biosciences, Oxford, UK), as per manufacturers instructions. Briefly, cells were transfected
with p65 siRNA (or relevant controls) 48 h prior to 1 h pre-treatment with AG-014699 and
subsequent irradiation. Cells were harvested and resuspended in 100 μl Binding Buffer
(0.01M Hepes/NaOH (pH 7.4), 0.14M NaCl, 0.25mM CaCl2). FITC Annexin V and
Propidium Iodide Staining Solution were added and cells were incubated for 15 min at room
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temperature, in the dark. Cells were analyzed using the Becton Dickinson FACScan and Cell
Quest Software. Results are the mean of 3 independent experiments.

COMET Assay
Following IR treatment, SSB levels were quantified using the alkaline Comet assay
(Trevigen) following the manufacturer’s protocol. Briefly, cells were washed and
resuspended in ice-cold PBS before mixing with proprietary low melting point agarose
(37°C). This mixture was pipetted onto a CometSlide (Trevigen) and allowed to gel at 4°C.
Following lysis, slides were subjected to electrophoresis under alkaline conditions at 20 V
for 40 min and then fixed, dried, and stained with SYBR Green I. An Olympus BH2-RFCA
fluorescence microscope (×10 objective) with Hamamatsu ORCAII BT-1024 cooled CCD
camera was used to capture images. Image Pro Plus (Media Cybernetics) was used for image
capture and analysis was performed using Komet software v 5.5 (Kinetic Imaging). Data for
repair kinetics was expressed as a percentage, with 100% representing the mean number of
breaks at time 0 post IR treatment, in the presence of absence of AG-014699. Subsequent
time points are expressed as a percentage of the time 0 point.

NF-κB DNA binding Assay
NF-κB p65 DNA binding activity was determined using an ELISA-based EZ detect assay
according to the manufacturer’s instructions (Promega Southampton, UK). Briefly,
streptavidin-coated 96 well plates are bound with biotinylated κB consensus sequence
oligonucleotides (5′GGGACTTTCC-3′). Cells were transfected with siRNA, or relevant
controls 48 h prior to a 1 h pre-treatment with AG-014699 and subsequent irradiation. 5 μg
of nuclear extracts (prepared 2 h after irradiation, as described above) were added to each
well and incubated with primary antibody specific for p65. Binding was detected using a
secondary HRP-conjugated antibody and chemiluminescence measured using a CCD camera
(LAS-300; Fujifilm). Purity of cytoplasmic and nuclear extracts was confirmed as described
above.

Reporter Gene Assay
Cells were seeded onto 24 well plates and incubated for 24 h. Cells were transiently
transfected with 200 ng of an NF-κB-luciferase construct containing 3 tandemly repeated
NF-κB consensus sequence binding sites in the promoter (Professor Ron Hay, Dundee
University), together with 200 ng of a pCMB-β-galactosidase plasmid containing a minimal
promoter element up-stream from the β-galactosidase gene, using Lipofecamine 2000
(Invitrogen, Paisley, Scotland) for 6 h. siRNA transfection was undertaken simultaneously,
as described above. 48 h after transfection, cells were treated with AG-014699 for 1 h prior
to IR. Following 8 h incubation, cells were lysed and assayed for luciferase activity
according to the manufacturer’s instructions (Promega, Southampton, UK). Luciferase
activity was corrected for β-galactosidase activity as described previously (Brady ME et al,.
1999), and relative activities expressed as fold changes.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Characterisation of cell lines and siRNA knockdown
(A) Western blots of whole cell extracts of p65+/+ and p65−/− MEFs at 48 h after
transfection with vehicle alone (Mock), non-specific (NS) siRNA or p65 siRNA.
(B) Western blots of whole cell extracts of p65+/+ and p65−/− at 48 h after transfection with
vehicle alone (Mock), non-specific (NS) siRNA or PARP-1 siRNA.
(C) Histogram showing PARP activity, measured using a validated immunoblot assay which
quantifies PAR polymer formation, in p65+/+ MEFs after transfection with vehicle alone
(mock), p65 siRNA, AG-014699, PARP-1 siRNA,a combination of p65 siRNA +
AG-014699 or NS siRNA.
(D) PARP activity measured using a validated immunoblot assay which quantifies PAR
polymer formation in p65−/− MEFs following transfection with vehicle alone (mock), p65
siRNA, AG-014699, PARP-1 siRNA,a combination of p65 siRNA + AG-014699 or NS
siRNA
10H antibody was used measure PAR formation
Data are represented as the mean ±sem of three independent experiments.
*Significance relative to mock treated control was p<0.05 using unpaired Student’s t-test.
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Figure 2. Radio-sensitization by p65 knockdown, PARP-1 knockdown or AG-014699 is
associated with the induction of apoptosis
The effects of increasing doses of IR either alone, or co-incubated with p65 siRNA,
AG-014699, PARP-1 siRNA or a combination of p65 siRNA and AG-014699, on cell
survival were assessed using the clonogenic survival assay. Cells were treated with relevant
siRNA, (or vehicle control), left for 48 h, pre-treated with AG-014699, or DMSO control 1 h
prior to IR then re-plated after a further 24 h and allowed to form colonies for 7-21 days.
(Survival curve (A) shows p65+/+ MEFs, (B) p65−/− MEFs, (C) PARP+/+ MEFs and (D)
PARP−/− MEFs) E The effect of IR alone (mock, white bar) ± p65 siRNA (black bar) ±
AG-104699 (AG alone, light grey bar, AG + p65 siRNA, dark grey bar) on the induction of
apoptosis in p65+/+ MEFs. Cells were treated with relevant siRNA, or control left for 48 h,
pre-treated with AG-014699, or control 1 h prior to IR then allowed to repair for a further 24
h before harvesting and assessment of the induction of apoptosis by Annexin V FACs
analysis. Results shown are normalised to untreated controls.
F The effect of IR (mock, white bar) ± p65 siRNA (black bar) ± AG-104699 (AG alone,
hatched bar, AG + p65 siRNA, striped bar) on the induction of apoptosis in p65−/− MEFs.
Cells were treated with relevant siRNA, or control left for 48 h, pre-treated with
AG-014699, or control 1 h prior to IR then allowed to repair for a further 24 h before
harvesting and assessment of the induction of apoptosis by Annexin V FACs analysis.
Results shown are normalised to untreated controls.
All data shown are represented as the mean ±sem of three independent experiments.
*Significance relative to mock treated control was p<0.05 using unpaired Student’s t-test.
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Figure 3. AG-014699 inhibits Single strand break (SSB) repair to a similar extent regardless of
cellular NF-κB status
Scatter diagrams showing the extent of single strand breaks (SSBs) in (A) p65+/+ MEFs and
(B) p65−/− MEFs treated with 10 Gy IR ± AG-014699 (AG, denoted by +) and allowed to
repair (0 min, 15 min, 30 min and 60 min). SSB repair was measured using the alkaline
COMET assay and Olive Tail moment (shown here) is used as a measure of both the
smallest detectable size of migrating DNA (reflected in the comet tail length) and the
number of relaxed / broken pieces (represented by the intensity of DNA in the tail). All data
were tested for Gaussian distribution and the lines shown indicate the mean of the data
plotted.
Line graph showing the kinetics of single strand break repair in p65+/+ (C) and p65−/− MEFs
(D). Data was normalised to relevant controls and in both cases solid black lines represent
repair over time of cells treated with 10 Gy IR, and dotted lines represent repair over time of
cells treated with 10 Gy IR + AG-014699.
Scatter diagrams showing the extent of single strand breaks (SSBs) in (E) p65−/− MEFs
reconstituted with wild-type (WT) p65 and (F) p65−/− (control) MEFs treated with 10 Gy IR
± AG-014699 (AG, denoted by +) and allowed to repair (0 min, 15 min, 30 min and 60
min). SSB repair was measured using the alkaline COMET assay and Olive Tail moment is
shown here. All data were tested for Gaussian distribution and the lines shown indicate the
mean of the distribution.
All results shown are the mean of three independent experiments ± SEM
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Figure 4. PARP activity is essential for NF-κB activation following IR, not TNF-α
Histogram showing the effect of IR or TNF-α ± p65 siRNA ± AG-014699 (AG) ± PARP-1
siRNA ± (p65 siRNA + AG-014699) ±Non-specific (NS) siRNA control on NF-κB DNA
binding activity, measured using an ELISA-based assay (A) and (B) NF-κB-dependent
transcriptional activation, measured using a luciferase reporter assay, in p65+/+ MEFs. Open
bars IR, black bars TNF-α. All results are the mean of three independent experiments with
SEM. **Significance relative to mock treated control was p<0.01 using unpaired Student’s
t-test. *Significance relative to mock treated control was p<0.05 using unpaired Student’s t-
test.
Western blotting data showing nuclear translocation of p65 following (C) IR or TNF-α (D)
± p65 siRNA ± AG-014699 (AG) ± PARP-1 siRNA ± (p65 siRNA + AG-014699) ± NS
siRNA control, in p65+/+ MEFs. Cells were treated with relevant siRNA, or control, left for
48 h, pre-treated with AG-014699, or control 1 h prior to IR and harvested 1 h post-IR.
Loading was normalised to lamin nuclear loading control in all cases.
Histogram showing PARP activity, measured using a validated immunoblot assay which
quantifies PAR polymer formation, in p65+/+ MEFs after increasing doses of IR (E) and
TNF-α (F)
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Figure 5. Persistence of NF-κB DNA binding following PARG inhibition
(A) Histogram showing PARP activity timecourse, measured using a validated immunoblot
assay which quantifies PAR polymer formation, in p65+/+ MEFs following 10 Gy IR ±
ADP-HPD (open bars IR, black bars IR + ADP-HPD).
(B) Histogram showing NF-κB DNA binding timecourse measured using an ELISA-based
method following IR ± ADP-HPD (open bars IR, black bars IR + ADP-HPD).
(C) The effects of increasing doses of IR on cell survival, either alone (solid line) or co-
incubated with ADP-HPD (dashed line) were assessed using the clonogenic survival in
p65+/+ MEFs. Cells were pre-treated with ADP-HPD, or control 1 h prior to IR then re-
plated after a further 24 h and allowed to form colonies for 7-21 days.
All results are the mean of three independent experiments with SEM.
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Figure 6. AG-014699 radio-sensitizes U251 glioblastoma cells via inhibition of NF-κB
(A)Western blots of whole cell extracts of U251 cells 48 h post transfection with vehicle
alone (Mock), non-specific (NS) siRNA or p65 siRNA.
(B) Western blots of whole cell extracts of U251 cells at 48 h after transfection with vehicle
alone (Mock), non-specific (NS) siRNA or PARP-1 siRNA.
(C)Histogram showing the effect of IR ± p65 siRNA ± AG-014699 (AG) ± PARP-1 siRNA
± (p65 siRNA + AG-014699) ±Non-specific (NS) siRNA control on NF-κB DNA binding
activity, measured using an ELISA-based assay. All results are the mean of three
independent experiments with SEM. **Significance relative to mock treated control was
p<0.01 using unpaired Student’s t-test.
(D)The effects of increasing doses of IR either alone, or co-incubated with p65 siRNA,
AG-014699, PARP-1 siRNA or a combination of p65 siRNA and AG-014699, on U251 cell
survival was assessed using the clonogenic survival assay. Cells were treated with relevant
siRNA, (or vehicle control), left for 48 h, pre-treated with AG-014699, or DMSO control, 1
h prior to IR then re-plated after a further 24 h and allowed to form colonies for 7-21 days.
(E) Scatter diagrams showing the extent of single strand breaks (SSBs) in U251 cells treated
with 10 Gy IR ± AG-014699 (denoted by +) and allowed to repair (0 min, 15 min and 30
min). SSB repair was measured using the alkaline COMET assay and Olive Tail moment
(described above) is shown here. All data were tested for Gaussian distribution and the lines
shown indicate the mean of the data plotted.
(F) Scatter diagrams showing the extent of single strand breaks (SSBs) in U251 cells treated
with 10 Gy IR + p65 siRNA ± AG-014699 (denoted by +) and allowed to repair (0 min, 15
min and 30 min). SSB repair was measured using the alkaline COMET assay and Olive Tail
moment (described above) is shown here. All data were tested for Gaussian distribution and
the lines shown indicate the mean of the data plotted.
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Figure 7. PAR is essential for DNA damage activated NF-κB
(A) DNA damage, such as IR, activates PARP-1, recruiting it to the site of damaged DNA.
This results in formation of the negatively charged PAR polymer. The NF-κB p65-p50
heterodimer is also translocated to the nucleus following DNA damage via activation of the
canonical pathway of NF-κB activation. When in proximity to regions with overall negative
charge, such as that of the PAR polymer, a conformational change in p65 can be induced,
exposing the positively charged DNA binding interface of p65. Thus, we propose that it is
this negative charge on the PAR polymer that is attracting p65 to DNA bind, (as PARP-1
and the polymer are recruited to sites of damaged DNA), up-regulating transcription of NF-
κB-dependent genes, protecting against apoptosis and conferring radio-resistance.
(B) When the PARP inhibitor, AG-014699 is present, PARP-1 is no longer active and
cannot form the polymer. Hence in this case, we see reduced DNA binding and
transcriptional activation following IR, with induction of apoptosis and ultimately radio-
sensitisation.
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