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1  | INTRODUC TION

Theoretical ecology predicts that among predators, specialists are 
the most likely to shape the dynamics of their prey (e.g. Andersson 

& Erlinge, 1977; Gilg, Hanski, & Sittler, 2003; Turchin & Hanski, 
1997). It has even been suggested that only specialist predators do 
exhibit multi‐generation predator–prey population cycles (Murdoch 
et al., 2002), based on cycle periods in specialist versus generalist 
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Abstract
Specialist predators with oscillating dynamics are often strongly affected by the pop‐
ulation dynamics of their prey, yet they are not always the cause of prey cycling. Only 
those that exert strong (delayed) regulation of their prey can be. Inferring predator–
prey coupling from time series therefore requires contrasting models with top‐down 
versus bottom‐up predator–prey dynamics. We study here the joint dynamics of 
population densities of the Icelandic gyrfalcon Falco rusticolus, and its prey, the rock 
ptarmigan Lagopus muta. The dynamics of both species are likely not only linked to 
each other but also to stochastic weather variables acting as confounding factors. 
We infer the degree of coupling between populations, as well as forcing by abiotic 
variables, using multivariate autoregressive models MAR(p), with p = 1 and 2 time 
lags. MAR(2) models, allowing for species to cycle independently from each other, 
further suggest alternative scenarios where a cyclic prey influences its predator but 
not the other way around (i.e., bottom‐up scenarios). The classical MAR(1) model 
predicts that the time series exhibit predator–prey feedback (i.e., reciprocal dynamic 
influence between prey and predator), and that weather effects are weak and only 
affecting the gyrfalcon population. Bottom‐up MAR(2) models produced a better fit 
but less realistic cross‐correlation patterns. Simulations of MAR(1) and MAR(2) mod‐
els further demonstrate that the top‐down MAR(1) models are more likely to be misi‐
dentified as bottom‐up dynamics than vice versa. We therefore conclude that 
predator–prey feedback in the gyrfalcon–ptarmigan system is likely the main cause 
of observed oscillations, though bottom‐up dynamics cannot yet be excluded with 
certainty. Overall, we showed how to make more out of ecological time series by 
using simulations to gauge the quality of model identification, and paved the way for 
more mechanistic modeling of this system by narrowing the set of important biotic 
and abiotic drivers.
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predators. Mechanistic modeling, however, disputes this particu‐
lar point (Erbach, Lutscher, & Seo, 2013) Testing more thoroughly 
this working theory with empirical data — the more specialized the 
predator, the higher the likelihood of a predator–prey cycle or more 
generally top‐down prey regulation — would require to estimate 
the strength of predator–prey coupling in a number of real preda‐
tor–prey systems, for which time series of both predator(s) and prey 
are available, preferably in the field. While the task may appear 
straightforward in theory, it is surprisingly difficult in practice. Cases 
of long‐term monitoring including both specialized predators and 
their main prey, through extended periods of time, are indeed quite 
rare, especially in vertebrates. Two famous exceptions to the rule in‐
clude the wolf–moose (Canis lupus ‐ Alces Alces) system of Isle Royale 
(Vucetich, Hebblewhite, Smith, & Peterson, 2011), that has been fol‐
lowed for a century (although this study area is somewhat restricted 
for such wide‐ranging species), and the celebrated cycle of the 
Canada snowshoe hare Lepus americanus, which interacts with the 
Canada lynx Lynx canadensis and other predators (Krebs, Boonstra, 
Boutin, & Sinclair, 2001; Vik, Brinch, Boutin, & Stenseth, 2008). 
While there is a convincing array of evidence showing that lynx has 
a dynamical impact on hare (Vik et al., 2008), and wolf has an impact 
on moose (Vucetich et al., 2011), there is also evidence that weather 
and other drivers have often a strong forcing influence on prey dy‐
namics (Vucetich & Peterson, 2004; Yan, Stenseth, Krebs, & Zhang, 
2013). Even in such strongly interacting systems that fascinate the 
imagination by demonstrating strong oscillations, it has been sug‐
gested that the presence of an ubiquitous external forcing hardly 
warrants to view such systems as a pair of autonomous coupled dif‐
ferential equations (Barraquand et al., 2017; Nisbet & Gurney, 1976), 
despite the pivotal role of autonomous and deterministic dynamical 
systems in ecological theory (see e.g., McCann, 2011). Rather, real 
predator–prey systems are constantly buffeted by outside forces, be 
those climatic or biotic variables unaccounted for (i.e., other players 
in the interaction web). The study of Vik et al. (2008) reports at best 
around 55% of prey variance in log‐densities explained by both prey 
and predator densities; this therefore leaves ample room for other 
factors to influence hare dynamics (Barraquand et al., 2017; see also 
Vucetich et al., 2011 on ungulate‐wolf systems). In birds, contrasted 
feedback structures (bottom‐up or top‐down) were found in gos‐
hawk (Accipiter gentilis)—grouse dynamics, depending on the grouse 
species considered (Tornberg et al., 2013), with marked effects of 
weather forces. To gain a better appraisal of the strength of top‐
down regulation in the field, compared to other drivers of herbivore 
dynamics (see Sinclair, 2003, for a discussion in mammals), the list 
of predator–prey systems to which stochastic models of interacting 
populations are fitted to time series needs to increase.

Our goal here is to contribute, using large‐scale field data, to 
improving the understanding of predator–prey dynamics. We do 
this by fitting stochastic, statistically driven predator–prey mod‐
els to a presumably tightly coupled predator–prey pair, gyrfalcon 
Falco rusticolus and rock ptarmigan Lagopus muta in North‐East (NE) 
Iceland. The gyrfalcon is a predator specialized on ptarmigan (rock 
ptarmigan and willow ptarmigan Lagopus lagopus) (Nielsen & Cade, 

2017). In Iceland, the rock ptarmigan amounts to on average 72% 
by biomass of the gyrfalcon summer diet (range 52%–86%, Nielsen, 
1999). Previous studies analyzed periodicities using cross‐correla‐
tion functions and autoregressive models on each species sepa‐
rately (Brynjarsdóttir, Lund, Magnússon, & Nielsen, 2003; Nielsen, 
2011), highlighting possible reciprocal coupling between the two 
time series. Here, we combine detailed monitoring data with multi‐
variate autoregressive (MAR) modeling that allows to examine both 
dynamical linkages between species and effects of weather vari‐
ables (Hampton et al., 2013; Ives, Dennis, Cottingham, & Carpenter, 
2003). MAR modeling has been largely developed in econometrics 
(Granger, 1969; Lütkepohl, 2005), where it is primarily used to estab‐
lish causal relationships in the sense of prediction (i.e., a variable has 
causal influence if it helps improving predictions about the future, 
Granger, 1969), which is the statistical philosophy that we adopt 
here.

2  | MATERIAL S AND METHODS

2.1 | Study area and design

The study area (5,327 km2) in NE Iceland and survey methods used 
have been extensively detailed elsewhere (Nielsen, 1999, 2011) so 
we will remain brief. The study area is centered on Lake Mývatn 
(N65°60′, W17°00′) and is constituted of hilly terrain up to 600–
800 m above sea level. The gyrfalcon population is censused an‐
nually by visiting all known territories within the study area to 
determine predator occupancy (n = 83 territories). The number of 
territorial rock ptarmigan males is surveyed every spring (mostly 
in May) on six plots (total area 26.8 km2) within the general study 
area. The study started in 1981, and we used data for the period 
1981–2014.

2.2 | Ecological variables

We consider two main variables, the occupancy rate of gyrfalcon 
territories, that was considered a good proxy for gyrfalcon popula‐
tion density, and mean density of territorial rock ptarmigan cocks 
on the six plots. Both variables are standardized in the statistical 
models.

We also consider weather variables that are known to po‐
tentially affect the dynamics of the two populations. Higher 
temperatures are known to have positive effects on ptarmigan 
chick survival (Nielsen, Brynjarsdóttir, & Magnússon, 2004), 
and a previous study found that April mean temperature and 
precipitation affect all parameters of the gyrfalcon breeding 
success (Nielsen, 2011). We have selected three stations for 
the temperature (Akureyri, Mánárbakki, and Grímsstaðir) and 
six stations for log‐precipitation (Lerkihlíð, Mýri, Staðarhóll, 
Reykjahlíð, Mánárbakki, and Grímsstaðir), all within or at the 
border of the study area and that have recordings from 1975 to 
now. The weather data were retrieved from the web site of the 
Icelandic Met Office (www.vedur.is).

www.vedur.is
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2.3 | Statistical models

Multivariate Autoregressive (MAR) models have been used to as‐
sess the strength of predator–prey coupling (Ives et al., 2003; Vik 
et al., 2008). Let us denote the ln‐transformed predator density, 
pt = ln(Pt), and the ln‐transformed density of the prey, nt = ln(Nt); the 
log transformation is useful to transform log‐normal into Gaussian 
noise. These ln‐densities are then centered and stacked into a 
vector xt = (x1t, x2t)′ = (nt, pt)′. The dynamics of the MAR(1) model, 
with one time lag, are then written as a forced recurrence equation 
(Equation 1), 

 where B is an interaction matrix that characterizes the effects of net 
interactions on population growth of the two species, C describes 
the effect of environmental covariates ut on the population growth 
rates of predator and prey, and et is a Gaussian bivariate noise term, 
with covariance matrix Σ. Throughout the text, boldface quantities 
represent vectors and capital bold, matrices.

The model with full interaction matrix has matrix 

B =

(

b11 b12

b21 b22

)

. In this matrix, b12 represents the effect of the 

predator (species 2) log‐density on the prey (species 1) growth 
rate, while b21 represents the effect of the prey on the predator. 
b11 and b22 are the strengths of self‐regulation in the prey and 
predator, respectively, for more details see Ives et al. (2003). We 
also considered a model without interactions, where 

B =

(

b11 0

0 b22

)

, hereafter referred to as the null MAR(1) model. 

The diagonal B matrix essentially assumes independent AR(1) pro‐
cesses for the two species, forced by weather variables, provided 
that the variance–covariance matrix is also diagonal.

Both models were considered without (C = 0) and with environ‐
mental forcing (C ≠ 0). The weather variables that we stacked within 
ut are delayed: The predator population is believed to be affected by 
weather 5 years before, because recruits enter the adult population 
at the age of 4 years (average time to maturity, Nielsen, 1990), while 
the prey population is affected by the weather of the year (between 
t and t+1) or that of the preceding year (between t−1 and t). We con‐
sidered models with temperature effects, log(precipitation) effects, 
or both. The gyrfalcon population was assumed to be closed (despite 
wide‐ranging movements of other gyrfalcon populations, Burnham 
& Newton, 2011; reproductive birds are from Iceland), which is con‐
firmed by genetic analyses (Johnson, Burnham, Burnham, & Mindell, 
2007).

Several model fitting techniques have been considered in pre‐
liminary explorations (MCMC using JAGS within R, least squares 
for vector autoregressive models in R package vars, simple inde‐
pendent linear autoregressive models using lm() in R). Maximum‐
likelihood estimation using the MARSS package (Holmes, Ward, & 
Wills, 2012) and the EM algorithm was finally chosen because it 
allowed to easily perform model selection for contrasted interac‐
tion matrices (i.e., setting some interactions to zero). All algorithms 

gave, however, similar model estimates (see Supporting Information 
Appendix S1).

We then considered more complex MAR(2) models that are 
able to allow for both populations to cycle independently, because 
each univariate AR(2) component can model long cycles (≈7–10‐year 
cycles, like those observed in the field). Selection of the optimal 
time lag p in MAR(p) model using a variety of model information 
theoretic criteria (see code in https://github.com/fbarraquand/
GyrfalconPtarmigan_MAR) suggested an optimal lag order of 2 (BIC, 
HQ) or 3 (AIC, FPE). Because 2 time lags are enough to model in‐
dependently cycling populations of period up to 10 years and more 
(Royama, 1992), and MAR(2) models are already parameter‐rich, we 
considered a maximum of 2 time lags in MAR models. The MAR(2) 
model can be written as

 where the two B(1) and B(2) matrices correspond to the two time 
lags. The independent cycling model has diagonal matrices B(1) and 
B(2). The full model has interaction matrices 

B
(1)

=

(

b
(1)

11
b
(1)

12

b
(1)

21
b
(1)

22

)

 and 

B
(2)

=

(

b
(2)

11
b
(2)

12

b
(2)

21
b
(2)

22

)

. To model also an asymmetric and nonreciprocal 

effect from the cyclic prey to its predator, we used the following in‐
teraction matrices 

B
(1)

=

(

b
(1)

11
0

0 b
(1)

22

)

 and 
B
(2)

=

(

b
(2)

11
0

b
(2)

21
b
(2)

22

)

. The 

model was named “bottom‐up”, in order to designate a predator dy‐
namics driven by that of its cyclic prey.

When including time series x in a time series model for y im‐
proves the in‐sample prediction of y (i.e., reduces the residual vari‐
ance), x is said to Granger‐causes y (Detto et al., 2012; Granger, 
1969). The concept is therefore interwoven with nonzero interaction 
coefficients between system components (here, predator and prey). 
Granger causality testing was done with grangertest() using a 
Wald test, in the R package lmtest.

2.4 | Evaluating the quality of model identification 
from simulated data

We used the above‐mentioned models, with fitted coefficients 
for the B (1) and B (2) matrices, to simulate dynamics for different 
time series lengths (n = 35 and n = 100 time steps). Specifically, 
we performed 1,000 simulations of the fitted MAR(1) full (F) 
model and MAR(2) bottom‐up (BU) model. We fitted the MAR(1) 
F model to both MAR(1) F and MAR(2) BU simulations. We then 
fitted the MAR(2) BU to both MAR(1) F and MAR(2) BU simu‐
lations. This allowed to compute the percentage of correctly 
ascribed scenarios, on the basis of information criteria (AIC, 
AICc, BIC) for each simulated model. This analysis is similar to 
the one performed by Lütkepohl (2005), which we report in the 
Discussion section.

We also simulated 100 times the fitted models to assess their 
ability to reproduce the observed cross‐correlation pattern between 
predator and prey.

(1)xt+1 = a+Bxt+Cut+et,et∼2(0,�)

(2)xt+1=B
(1)
xt+B

(2)
xt−1+Cut+et,et∼2(0,�)

https://github.com/fbarraquand/GyrfalconPtarmigan_MAR
https://github.com/fbarraquand/GyrfalconPtarmigan_MAR
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3  | RESULTS

3.1 | MAR(1) model results

3.1.1 | Models without environmental covariates

The predator–prey time series and the MAR(1) model one step 
ahead predictions are presented in Figure 1, while Table 1 shows the 
MAR(1) model‐fitted parameters. All B coefficients are found to be 
significantly different from zero, with commensurate strengths of 
predator → prey (b12) and prey → predator (b21) interaction. There 
is therefore a consistently negative effect of predator on prey and a 
consistently positive effect of prey on predator. Note that a clear‐cut 
sign was not an obligatory outcome, given those are net interaction 
coefficients, blending several ecological processes (e.g., direct and 
indirect predation effects) into one number (Certain, Barraquand, & 
Gårdmark, 2018).

Based on the comparison of AICc and BIC between the full 2 × 2 
interaction matrix and the diagonal matrix model (null model), the 
full model was favored (Table 2). The model with environmental 
covariates did not lead to substantially better fit or very different 
biotic interaction parameters (Table 2) than the full model, and the 
weather effects were not consistent (Table 3), save for those of de‐
layed April temperature on predator growth.

Additional Granger causality testing using the MAR(1) model re‐
vealed a two‐way reciprocal feedback, although the Wald test was 
only weakly significant (at the 0.1 level) due to the low sample size 
(i.e., the number of time points is large by ecological standards but 
small for time series analysis). Accounting for this relative shortness 
of the time series when interpreting statistical significance, the 
MAR(1) model strongly suggests a reciprocal predator–prey coupling 
of the ptarmigan and gyrfalcon populations.

3.1.2 | Models with environmental covariates

The addition of environmental covariates did not improve signifi‐
cantly model fit (Table 2). The coefficients were mostly non‐sig‐
nificant, as illustrated by the model including both temperature and 
log(precipitation) (0 is included within CIs for environmental C matrix 
coefficients, Table 3). The model with both precipitation and tempera‐
ture was deemed over‐parameterized by the information criteria. It is 
likely that an effect of 5‐year delayed temperature on predator growth 
is present as this effect was found positive, relatively large and nearly 
statistically significant at 95% (Table 3). However, this weather effect 
does not seem to improve much the predictive ability of the model.

The effect of temperature in Mayt+1 (May of the year) on 
ptarmigan growth, by contrast, is both not statistically different 

F I G U R E  1   Time series of gyrfalcon (red) and rock ptarmigan (black) standardized log‐densities in NE Iceland, and their corresponding one 
step ahead predictions under the best‐fitted, full interaction matrix MAR(1) model. 100 model simulations one step ahead are plotted, for 
each year, as small points—red for predator and black for prey
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TA B L E  1   Estimates of the MAR(1) full model without environmental covariates. The off‐diagonal interaction coefficients are at or near 
statistical significance at a 95% level. Similar results are obtained for non‐diagonal Σ (not shown); for parsimony, we use a diagonal error 
matrix

Parameters Meaning Value SE Lower 95% CI Upper 95% CI

b11 Prey→prey 0.7710 0.1112 0.5528 0.9890

b21 Prey→predator 0.2150 0.1096 0.0001 0.4298

b12 Predator→prey −0.2333 0.1114 −0.4516 −0.0149

b22 Predator→predator 0.6601 0.1097 0.4449 0.8752

σ
2

1
Noise var. prey 0.3961 0.0774 0.2280 0.6103

σ
2

2
Noise var. predator 0.3844 0.0763 0.2212 0.5922
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from zero and of unexpected sign (negative here, while positive 
temperature usually has positive effects on the ptarmigan chicks, 
Nielsen et al., 2004). The effect of rain in Mayt+1 on ptarmigan 
population growth was negative and relatively strong, but not 
statistically significant at 95% (point estimate −0.1596, 95% CI: 
[−0.3735; 0.0541]). It is therefore possible that such a negative 
effect is present, but it does not appear clearly with the current 
dataset.

We also fitted models where winter weather affects ptarmigan 
growth (Supporting Information Appendix S2), to test the idea that the 
survival of first‐year chicks might be lower in harsher winters, but again 
we did not find consistent effects of weather on ptarmigan dynamics.

3.2 | MAR(2) model results

The MAR(2) models showed uniformly better fit than the MAR(1) 
models (Table 4). Note that, in order to make this comparison, we 
re‐fitted the MAR(1) model with one less year to compare MAR(1) 
and MAR(2) models with an equal number of points, as any differ‐
ence in data can strongly affect AIC and BIC values. The MAR(2) 
model with independent populations (i.e., diagonal interaction ma‐
trices B(1) and B(2)) and the bottom‐up predator–prey model (see 
Methods section), assuming an independently cycling prey and a 
predator whose dynamics is forced by its prey, were the better‐
ranking models (Table 4).

Because AIC and BIC assess only one aspect of statistical model 
quality, the trade‐off between model parsimony and fit, we also 
present the results of simulations of the models (Figure 2). The ex‐
amination of time series plots is, however, difficult because the sim‐
ulated time series are relatively short and noisy.

TA B L E  2   Comparison of model selection criteria for MAR(1) 
models. MAR(1) “null’’ indicates a diagonal B matrix while MAR(1) 
“full’’ indicates a full 2 × 2 interaction matrix. Models including 
temperature effects on growth rates (third row and below) take the 
form xt+1=a+Bxt+Cut+et,et∼2(0,�). Here, the environmental 
vector is ut= (Tt−lP+1,Rt−lP+1,Tt−lG+1,Rt−lG+1)

�, with T the temperature 
and R log‐precipitation. There is a time lag lP for the ptarmigan (0 or 
1 year) and lG = 5 (always) for the gyrfalcon: Weather is expected to 
have such delayed effects on the gyrfalcon counts because of age 
structure. April weather is considered for gyrfalcon as it is the 
critical period for reproduction, and it is always included in models 
from row 3 and below. Models from rows 3 to 7 considered May 
temperature for ptarmigan, log(precipitation), or both. The models 
of rows 8 and 9 considered instead July and June temperatures as 
environmental variables for ptarmigan

Model type LogLik. AIC AICc BIC

MAR(1) null −70.01 148.0 148.7 154.1

MAR(1) full −66.14 144.3 145.7 153.4

MAR(1) full + May 
temperature year t+1

−63.98 144.0 146.4 156.2

MAR(1) null + May 
temperature year t+1

−67.03 146.1 147.4 155.2

MAR(1) full + May temp. of 
year t

−63.94 143.9 146.3 156.1

MAR(1) full + May 
log(precipitation) of t

−64.89 145.8 148.2 158.0

MAR(1) full + May 
temp + log(precipitation)

−62.81 145.6 149.5 160.9

MAR(1) full + July 
temperature year t

−61.95 143.9 147.8 159.2

MAR(1) full + June 
temperature year t

−63.79 147.6 151.4 162.8

Parameters Value SE Lower 95% CI Upper 95% CI

b11 0.7475 0.1071 0.5376 0.9575

b21 0.2031 0.1044 −0.0014 0.4077

b12 −0.1984 0.1135 −0.4210 0.0241

b22 0.7021 0.1043 0.4977 0.9065

Temperature Mayt+1 −0.0853 0.1142 −0.3092 0.1385

Precipitation Mayt+1 −0.1596 0.1091 −0.3735 0.0541

Temperature Aprilt−4 0.2072 0.1061 −0.0008 0.4153

Precipitation Aprilt−4 −0.0558 0.1068 −0.2652 0.1535

σ
2

1
0.3653 0.0743 0.2104 0.5628

σ
2

2
0.3418 0.0733 0.1943 0.5307

TA B L E  3   Coefficients for biotic and 
abiotic effects on population growth. 
Species 1 is ptarmigan, and species 2 is 
gyrfalcon. May variables only affect 
species 1 while April variables, delayed by 
5 years (we model the effect of variables 
at t−4 on growth between t and t+1), 
affect only species 2's population growth

TA B L E  4   Comparison of model selection criteria for MAR(1) and 
MAR(2) models with different structures. See Section  for 
definitions. The MAR(2) null + temperature uses April temperature 
with a 5‐year delay, which affects the predator only—this model 
adds temperature to the list of potential drivers for predator 
dynamics, as it was found marginally significant in previous MAR(1) 
analyses

Model type LogLik. AIC AICc BIC

MAR(1) null −67.57 143.1 143.8 149.1

MAR(1) full −64.41 140.8 142.3 149.8

MAR(2) full −54.78 129.6 133.6 144.5

MAR(2) bottom‐up −57.91 129.8 131.8 140.3

MAR(2) null −58.78 129.6 131.0 138.5

MAR(2) 
null + temperature

−56.95 129.9 132.4 141.9
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We therefore simulated 100 datasets using the fitted models 
(Figure 3) and examined their cross‐correlations. These show that 
MAR(1) and MAR(2) models with reciprocal predator–prey feedback 
(full interaction matrices) outperform both the bottom‐up model 
(medium reproduction of the cross‐correlation pattern) and the null 
model (no reproduction of the cross‐correlation pattern).

3.3 | Evaluating the quality of model identification 
from simulated data

We found that for a time series length n = 35, using a simulated 
MAR(1) full model with the fitted coefficients, we managed to re‐
cover this scenario around 50%–60% of all simulation runs (Table 5 
below). By contrast, a simulated MAR(2) bottom‐up model was re‐
covered >95% of the time for n = 35. However, percentages for both 
simulated models were all very close to 90% and 100% in the case 
of n = 100 (Table 5).

4  | DISCUSSION

The percentage of explained variance in log‐abundances by the 
MAR(1) predator–prey model was about 60%; hence similar to the 
lynx–hare example of Vik et al. (2008). The full 2 × 2 interaction ma‐
trix in a MAR(1) framework provided a better model than a diagonal 
matrix, meaning there was causality (or feedback) between prey and 

predator dynamics in the sense of Granger (1969): The addition of 
the predator and prey variables reduced the residual variances of the 
time series models for the prey and predator, respectively.

Weather (i.e., April temperature 5 years lagged) was found to 
affect predator dynamics, revealing an influence of weather on 
gyrfalcon reproduction, which takes several years to impact the 
growth of the adult segment of the population. However, prey pop‐
ulation growth was not affected by any of the weather covariates 
considered, neither in spring nor in winter (Supporting Information 
Appendix S2).

Before moving on to more ecological perspectives on the ptar‐
migan–gyrfalcon system, we would like to stress the importance of 
comprehensive model checking. Ecological time series are — by sta‐
tistical standards — very short. If we had stopped the analyses to the 
MAR(1) model, which is customary in ecology (e.g., Hampton et al., 
2013; Ives et al., 2003; Vik et al., 2008), we would have concluded 
unequivocally to a strong coupling between predator and prey 
(Table 2). However, identifying cycle causation requires to consider 
multiple potentially causal factors (see Barraquand et al., 2017, for 
a discussion).

Another reasonable hypothesis was that both species — the prey 
especially — could cycle independently (see e.g., Dobson & Hudson, 
1992; for a host–parasite modeling study in a similar prey species). 
Contrasting top‐down versus bottom‐up dynamics required to for‐
mulate a MAR(p) model with p = 2 time lags (according to BIC, the 
optimal lag order was p = 2; p = 3 according to AIC). MAR(2) mod‐
els were therefore found to realize a better trade‐off between 
parsimony and fit than MAR(1) models (Table 4). While the model 
with independently cycling populations fitted the data well, it pro‐
duced unrealistic dynamics (i.e., no cross‐correlation, Figure 3). The 
bottom‐up predator–prey model, where the prey influences the 
predator but not the other way around, provided both a good fit 
and relatively realistic dynamics, though not as much as the mod‐
els including reciprocal feedback (full‐matrix MAR(1) and MAR(2) 
models). The bottom‐up scenario could correspond, for example, 
to a case where the predator dynamics are driven by its prey, but 
prey dynamics are themselves driven by an interaction with a para‐
site (see Stenkewitz, Nielsen, Skírnisson, & Stefánsson, 2016, for an 
appreciation of host–parasite dynamics in Iceland rock ptarmigan). 
The bottom‐up scenario therefore fitted the data better in terms of 
trade‐off between parsimony and fit, but predicted the cross‐cor‐
relation pattern worse. Hence, both scenarios must be considered 
plausible. Further simulation results did help, however, to interpret 
better which scenario was the most likely given the data that have 
been collected.

This absence of strong conclusion on mechanisms, given the 
duration of the survey (34 years), may appear at first sight dis‐
tressing to ecologists. But it is useful to keep in mind that, from 
the perspective of time series analyses, 34 points is very short. In 
fact, in his authoritative book on multivariate time series modeling, 
Lütkepohl (2005) shows that it can be hard to recover the simulated 
lag order of such simple MAR(1) and MAR(2) models. Specifically, 
Lütkepohl (2005) simulated a bivariate MAR(2) model with a time 

F I G U R E  2   Time series of predator (gyrfalcon) and prey (rock 
ptarmigan) log‐densities, simulated for 35 years from the same 
starting conditions as the data, for the full MAR(1) model (top 
panel, predator in red) and the MAR(2) “bottom‐up’’ model (bottom 
panel, predator in blue)
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series length n = 30, fitted MAR(p) models up to order p = 6, and 
found only 32% of correctly classified simulations as p = 2 using 
AIC, with 42% classified as p = 1 (p. 155 in Lütkepohl, 2005). Using 
BIC, he found even 80% misclassified as MAR(1). Different model 
selection criteria gave different answers, and the BIC tended to be 
most conservative, but the baseline was that for n = 30, selection 
according to information criteria only gave inconsistent answers, 
while in most cases, the right model order was found for n = 100. 
Results were overall better with simulated bivariate MAR(1) models 
(p. 156 in Lütkepohl, 2005), where all model selection criteria were 
able to pinpoint the correct lag order at 90%. Such results, however, 
are likely to be model‐structure and model‐parameter specific (they 

depend on MAR coefficient values); therefore, we performed again 
such analysis for the models that we fitted (Section ). With the cur‐
rent length of our dataset n = 34, the important message from our 
simulations is that based on AIC or BIC, we are much more likely to 
mistake a fully interacting predator–prey system for a bottom‐up 
system than the reverse.

From our simulation experiments, we can derive three lessons. 
First, from an ecological viewpoint, given that the full interaction 
MAR(1) model both predicts the cross‐correlation pattern better and 
is the most likely to be misidentified as MAR(2) bottom‐up, we should 
not give too much weight to the better (lower) AIC and BIC scores 
of the MAR(2) bottom‐up model. It is more likely that top‐down 

F I G U R E  3   Cross‐correlation functions (CCFs) for the fitted models (A to F), defined as Cor(x1,t+k, x2,t) so that a maximum at k = −4 means 
that the predator time series x2 peaks on average 4 years after the prey x1. Each thin line corresponds to one simulation of the fitted model, 
within each panel. A and B show MAR(1) models, without and with interactions; while C to F show the CCFs of simulated MAR(2) models, 
without interactions (C), with only bottom‐up interactions (D), bottom‐up without delayed predator regulation (E), and (D) full MAR(2) model. 
The cross‐correlation for the real data is highlighted as a thick black line in all panels
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prey regulation and therefore reciprocal predator–prey feedback is 
at work here. Second, from a more statistical viewpoint, it is infor‐
mative to notice that whether MAR(1) or MAR(2) models are better 
identified is parameter‐specific: Sometimes a MAR(1) model will be 
more likely to be correctly classified (as in the simulation study of 
Lütkepohl, 2005), sometimes a MAR(2) will (our case study). The cor‐
ollary being that new simulations from MAR(p) or other time series 
models will be required for each new ecological case study, in order 
to see which scenarios are the most likely to be misidentified. Third, 
we found, in agreement with Lütkepohl (2005), that time series of 
around 100 points are needed to allow for fairly reliable inference of 
top‐down versus bottom‐up dynamics in systems of 2 cyclic species 
(less points might be required for species with simpler dynamics).

Given that the data presented here are collected once a year 
for the most part, and that it is not feasible to census the popula‐
tion much more frequently with current means (other technologies 
would be necessary, such as camera traps or DNA‐based evidence), 
it is unlikely that we will get the time series near 100 years within 
acceptable time frames for management of both populations (i.e., 
conservation of the gyrfalcon and sustainable hunting management 
of ptarmigan). Therefore, differentiating unequivocally between the 
bottom‐up and predator–prey feedback scenarios will likely require 
other type of models and data. We still view the MAR(p) approach 
as useful, however, as a means to delineate likely scenarios to inves‐
tigate further, and check for important abiotic drivers that need to 
be considered. Why the ptarmigan population growth is not affected 
— at the NE Iceland scale — by weather variables is also a puzzling 
question for further study, though there are other instances of this 
absence of weather effects (Wann, Aldridge, & Braun, 2016).

Mechanistic modeling might help to understand further the 
effect of drivers on ptarmigan dynamics during certain phases 
of the cycle. For instance, are ptarmigan declines mainly driven 
by its predator or mainly by other causes such as parasites (e.g., 
Dobson & Hudson, 1992)? Rough estimates of the required preda‐
tion demonstrate why this question is intrinsically difficult. Around 
100 adult predator pairs can be found near peak abundance on the 
NE Iceland ptarmigan management zone and to these correspond 
about 100,000 ptarmigan individuals at best (Sturludottir, Nielsen, 
& Stefansson, 2018). One might think, given these numbers, that 
the predators are unlikely to make their prey decline. Ptarmigan, 
however, have a slow, long‐period cycle (Figure 1). Therefore, they 
decrease at worst by ≈   20,000 in a single year. A quick division 

indicates that about 200 would have to be eaten during the year by 
a predator pair for such a decrease to occur — assuming, as a first 
approximation, that increases in the ptarmigan population due to re‐
production are offset by other causes of death than predation. This 
quantity, 200 kills a year, is an order of magnitude that represents a 
fairly high yet doable consumption by a predator pair. This might be 
tested further by fitting more mechanistic predator–prey models. 
We note in passing that the tight interaction between predator and 
prey here might not be typical of all gyrfalcon–ptarmigan popula‐
tions (Nielsen, 2011). Outside Iceland, other prey and predators may 
come into play and influence both species dynamics (e.g., rodents 
in particular can have a strong influence on both the birds of prey 
and the ground‐breeding birds, Angelstam, Lindström, & Widén, 
1984; Barraquand, New, Redpath, & Matthiopoulos, 2015). Studies 
on similar birds of prey in continental areas have typically showed 
weaker predator–prey coupling and more pronounced weather ef‐
fects (Tornberg et al., 2013).

Although we currently do not possess all the information nec‐
essary to parameterize mechanistic predator–prey or host–parasite 
models, we suggest a few directions based on our results: We rec‐
ommend to focus on measuring parameters related to top‐down 
control or that could explain independent cycling of the prey (rather 
than weather effects on vital rates, unless the spatial dimension is 
considered). First, regarding top‐down control, we have a rather im‐
perfect knowledge of the predator population, especially its non‐ter‐
ritorial segment (Nielsen, 2011). Non‐territorial floaters can indeed 
be rather numerous in both real raptor populations (Katzner, Ivy, 
Bragin, Milner‐Gulland, & DeWoody, 2011) and parameterized bird 
population models (Barraquand et al., 2014). Floater numbers could 
therefore change our perception of predator impacts on prey dy‐
namics (i.e., the predator population might increase by half or more). 
Demographic modeling of the predator population and its various 
life stages is therefore in order — we are currently examining CMR 
data and hoping for DNA‐based bird identification. Second, as we 
could not definitely reject the bottom‐up hypothesis, the host–par‐
asite hypothesis for the ptarmigan dynamics (see Stenkewitz et al., 
2016) needs to be examined. We therefore have to know more about 
parasite loads and their potential impact on ptarmigan population 
growth. Third, there are spatial aspects in the dynamics of gyrfalcon 
and ptarmigan that we have not tackled. It is plausible, for instance, 
that the weather does not affect ptarmigan growth at the scale of 
NE Iceland, using population‐level variables, and yet that weather 
locally affects the survival of ptarmigan chicks, as additional data 
seem to suggest: Nielsen et al. (2004) found that mean wind speed 
and mean precipitation in June–July explained a considerable part of 
the variance in chick production.

5  | CONCLUSION

Using long time series by ecological standards (34 years) but short 
ones by statistical standards, we found evidence of reciprocal pred‐
ator–prey feedback in this cyclic predator–prey system, without 

TA B L E  5   Frequency of correct identification of MAR(1) full and 
MAR(2) bottom‐up models, for two time series lengths

Time 
series 
length Simulated model AIC AICc BIC

n = 35 MAR(1) full 0.52 0.56 0.64

MAR(2) bottom‐up 0.98 0.98 0.97

n = 100 MAR(1) full 0.91 0.92 0.95

MAR(2) bottom‐up 1 1 1
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being able to exclude definitely more bottom‐up predator–prey 
dynamics. MAR(p) models with p = 1,2 described well this system 
as a forced oscillator, although the unexplained noise was generally 
stronger than weather effects, which may point to other important 
biotic factors driving the dynamics, such as parasites. Simulations 
of the fitted models revealed than unequivocal inference of bot‐
tom‐up versus reciprocal predator–prey coupling (i.e., including 
top‐down predator influence on prey) would require about a cen‐
tury of time series data. Our results have therefore implications 
for other studies on vertebrates with relatively slow life histories 
(compared to, e.g., plankton sampled many times a year). We think 
that additional demographic data (e.g., through capture–recapture, 
genetics,…) should always be considered in conjunction to counts 
taken once or twice a year, if one of the goals of a vertebrate moni‐
toring study is to infer interactions between the populations of dif‐
ferent species.
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