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Background. Cellular senescence (CS) is an alternative procedure that replaces or reinforces inadequate apoptotic responses and
is used as an influencing factor for a variety of cancers. 0e value of CS gene in evaluating the immunotherapy response and
clinical outcome of osteosarcoma (OS) has not been reported, and an accurate risk model based on CS gene has not been
developed for OS patients.Methods. 279 CS genes were obtained from CellAge. Univariate Cox regression analysis was used to
screen the CS gene which was significantly related to the prognosis of OS samples in TARGET data set. 0e prognosis,
clinicopathological features, immune infiltration, gene expression at immune checkpoints, tumor immune dysfunction and
exclusion (TIDE) score, and chemotherapy resistance of OS were analyzed among clusters. Least absolute shrinkage and
selection operator (Lasso) Cox regression analysis to build cellular senescence-related gene signature (CSRS). Univariate and
multivariate Cox regression analysis of CSRS and clinical parameters were carried out, and the parameters with independent
prognostic value were used to construct nomogram. Results. Based on 30 CS genes related to OS prognosis, OS samples were
divided into three clusters: C1, C2, and C3. C3 showed the lowest survival rate and metastasis rate and the highest immune score
and stromal score and was more likely to respond to immune checkpoint blockade (ICB) treatment. A CSRS scoring system
including four CS genes (MYC, DLX2, EPHA3, and LIMK1) was constructed, which could distinguish the survival outcome,
tumor microenvironment (TME) status, and ICB treatment response of patients with different CSRS score. Nomogram
constructed by CSRS score and metastatic has a high prognostic value for OS. Conclusions. Our study identified a molecular
classification determined by CS-related genes and developed a new CSRS that has potential value in OS immunotherapy
response and clinical outcome prediction.

1. Introduction

Bone sarcoma is a rare component of malignant solid tu-
mors, which are divided into a variety of histological types,
including osteosarcoma (OS), chondrosarcoma, Ewing
sarcoma, and chordoma which are the most common types
of bone malignancies [1]. Distinct histological sarcomas
have different clinical characteristics and results [2]. OS is

one of the most common bone malignancies, accounting for
20% and 40% of all bone cancers, and is highly heteroge-
neous in terms of histological type, tumor site, and age of
onset [2, 3]. Patients with local OS can achieve a 5-year
survival rate of more than 70% through surgery combined
with neoadjuvant and postoperative chemotherapy [4]. If
recurrence or metastasis occurs, the 5-year survival rate of
the patient is less than 20% [5]. Tumor grade is the best
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predictor of metastatic OS and survival at present [6]. A
variety of systemic treatments have been explored for pa-
tients with recurrent or refractory OS, but the prognosis is
not ideal. For most patients with metastatic OS, significantly
improving the prognosis may require targeting a new
process or molecule [5].

Cellular senescence (CS) is a mechanism that limits cell
lifespan and constitutes a barrier to immortalization, which
is characterized by stable cell cycle arrest triggered by stress
[7]. Essentially, irreversible growth stagnation caused by cell
senescence can inhibit precancerous cell proliferation. But,
ironically, senescent cells can also create an immunosup-
pressive microenvironment that promotes malignant phe-
notypes and cancer progression [8]. CS has become an
attractive concept of cancer treatment. 0e complete
mechanism of apoptosis cannot be obtained in most
identified malignant tumors. CS simulates programmed cell
death by excluding cells from the active process of the cell
cycle and becomes an alternative program to replace or
enhance inadequate apoptotic responses [9]. Different CS
phenotypes have been defined according to cell types and
conditions, such as senescence induced by DNA damage,
senescence induced by stress, and senescence induced by
oncogenes [10]. Many genes play a role in CS. For example,
CS releases a variety of secreted proteins, including in-
flammatory cytokines, chemokines, matrix remodeling
factors, and growth factors, which play key but different
roles in the tumor microenvironment [11]. With the advent
of high-throughput technology, many CS genome resources
and tools have been developed, such as SeneQuest [12],
CellAge [13], and Human Cellular Senescence Gene Data-
base (HCSGD) [14]. 0ese resources and tools facilitate the
study of CS in cancer gene signature. A study has con-
structed the CS gene signature by analyzing the CS gene in
CellAge in patients with lung adenocarcinoma, which can be
used as a potential index to evaluate the response to im-
munotherapy and prognosis of patients [15].0e value of CS
gene in evaluating the response and clinical outcome of OS
immunotherapy has not been reported, and an accurate CS-
based risk model has not been developed for OS patients.
0erefore, a definite CS gene signature should be developed
in OS, but due to the complex, dynamic, and heterogeneous
phenotype of senescent cells [16], it is also necessary to
forcefully characterize specific CS subtypes.

In the current study, we aimed to classify the subtypes of
OS by CS-related genes in OS patients and develop a new
gene signature to evaluate the clinical outcome and immune
microenvironment of OS patients, which may provide im-
plications for the study of CS gene in cancer.

2. Materials and Methods

2.1. Source and Pretreatment of Osteosarcoma Sample Data
and Cell Senescence-Related Genes. RNA-seq data and
complete clinical features of OS were obtained from two
databases, including 0erapeutically Applicable Research to
Generate Effective Treatments (TARGET, https://ocg.
cancer.gov/programs/target) and Gene Expression Omni-
bus (GEO, https://www.ncbi.nlm.nih.gov/). 0e former

dataset included 86 primary OS samples, and the sample
data obtained from the latter database belonged to the
GSE21257 data set, including 53 OS samples. CS-related
gene motifs were obtained from CellAge (https://genomics.
senescence.info/cells/) for a total of 279, of which 232 genes
affect replicative CS, 34 genes affect stress-induced CS, and
28 genes affect oncogene-induced CS, and research process
of this study is summarized as Figure S1. Consensus clus-
tering analysis of OS samples is based on CS-related genes.

According to the expression of CS-related genes in
TARGET, univariate Cox regression analysis with thresh-
olds P< 0.05 was carried out by coxph function in R. 0e
expression levels of CS-related genes screened by univariate
Cox regression analysis were applied to consensus clustering
analysis by ConsensusClusterPlus R package to identify new
OS molecular subtypes. A total of 500 iterations were per-
formed, each of which sampled 80% of the tumors. 0e k
value that makes the cumulative distribution function (CDF)
index close to the maximum value after multiple sampling
was the best clustering number, in which the best k was
selected from 2 to 9.0e output results include CDF curve, Δ
region diagram, and consensus matrix.

2.2. Clinicopathological Features in the Molecular Subtypes.
To explore the clinical significance of molecular subtypes in
OS, the relationship between molecular subtypes and
prognosis and clinicopathological features of OS was
studied. R packets “survival” and “survminer” were
employed to generate Kaplan–Meier curves to evaluate the
relationship between molecular subtypes and the prognosis
of OS. Sample features include age, gender, and metastatic
Huvos grade. 0e proportion of each clinical feature in
different molecular subtypes was calculated and compared
between molecular subtypes by log-rank test.

2.3. Assessment of Tumor-Infiltrating Immune Cells (TIICs)
and Tumor Microenvironment (TME) Score in the Molecular
Subtypes. CIBERSORT is an algorithm for characterizing
the tissue composition of 22 human hematopoietic cell
phenotypes, including seven T cell types, naı̈ve and memory
B cells, plasma cells, NK cells, and bone myeloid subsets [17].
0is study evaluated the composition of immune cells of
different subtypes in the two data sets using CIBERSORT.
Estimation of Stromal and Immune cells in Malignant
Tumors using Expression algorithm (ESTIMATE) [18]
utilized expression data to analyze TME of malignant tu-
mors. 0rough ESTIMATE, stromal score, immune score,
and ESTIMATE score in OS TME were parsed here.

2.4. Function Enrichment Analysis within the Molecular
Subtypes. To clarify the key process in which each mo-
lecular subtype is involved, Gene Set Enrichment Analysis
(GSEA) was carried out using clusterProfiler package
[19], and all candidate gene sets in Hallmark database
[20] were used as background sets. False discovery rate
(FDR) q-value <0.05 was considered to be statistically
significant.
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2.5. Expression of Immune Checkpoint and Drug Sensitivity in
the Molecular Subtypes. 0e expression profiles of common
immune checkpoints were downloaded and their expression
differences among molecular subtypes were analyzed. 0e
Tumor Immune Dysfunction and Exclusion (TIDE, https://
tide.dfci.harvard.edu/) algorithm was implemented to
compute TIDE score; lower TIDE score indicated a higher
likelihood of response to immunotherapy.0e half-maximal
inhibitory concentration (IC50) of four chemotherapies in
each OS subtype in TARGET database was estimated via
Genomics of Drug Sensitivity in Cancer (GDSC; https://
www.cancerrxgene.org/) using the R package
“pRRophetic” [21].

2.6. Construction and Validation of Cellular Senescence-
Related Gene Signature. 0e expression of 279 CS-related
genes among OS molecular subtypes identified by consensus
clustering analysis was analyzed, and the differentially
expressed genes (DEGs) among subtypes were screened by
Limma package. 0e overlapping genes of DEGs and
prognostic CS-related genes screened by univariate Cox
were used for further least absolute shrinkage and selection
operator (Lasso) Cox regression analysis to construct cel-
lular senescence-related gene signature (CSRS). 0e calcu-
lation formula of CSRS score was CSRS score�Σcoef (i)×

exp (i). 0e i in the formula represents CS-related genes.
According to CSRS, the CSRS score was calculated and
normalized by Z-score in the samples of TARGET and
GSE21257 data sets, and the generated Kaplan–Meier sur-
vival curve and receiver operating characteristic (ROC)
curve were used as indicators to evaluate the effectiveness
of CSRS.

2.7. Development and Evaluation of CS-Related Clinico-
pathological Nomogram. Univariate and multivariate Cox
regression analysis was performed on CSRS and other
clinical parameters (age, gender, and metastatic) using
“survival” R package, and the parameters with independent
prognostic value were obtained. R packet “rms” generated
nomogram based on the results of independent prognostic
analysis. 0e prediction accuracy and effectiveness of no-
mogram were evaluated by depicting the calibration curve,
the decision curve analysis (DCA), and time-dependent
ROC curves.

2.8. Statistical Analysis. All the statistical data of this study
were analyzed by R software (version 4.0.2, https://www.r-
project.org/). 0e Wilcoxon test assessed differences be-
tween the two groups of continuously distributed variables,
and the Kruskal–Wallis test or chi-square test was used to
compare data with normally and non-normally distributed
variables. 0e comparison of each Kaplan–Meier curve was
completed by the log-rank test. Time-dependent ROC curves
were generated using the “survivalROC” package, consensus
clustering analysis was performed by ConsensusClusterPlus
R package.0e difference analysis was carried out by Limma,
and Lasso Cox regression was performed on “glmnet” R

package. 0e results of immune infiltration assay were
analyzed using ssGSEA, CIBERSORT R package, and ES-
TIMATE R package. 0e correlation matrix diagram was
generated by Pearson correlation analysis. P< 0.05 was set as
significant cutoff value.

3. Results

3.1.$reeMolecular Subtypes Related to CSWere Identified in
OS. Univariate Cox regression analysis of 279CS-related genes
showed that 30 genes were related to OS prognosis. 30 CS-
related genes were inputted into ConsensusClusterPlus, and
consensus clustering analysis was performed on the 86 OS
samples according to the set parameters. When k� 3, the CDF
curve gradually increases steadily, and when OS is divided into
three subgroups, the clustering effect is the best and the stability
within the group is better (Figures 1(a)–1(c)). 0erefore, OS
was classified into three molecular subtypes: C1, C2, and C3.
0ere were significant differences in survival state and survival
time among the three subtypes. 0e survival time of C3 was
significantly longer than that of C1 and C2 (Figures 1(d) and
1(e)). In terms of survival status, the proportion of death
samples in C3 was significantly lower than that in C1 and C2
(Figures 1(f) and 1(g)). 0e single sample GSEA (ssGSEA)
score of the necroptotic signaling pathway in C3 was signifi-
cantly higher than that in the other two subtypes (Figures 1(h)
and 1(i)).

In addition, the clinical characteristics of the three
molecular subtypes in the TARGETand GSE21257 data sets
were compared, there was no significant difference in the
distribution of present age and gender among the three
subtypes of TARGET dataset. 0e proportion of metastatic
patients belonging to C3 was significantly lower than that of
the other two molecular subtypes (Figure S2A). Similar
results were observed in the three molecular subtypes of the
GSE21257 dataset, and there was no significant difference in
the distribution of Huvos grade among the three subtypes in
the dataset (Figure S2B).

3.2. TIICs and TME in $ree CS-Related Subtypes.
CIBERSORT was used to analyze the TIICs of three OS
molecular subtypes. 0ere were significant differences in
plasma cells, CD8 Tcells, and activated CD4 memory Tcells
estimated proportion of three CS-related subtypes in
TARGET. 0e abundance of these three immune cells in C3
subtype was relatively higher than that of the other two
molecular subtypes (Figure 2(a)). In the GSE21257 dataset,
the proportion of plasma cells, CD8 T cells and helper
follicular T cells, and resting CD4 memory T cells were
significantly different among the three subtypes. 0e pro-
portion of the first three cells was the highest in C3, and the
proportion of the fourth cell in C1 and C2 was significantly
higher than that in C3 (Figure 2(c)). 0e ESTIMATE al-
gorithm calculated the TME score of three molecular sub-
types in each OS dataset. 0e results indicated that C3
showed significantly higher stromal score and immune score
and ESTIMATE score than the other two subtypes
(Figures 2(b) and 2(d)). GSEA was also used to explore
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whether the three subtypes were associated with the im-
munomodulatory pathway of OS. Immune-related in-
flammatory response, interferon alpha response, interferon

gamma response, and complement and allograft rejection in
C1 were significantly suppressed relative to C3 (Figure S3A).
In both OS datasets, the above immune-related pathways
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Figure 1: Establishment of molecular subtypes based on CS-related genes in OS: (a) CDF curve, each color represents a specific cluster. (b)Δ
region diagram of consensus clustering. (c) Clustering heat map of samples at k� 3. (d) 0e trend of survival time of the three subtypes in
TARGET. (e)0e survival curve of the three subtypes in the GSE21257 dataset. (f )0e survival status of the samples in the three subtypes of
TARGET. (g) Survival and mortality ratios of the three subtypes in the GSE21257 dataset. (h) Necroptotic signaling pathway ssGSEA score
in three subtypes of TARGETdataset. (i) Necroptotic signaling pathway score of three subtypes in GSE21257 dataset. ∗P< 0.05, ∗∗P< 0.01,
∗∗∗P< 0.001, ∗∗∗∗P< 0.0001, and ns means no significant difference.
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showed normalized enrichment scores (NESs) of less than
0 in C1 (Figure S3B).

3.3. Immunotherapy Response or Drug Sensitivity Assessment
for$reeCS-RelatedSubtypes. Immune checkpoint blocking
(ICB) is a commonly used immunotherapy. 0e expression
analysis for several immune checkpoints [22] in three CS-
related subtypes of two OS datasets showed that there were
significant differences in the expression of a considerable
number of immune checkpoints among the three subtypes
(Figures 3(a) and 3(b)). TIDE algorithm was employed to

evaluate the ICB responsiveness of three CS-related subtypes
in two OS datasets. TIDE algorithm measured cancer-
associated fibroblasts (CAFs) score, myeloid-derived sup-
pressor cells (MDSCs) score, and M2 subtype of tumor-
associated macrophages (TAMs) score, and two different
mechanism scores of tumor immune escape, including the
dysfunction score of tumor-infiltrating cytotoxic T lym-
phocytes (CTLs) (dysfunction) and the rejection score of
CTLs by immunosuppressive factors (exclusion), as well as
TIDE score for the molecular subtypes. For the three CS-
related subtypes in TARGET, except for TIDE score, the
other five scores showed significant differences among the
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Figure 2: TIICs and TME in in three OSmolecular subtypes: (a) TIICs proportion of three CS-related subtypes in TARGET. (b)0ree TME
scores of CS-related subtypes measured by ESTIMATE algorithm. (c) Proportion of 22 species of TIICs in three subtypes of GSE21257
dataset. (d) Stromal score, immune score, and ESTIMATE score in three OS molecular subtypes of GSE21257 dataset. Chi-square test,
∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001, ∗∗∗∗P< 0.0001, and ns means no significant difference.
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Figure 3: Immunotherapy response or drug sensitivity assessment for three CS-related subtypes: (a, b) the expression of immune
checkpoints in three CS-related subtypes of TARGET and GSE21257. (c, d) Comparison of several scores calculated by TIDE in TARGET
data and GSE21257 data sets among three OS molecular subtypes. (e) 0e IC50 of cisplatin, doxorubicin, methotrexate, and paclitaxel in
three OS molecular subtypes.
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three subtypes (Figure 3(c)). 0ere were significant differ-
ences in all six scores of the three OS molecular subtypes in
the GSE21257 dataset (Figure 3(d)). According to the per-
formance of all these scores in the three OS subtypes, we
speculated that C3 was more likely to respond to ICB
treatment. 0e IC50 of four chemotherapeutic drugs for OS,
cisplatin, doxorubicin, methotrexate, and paclitaxel, in three
OS molecular subtypes was predicted. 0e sensitivity of the
three CS-related subtypes to doxorubicin was significantly
different. C1 was significantly associated with doxorubicin
drug sensitivity, and C3 was significantly associated with
doxorubicin drug resistance (Figure 3(e)).

We also explored the immune response or drug sen-
sitivity of three CS-related subtypes in another osteosar-
coma dataset, GSE39055. In this data set, there were also
significant differences in survival rate among three CS-
related subtypes.0e survival rate order of subtypes was the
same as that of subtypes in the other two data sets
(Figure S4A). 0e symbolic immune checkpoints are as-
sociated with ICB therapy, including CD274 (PD-L1),
CTLA4, and PDCD1(PD-1), with significant differences in
expression among the three subtypes (Figure S4B). 0e
responses of three CS-related subtypes in GSE39055 to
cisplatin, doxorubicin, methotrexate, and paclitaxel were
evaluated. 0ere was a significant difference of three CS-
related subtypes of estimated IC50 for doxorubicin. 0e C1
that adopted chemotherapy seemed to express more sen-
sitivity (Figure S4C). Construction and verification
of CSRS.

0rough the intersection of 30 prognostic CS-related
genes and DEGs among molecular subtypes, 8 genes were
obtained. 7 of the 8 genes were identified by Lasso analysis
(Figures 4(a) and 4(b)). 0e multivariable stepwise Cox
PHR analysis selected four genes to construct CSRS, in-
cluding two risk genes (MYC and DLX2) and two pro-
tective genes (EPHA3 and LIMK1) (Figure 4(c)). CSRS
endowed each sample with CSRS score and normalized
them with Z-score, sorted according to the normalized
CSRS score of all OS samples in TARGET, and generated
the survival state map of the sample and the expression heat
map of four CS-related genes. We observed from the figure
that the higher the CSRS, the greater the likelihood of
death. 0e expression of two risk genes increased with the
increase of CSRS score, while the expression of two pro-
tective genes decreased with the increase of CSRS score
(Figure 4(d)). All normalized CSRS scores in TARGETwere
divided into two groups with a critical value of 0. Patients
with normalized CSRS score >0 were classified as the “high-
risk group,” otherwise, as the “low risk group.” CSRS score
could clearly distinguish between survival time and survival
rate of samples in TARGET (Figure 4(e)). 0e area under
the ROC curve for 1-year, 3-year, and 5-year survival rates
was 0.93, 0.77, and 0.8, respectively (Figure 4(f )). CSRS
score could also clearly distinguish the survival outcomes of
patients with different risks in GSE21257 datasets
(Figure S5A). 0e AUC of 1-year, 3-year, and 5-year
survival were 0.74, 0.83, and 0.72, respectively
(Figure S5B). 0erefore, the accuracy of CSRS in predicting
the survival result of OS is good.

3.4. Evaluation of the Effectiveness of CSRS in Clinical
Application. We drew violin diagrams with Wilcoxon test
and Kruskal test to compare CSRS score with different
clinicopathological parameters in TARGETdataset. CSRS
scores differed significantly within age, gender, TERM,
and CS-related molecular subtype groups (Figure 5(a)). To
further clarify the effectiveness of CSRS in clinical ap-
plication, stratified survival analysis was carried out. 0e
results showed that CSRS score maintained its predictive
ability in all clinical subgroups (age ≤ 14, age > 14, male,
female, and no metastatic). 0e survival rate of high CSRS
score was significantly lower than that of low CSRS
(Figure 5(b)).

3.5. Evaluation of TIICs, TME Score of CSRS, and the Cor-
relation between CSRS and KEGG Signaling Pathway. 0e
estimated proportion of 22 TIICs based on CSRS score
showed that 21 TIICs did not show significant difference in
estimated proportion between the two CSRS score groups
(Figure 6(a)). Correlation analysis also found no significant
correlation between CSRS score and these TIICs
(Figure 6(b)). 0e stromal score, immune score, and ES-
TIMATE score determined by ESTIMATE were related to
the lower CSRS score (Figure 6(c)). 0e correlation analysis
of CSRS and necroptotic signaling pathway showed that
there was a significant negative correlation between them
(Figure 6(d)). SsGSEA based on OS samples in TARGET
dataset showed that CSRS score had a significant strong
correlation with all KEGG paths in the matrix graph
(Figure 6(e)).

3.6. Determination of Immunotherapy and Chemotherapeutic
Drug Response Based on CSRS Score. Based on CSRS score,
we compared the immune checkpoint expression between
the two risk groups. Among all the immune checkpoints
examined [22], the expression of BTLA, CD200R1, CD40,
CD40LG, HAVCR2, LAIR1, LGALS9, TNFRSF14,
TNFSF14, and TNFSF15 in low CSRS score group was
significantly higher than that in high CSRS score group
(Figure 7(a)). 0e MDSC score and M2.TAM score of high
CSRS score group were significantly higher than those of low
CSRS score group, and the CAF score and dysfunction of
high CSRS score group were significantly lower than those of
low CSRS score group (Figure 7(b)), and CSRS score could
also significantly distinguish the degree of response of OS
patients to doxorubicin (Figure 7(c)).

3.7. Development and Evaluation of Nomogram Combined
CSRS Score and Clinicopathological Features Associated with
OS Prognosis. 0e clinicopathological features and CSRS
score of OS samples given in TARGET were included in
univariate Cox regression analysis, and multivariate Cox
regression analysis was performed to determine the in-
dependent prognostic factor CSRS score and metastatic of
OS (Figures 8(a) and 8(b)). 0e selection of these two in-
dependent prognostic variables generated a nomogram,
which showed that CSRS score had the greatest influence on
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the survival prediction of nomogram (Figure 8(c)). No-
mogram’s prediction curves for OS survival at 1, 3, and
5 years were close to the actual observational calibration
curves (Figure 8(d)). DCA showed that nomogram and
CSRS score had the greatest value in predicting clinical
prognosis (Figure 8(e)). From the time-dependent ROC
curve, the AUC predicted by CSRS score and nomogram for
OS 1-, 3-, and 5-year survival were very close and much
larger than that of metastatic, gender, or age (Figure 8(f)).

4. Discussion

CS is an essential cellular process in cancer. Previous studies
have revealed the contribution of CS to the molecular classi-
fication of two cancers. Based on 17 genes prognostic of se-
nescence, a study identified two distinct molecular types of
colorectal cancer using ConsensusClusterPlus [23]. 0e other
bioinformatics analysis of clear cell renal cell carcinoma
(ccRCC) used unsupervised consensus clustering to identify
three aging subtypes in ccRCC samples of TCGA based on
GSVA enrichment scores of aging-related biological processes
[24]. However, the identification and characterization of the
cellular senescence subtypes of OS are still lacking [25]. In this
study, 30 CS-related genes from CellAge divided OS into three
CS-related subtypes, and the relationship between each of the
30 CS-related genes that define the three osteosarcoma sub-
types has also not been reported. Of all the CS-related genes
analyzed, 4 were identified to construct gene signature, which
could predict the prognosis and clinical outcome of OS patients
and reflect TME and treatment response.

Immunophenotypic analysis can be used as a very
powerful tool to help better understand the complexity of
immune response in osteosarcoma and the use of immu-
notherapy in this malignant tumor [26]. We analyzed the
TIICs and TME of different CS subtypes and confirmed that
CS showed the highest proportion of plasma cells and CD8
T cells and activated CD4 memory T cells and the highest

stromal score, immune score, and comprehensive TME
score. Plasma cells have been reported to be associated with
good outcomes for a variety of cancers [27]. Similarly, high
levels of CD8 Tcells were associated with high survival rates
in triple negative breast cancer [28]. Our analysis of the
clinical results of three CS-related subtypes confirmed that
C3 had the best prognosis, in addition to having the lowest
probability of metastasis, and more than that, based on the
expression of immune checkpoints in the three CS-
associated subtypes and several scores calculated by TIDE,
C3 seemed to be more likely to respond to ICB treatment.

In addition to providing insight into the CS-related
subtypes, combining their analysis with biomarker identi-
fication may provide avenues for further cancer CS research,
and ultimately improve the prognosis of patients [5]. In this
study, four CS-related genes were constructed by using Lasso
Cox algorithm, and the model was verified in 53 samples of
GSE21257. Four genes in CSRS play a role in affecting cell
senescence or malignant behavior of tumor through various
mechanisms. 0e expression of MYC is significantly cor-
related with metastasis and poor prognosis of OS [29]. Signal
transduction of super enhancer driven by MYC is an im-
portant mechanism of OS [30]. MYC activation induces the
expression of p16 (INK4a) and p21 (Cip1) and resulted in
Cdk2-deficient CS [31]. Inhibition ofMYC reprograms TME
by recruiting T lymphocytes and activating the CD40/
CD40L system in osteosarcoma [32]. Overexpressed distal-
less homeobox 2 (DLX2) is associated with adverse clinical
outcomes in hepatocellular carcinoma [33] and gastric ad-
enocarcinoma [34]. DLX2 reduces CS by regulating p53
function [35]. Eph receptor A3 (EPHA3) plays a tumor
suppressive role in esophageal squamous cell carcinoma
[36], and the loss of its expression is related to lymph node
metastasis and TNM staging of colorectal cancer [37]. 0is
molecule regulates multidrug resistance in lung cancer
through the PI3K/BMX/STAT3 signaling pathway [38]. LIM
kinase 1 (LIMK1) plays a key role in multidrug resistance of
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OS [39]. However, there is no publication elucidating the
application of these four genes to CSRS in OS.

0e CSRS we developed is of great significance for the
determination of clinical results in patients with OS. On
the one hand, CSRS could predict the prognosis of pa-
tients with different clinical features. 0e survival time of
samples with high CSRS score was significantly shorter
and the survival rate was significantly lower, so high-risk
patients should receive more frequent clinical monitoring
to prevent the deterioration of OS. On the other hand, we
also detected a significant correlation between CSRS score

and a variety of known predictors of ICB treatment (the
expression of immune checkpoints and several types of
TIDE score). What should be of concern is that CSRS
score could also be used to screen patients suitable for
doxorubicin treatment.

0ere are still several limitations in our research. First
of all, the results of this study were obtained only through
bioinformatics analysis of two common datasets and need
to be verified from a multicenter queue. Prospective clinical
trials are also necessary. Secondly, the regulatory mecha-
nism of CSRS in OS has not been studied in detail and needs
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Figure 5: Evaluation of the effectiveness of CSRS in clinical application: (a) CSRS score of different clinicopathological parameters in
TARGET dataset. (b) Survival curves for subgroups stratified by clinical characteristics.

10 Journal of Oncology



Es
tim

at
ed

 P
ro

po
rt

io
n

ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns * ns ns ns ns

0.0

0.2

0.4

0.6

0.8
B_

ce
lls

_n
ai

ve

B_
ce

lls
_m

em
or

y

Pl
as

m
a_

ce
lls

T_
ce

lls
_C

D
8

T_
ce

lls
_C

D
4_

na
iv

e

T_
ce

lls
_C

D
4_

m
em

or
y_

re
st

in
g

T_
ce

lls
_C

D
4_

m
em

or
y_

ac
tiv

at
ed

T_
ce

lls
_f

ol
lic

ul
ar

_h
elp

er

T_
ce

lls
_r

eg
ul

at
or

y_
.T

re
gs

.

T_
ce

lls
_g

am
m

a_
de

lta

N
K_

ce
lls

_r
es

tin
g

N
K_

ce
lls

_a
ct

iv
at

ed

M
on

oc
yt

es

M
ac

ro
ph

ag
es

_M
0

M
ac

ro
ph

ag
es

_M
1

M
ac

ro
ph

ag
es

_M
2

D
en

dr
iti

c_
ce

lls
_r

es
tin

g

D
en

dr
iti

c_
ce

lls
_a

ct
iv

at
ed

M
as

t_
ce

lls
_r

es
tin

g

M
as

t_
ce

lls
_a

ct
iv

at
ed

Eo
sin

op
hi

ls

N
eu

tro
ph

ils

(a)

ES
TI

M
AT

ES
co

re

Es
tim

at
ed

 P
ro

po
rt

io
n

category
High

Low

**** *** ****

−2000

0

2000

4000

St
ro

m
al

Sc
or

e

Im
m

un
eS

co
re

(b)

***

*

*
.

***
*

**

−log10 (p value)

−4.3e−07 1.1 2.2 3.3 4.4

correlation

−0.21 −0.053 0.11 0.26 0.42

B_cells_naive
B_cells_memory
Plasma_cells
T_cells_CD8
T_cells_CD4_naive
T_cells_CD4_memory_resting
T_cells_CD4_memory_activated
T_cells_follicular_helper
T_cells_regulatory_.Tregs.
T_cells_gamma_delta
NK_cells_resting
NK_cells_activated
Monocytes
Macrophages_M0
Macrophages_M1
Macrophages_M2
Dendritic_cells_resting
Dendritic_cells_activated
Mast_cells_resting
Mast_cells_activated
Eosinophils
Neutrophils
CSRS.score

(c)

CS
RS

.S
co

re

−1

0

1

2

3

0.0 0.3 0.6
necroptotic signaling pathway ssgsea score

p =1.72e−04, rPearson = −0.39 ^

(d)

Figure 6: Continued.

Journal of Oncology 11



***
*** ** ***
*** *** ***
*** *** *** ***
*** ** *** *** ***
** *** *** *** *** ***
*** * ** *** *** *** *** ***
** . *** *** *** *** *** *** ***

*** *** *** *** ** ** *** ***
*** *** *** *** * * ** *** *** **
*** *** *** *** * *** *** *** *** *** ***

* *** *** *** *** *** *** *** *** *** *** *** ***
* *** *** *** *** *** *** *** *** *** *** *** *** ***

*** *** *** *** *** *** *** *** *** *** *** *** *** ***
*** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

*** ** *** *** *** *** *** *** *** *** *** *** ** *** *** *** ***
*** ** *** *** *** *** *** *** *** *** ** *** *** *** *** ***
** ** ** *** *** *** *** *** ** ** *** *** * ** * ***
** ** *** *** *** *** *** *** * * ** *** * ***
** * *
** ** ** *** ** *** ** * *** ** *** ** *** ** ** ** ** *** *** *** ** **

−log10 (p value)

5 5.2 5.5 5.8 6
correlation

−1 −0.5 0 0.5 1

KEGG_SNARE_INTERACTIONS_IN_VESICULAR_TRANSPORT
KEGG_GAP_JUNCTION
KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION
KEGG_FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS
KEGG_B_CELL_RECEPTOR_SIGNALING_PATHWAY
KEGG_COMPLEMENT_AND_COAGULATION_CASCADES
KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY
KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION
KEGG_APOPTOSIS
KEGG_JAK_STAT_SIGNALING_PATHWAY
KEGG_RENAL_CELL_CARCINOMA
KEGG_VASCULAR_SMOOTH_MUSCLE_CONTRACTION
KEGG_MELANOMA
KEGG_ACUTE_MYELOID_LEUKEMIA
KEGG_PANCREATIC_CANCER
KEGG_REGULATION_OF_ACTIN_CYTOSKELETON
KEGG_FOCAL_ADHESION
KEGG_RENIN_ANGIOTENSIN_SYSTEM
KEGG_GLYCOSAMINOGLYCAN_DEGRADATION
KEGG_PRIMARY_BILE_ACID_BIOSYNTHESIS
KEGG_NICOTINATE_AND_NICOTINAMIDE_METABOLISM
KEGG_STEROID_BIOSYNTHESIS
CSRS.score

(e)

Figure 6: Evaluation of TIICs, TME score of CSRS, and the correlation between CSRS and KEGG signaling pathway: (a) estimated
proportion of 22 TIICs based on CSRS score in TARGET. (b) 0e correlation matrix between CSRS and 22 TIICs in CIBERSORT. (c)
Pearson correlation analysis of CSRS and necroptotic signaling pathway. (d) Correlation analysis between KEGG pathway and CSRS score
with correlation greater than 0.4.
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Figure 7: Continued.
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Figure 7: Determination of immunotherapy and chemotherapeutic drug response based on CSRS score: (a) analysis of immune checkpoint
difference between two CSRS score groups in TARGET. (b) Six score differences calculated by TIDE based on CSRS score. (c) Sensitivity
analysis of cisplatin, doxorubicin, methotrexate, and paclitaxel based on CSRS score.
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Figure 8: Development and evaluation of nomogram combined CSRS score and clinicopathological features associated with OS prognosis:
(a) univariate Cox regression analysis showed the correlation between clinicopathological features and CSRS score. (b) Independent
prognostic factors of OS were screened by Cox regression analysis. (c) Nomogram combining CSRS score and metastatic. (d) Nomogram
assessed the calibration curves for OS survival at 1, 3, and 5 years. (e) Clinical decision-making benefits of the nomogram, CSRS score, and
clinicopathologic feature. (f ) ROC curve of CSRS score, nomogram, and clinicopathologic feature to predict 1–5-year survival.
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to be explored by in vitro cell and in vivo solid tumor
experiments.

5. Conclusions

In summary, our study identified a molecular classification
determined by CS-related genes, dividing OS into three CS-
related subtypes with unique clinical outcomes and TME
status. A CSRS score model was developed to provide po-
tential indicators for clinical prognosis and immunotherapy
in patients with OS.
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