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Nicotine aversion is mediated by GABAergic
interpeduncular nucleus inputs to laterodorsal
tegmentum
Shannon L. Wolfman1, Daniel F. Gill1, Fili Bogdanic2, Katie Long3, Ream Al-Hasani4, Jordan G. McCall4,5,6,

Michael R. Bruchas5,6 & Daniel S. McGehee1,2

Nicotine use can lead to dependence through complex processes that are regulated by both

its rewarding and aversive effects. Recent studies show that aversive nicotine doses activate

excitatory inputs to the interpeduncular nucleus (IPN) from the medial habenula (MHb),

but the downstream targets of the IPN that mediate aversion are unknown. Here we show

that IPN projections to the laterodorsal tegmentum (LDTg) are GABAergic using optoge-

netics in tissue slices from mouse brain. Selective stimulation of these IPN axon terminals in

LDTg in vivo elicits avoidance behavior, suggesting that these projections contribute to

aversion. Nicotine modulates these synapses in a concentration-dependent manner, with

strong enhancement only seen at higher concentrations that elicit aversive responses in

behavioral tests. Optogenetic inhibition of the IPN–LDTg connection blocks nicotine condi-

tioned place aversion, suggesting that the IPN–LDTg connection is a critical part of the

circuitry that mediates the aversive effects of nicotine.
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N icotine addiction remains a major public health problem
worldwide, and treatments for smokers who want to quit
remain only marginally effective1. The reinforcing effects

of nicotine are well documented in both humans and laboratory
animals2, but at higher doses, nicotine also has intensely aversive
effects2,3. In fact, humans and laboratory animals regulate nico-
tine intake levels when self-administering4,5 and will maintain
behaviors that prevent the administration of high nicotine doses2.
Initial responses to nicotine may impact future dependence. A
pleasurable first experience correlates with heavier smoking and
higher rates of nicotine dependence than does an aversive first
experience6–10. Similarly, a less aversive first experience may
promote further use, supporting the transition from use to abuse
and dependence6,11. Therefore, the balance between these initial
rewarding and aversive effects may modulate subsequent nicotine
use, leading to the development and maintenance of nicotine
addiction6,8,9,12.

The reinforcing effects of nicotine are mediated by high-
affinity nicotinic acetylcholine receptors (nAChRs) expressed in
several brain areas, most notably the mesoaccumbens dopamine
system13. Within that circuitry, nAChR-induced increases
in neuronal excitability and synaptic plasticity are critical for
the reinforcing effects of the drug14–17. At higher nicotine
concentrations, aversive effects are elicited, and recent studies
suggest that lower-affinity nAChR subtypes expressed in the
medial habenula (MHb) and its target the interpeduncular
nucleus (IPN) stimulate distinct cellular mechanisms and
pathways mediating avoidance behaviors18–22. In fact, the dis-
covery of genetic variants in the CHRNA5-CHRNA3-CHRNB4
gene cluster associated with heavy smoking and higher
relapse risk in humans23–25 has led to enhanced focus on the
MHb and IPN as a critical relay in the control of nicotine
dependence18,22,26–29.

Both the MHb and IPN densely express many of the known
nAChR subunit genes26,30, and several important studies have
shown that increased activation of the MHb or IPN mediates
aversion to high nicotine doses18,22,28,30. For example, knocking
out the α5 nAChR subunit in mice, which limits the effects of
high nicotine doses on MHb–IPN activity, promotes self-
administration of high nicotine doses that wild-type mice do
not administer, and this difference was eliminated by α5 rescue
specifically in the MHb22. α5 knockout mice also develop a
conditioned place preference to high doses of nicotine that wild-
type mice do not, and they do not develop conditioned place
aversion (CPA) to high doses of nicotine that wild-type mice
do31,32. Decreasing activation of IPN neurons by knocking out
the glucagon-like peptide-1 (GLP-1) receptor also results in self-
administration of higher nicotine doses than wild-type mice
administer28.

In line with these findings, high, aversive doses of nicotine
activate the IPN while lower doses fail to do so22, and enhancing
nicotine-induced excitation of MHb neurons by overexpressing
β4 subunits of the putative low-affinity nAChRs results in CPA to
a dose of nicotine that is neutral in control animals18.
These studies suggest the expression of low-affinity nAChRs in
the MHb and IPN that are not significantly activated by
rewarding nicotine doses. Thus the MHb–IPN connection may
dictate the upper limits of nicotine intake, likely via signals
to other brain regions. Although recent anatomical investigations
have clarified key IPN projections33–35, the relevant downstream
targets of the IPN and the mechanisms underlying aversion sig-
naling remain unclear.

Here we explore the role of synaptic connections from the IPN
to the laterodorsal tegmentum (LDTg) in nicotine aversion. The
LDTg sends strong excitatory inputs to the ventral tegmental
area (VTA) dopamine system, and these projections have been

implicated in dopamine neuron firing rates, reward-related
behavior, and addiction-related synaptic plasticity36–39. We find
that optogenetic stimulation of the synaptic connections from
the IPN to the LDTg are GABAergic and that selective activation
of these synapses in vivo elicits avoidance behavior. These
IPN–LDTg synaptic connections are enhanced by high con-
centrations of nicotine, but not by lower, rewarding concentra-
tions. Optogenetic inhibition of the IPN–LDTg connection blocks
CPA to a high dose of nicotine. Together, our findings suggest
that the IPN–LDTg connection is a critical part of the circuitry
that mediates the aversive effects of nicotine.

Results
Activation of IPN neurons results in behavioral avoidance.
Although there is evidence that IPN activation elicits
aversion18,22,40, some contradictions exist41,42. To test this, we
expressed channelrhodopsin (ChR2) in the IPN, using a pan-
neuronal promoter. ChR2 expression was confirmed visually and
functionally with electrophysiology (Fig. 1a, b, Supplementary
Fig. 1). We then placed fiber optic implants directly above the
IPN (Fig. 1c, Supplementary Fig. 2A) and optogenetically sti-
mulated IPN neurons during a real-time preference test (RTPT)
(Fig. 1). Strong (20 Hz) IPN stimulation resulted in significant
behavioral avoidance (Fig. 1d–g), while weak (1 Hz) stimulation
did not, suggesting that strong, cell-type-independent activation
of IPN neurons en masse results in aversion.

Functional IPN inputs to LDTg are GABAergic. To determine
which IPN projection target might be relevant for aversion, we
characterized the connection between the IPN and the LDTg30

using brain slice electrophysiology. The LDTg performs many
functions, including promoting reward via excitatory projections
to VTA dopamine neurons37. Heterogeneous neurotransmission
from IPN to LDTg has been reported, but the nature of this
connection has not yet been functionally assessed33.

We expressed ChR2 non-specifically in IPN neurons and
waited 6 weeks to ensure terminal expression of the protein. We
recorded from LDTg neurons that were retrogradely labeled from
the VTA using fluorescent microbeads (Fig. 2a, b, Supplementary
Figs. 1, 3A-C). Photo-stimulation of IPN terminals in the LDTg
(Supplementary Fig. 3D) evoked synaptic currents that were
blocked by the GABAA antagonist bicuculline (20 µM) and had
reversal potentials close to ECl (Fig. 2b–d). Therefore, IPN inputs
to VTA-projecting LDTg neurons are GABAergic.

IPN inputs to LDTg mediate aversion. To test the role of this
connection in aversion, we again used the RTPT, this time sti-
mulating only the IPN terminals in the LDTg (Fig. 2e). ChR2 was
expressed non-specifically in IPN neurons, and fiber optic
implants were placed unilaterally above the LDTg (Fig. 2e, Sup-
plementary Figs. 1, 4A). Photo-stimulation at 20 Hz of IPN
terminals in the LDTg resulted in significant behavioral avoidance
(Fig. 2g–i), consistent with the LDTg being an important target of
the IPN in mediating aversion. Weaker, 1 Hz stimulation of IPN
terminals in the LDTg did not induce behavioral avoidance,
suggesting that strong activation of this connection is required to
elicit aversion.

Nicotine modulates IPN inputs to LDTg. As high nicotine doses
can activate the IPN6, we tested whether nicotine could modulate
IPN–LDTg synapses. ChR2 was expressed non-specifically in IPN
neurons, and optically-evoked inhibitory post-synaptic currents
(oIPSCs) were measured in VTA-projecting LDTg neurons
(Fig. 3a, Supplementary Figs. 3A-D) as various nicotine con-
centrations (10 μM, 1 μM, and 100 nM) were applied to the slices.
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Nicotine 10 μM was chosen to provide a strong activation of low-
affinity nAChRs. A dose of 1 μM corresponds to serum levels of
nicotine in mice following an aversive nicotine dose43, and 100
nM nicotine corresponds to serum concentrations in smokers44.
Both 10 μM and 1 μM nicotine significantly increased oIPSC
amplitudes, while 100 nM nicotine did not (Fig. 3a, b, Supple-
mentary Fig. 5D). Additionally, 10 μM nicotine resulted in a
higher prevalence of nicotine-induced increases in eIPSC ampli-
tude than 100 nM (Fig. 3c, Supplementary Figs. 5E-G). Thus, high
aversive nicotine concentrations enhance the IPN–LDTg con-
nection in our recordings, while a lower rewarding concentration
does not.

These results are in line with our finding that strong activation
of IPN inputs to LDTg promotes aversion, as high concentrations
of nicotine that condition aversion also significantly activate this
connection. Similarly, weaker, more tonic-like activation of IPN
inputs to LDTg does not elicit aversion, and low concentrations of
nicotine that do not correspond to aversion do not significantly
impact this connection.

Presynaptic β2 nAChRs mediate nicotine effects in LDTg.
Next, we investigated the mechanism by which nicotine mod-
ulates this synapse. Paired pulse ratios (PPR) of oIPSCs decreased
after application of 1 μM nicotine (Fig. 3d, e), indicating that
nicotine enhances release probability at this synapse. Miniature
IPSCs (mIPSCs) recorded from back-labeled LDTg neurons show
that 10 μM and 1 μM nicotine application significantly enhance
mIPSC frequency, while 100 nM does not (Fig. 3f, g, Supple-
mentary Figs. 6A-D).

The prevalence of nicotine-induced increases in mIPSC fre-
quency was also higher for 10 μM than for 100 nM nicotine
(Fig. 3h, Supplementary Figs. 6B-D). No nicotine concentration
affected mIPSC amplitudes (Fig. 3i, Supplementary Fig. 7), and
inclusion of 10 mM 1,2-bis(2-aminophenoxy)ethane-N,N,N′,
N′-tetraacetic acid (BAPTA) in the recording pipette did not
block the nicotine-induced increase in mIPSC frequency (Fig. 3j,
Supplementary Figs. 6A, E). All of these findings are consistent
with activation of a low-affinity13, pre-synaptic nAChR on IPN
terminals in the LDTg.
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Fig. 1 Optogenetic activation of IPN neurons elicits place avoidance. a Upper: Schematic of recording set-up; lower: light-evoked current (1 s, 100 pA scale)
and action potentials in IPN neurons (50ms, 10 mV scale). b Fluorescent image of IPN ChR2 expression (green) and proximal VTA (magenta TH staining)
(250 μm scale). c Timeline and schematic of experimental set-up. d Preferences for photo-stimulation side vs. no stimulation side in RTPT with 20 Hz
stimulation; unpaired t-test (two-tailed), t12= 2.922, P= 0.0128, n= 7 mice per group. e Representative heat maps of animal positions during 20 Hz and 1
Hz stimulation. f Time spent (5 min bins) on photo-stimulation side (blue box) and no-stimulation side (grey box) at 20 Hz and g at 1 Hz. Data presented as
mean ± SEM, * P < 0.05
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We next investigated the subunit compositions of these
nAChRs pharmacologically, testing nAChR antagonist effects
on the 10 μM nicotine-induced increase in mIPSC frequency.
The non-selective antagonist mecamylamine (MEC (N,2,3,3-
tetramethylbicyclo[2.2.1]heptan-2-amine hydrochloride); 50 μM)
blocked the increase, demonstrating that nAChRs mediate these
effects (Fig. 2k, l, Supplementary Fig. 8B). The IPN has high α3β4
nAChR expression, which have a relatively low affinity for
nicotine26,45. However, the selective α3β4 antagonist, SR-16584
(SR, 25 μM), had no effect on the nicotine-induced increase in
mIPSC frequency (Fig. 3k,l), nor did the selective α7 nAChR
antagonist, α-Bungarotoxin (αBTX, 50 nM) (Fig. 3m, n, Supple-
mentary Fig. 8C, D). Only bath application of dihydro-β-
erythroidine hydrobromide (DhβE, 500 nM), the β2-containing
nAChR antagonist, partially inhibited nicotinic enhancement of
mIPSC frequency (Fig. 3k,l, Supplementary Fig. 8A), indicating
that nAChRs on IPN terminals in the LDTg contain β2 subunits.

Inhibition of IPN terminals in LDTg blocks nicotine CPA. To
test whether the IPN–LDTg connection is important for nicotine

CPA specifically, we inhibited IPN terminals in the LDTg using
archaerhodopsin (ARCH; Fig. 4a, Supplementary Fig. 9D). ARCH
was expressed non-specifically in IPN neurons, and expression
was confirmed visually and electrophysiologically (Fig. 4a, Sup-
plementary Fig. 1). We tested for blockade of nicotine-induced
CPA following alternating conditioning sessions during which
either an aversive nicotine dose (1.5 mg kg−1) was paired with
light stimulation on one side of the chamber or vehicle and
no light delivery was paired with the opposite side (Fig. 4a).
Preference scores (time spent on nicotine side−time spent on
vehicle side) were normalized to the initial preference scores
by subtracting the mean initial preference score of the group
from each individual preference score. This conserves variability
in pretest scores and yields positive numbers for preference
and negative numbers for aversion in the posttest scores. Statis-
tical analyses were done on the raw preference scores (Supple-
mentary Fig. 9A), but normalized data are shown here for clarity.
Using a two-way repeated-measures (RM) analysis of variance
(ANOVA), we found no significant effect of time or group but did
find a significant interaction between the two measures (Time:
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F1, 19= 2.975, P= 0.1008; Group: F1, 19= 0.01494, P= 0.9040;
Interaction: F1, 19= 9.109, P= 0.0071). Bonferroni post-hoc
test for multiple comparisons revealed that enhanced yellow
fluorescent protein (EYFP) controls developed significant

aversion to the nicotine-paired side (t19= 3.842, P= 0.0022),
while ARCH mice on average did not (t19= 0.8218, P= 0.8428)
(Fig. 4b, c). Additionally, ARCH stimulation significantly atte-
nuated the nicotine-induced conditioned aversion observed in the
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EYFP mice (Fig. 4d). These data support the idea that the
IPN–LDTg connection mediates the aversive effects of high
nicotine doses.

To control for the possibility that terminal inhibition alone was
rewarding, we inhibited IPN terminals without nicotine and
found no preference for the light-paired side (Supplementary
Fig. 9B, C, E), indicating that terminal inhibition is not rewarding.
In fact, ARCH mice tended to avoid the light-paired side, though
this effect was not statistically significant (Supplementary Fig. 9B,
C, E). This paradoxical trend led us to investigate the effects of
ARCH activation on IPN–LDTg synaptic transmission. Sponta-
neous IPSCs (sIPSCs) were recorded in VTA-projecting LDTg
neurons (Supplementary Fig. 9G-I). For the first 30 s, light
delivery effectively inhibited sIPSCs, but at longer durations,
sIPSC frequency increased, consistent with recent reports that
ARCH terminal inhibition enhances spontaneous neurotransmit-
ter release but inhibits evoked release46,47. Most IPN neurons do
not fire tonically48, so ARCH enhancement of spontaneous
GABAergic release from IPN terminals onto LDTg cells elicits an
aversive response. However, in the presence of high nicotine
doses, IPN neuron firing rate increases6, and we expect ARCH to
effectively inhibit this action potential-dependent release. As the
high nicotine dose also activates reward circuitry, the net effect is
a shift in behavior away from aversion.

Inhibition of IPN terminals in LDTg is anxiolytic. Clearly, the
IPN–LDTg connection did not evolve to mediate the aversive
effects of nicotine. Nicotine can have anxiogenic effects, especially
at high doses2, so we tested whether this projection contributes to
a general anxiety state using a modified light–dark box. IPN
terminal inhibition in the LDTg with ARCH reduced latencies to
enter the bright side of the apparatus (Fig. 4e). As the latencies
were < 30 s, we are confident that ARCH effectively inhibited
terminals during testing (Supplementary Fig. 9G-I). Thus, the
IPN–LDTg connection contributes to the expression of anxiety,
which may contribute to nicotine-induced aversion.

Discussion
We have identified and clarified the nature of an important
inhibitory IPN projection to the LDTg and demonstrated its
behavioral relevance. Modulating this connection can shift the
balance between reward and aversion, supporting the larger
hypothesis that aversion can regulate nicotine-related
behaviors18,22,40. Previous studies have focused on the MHb
and its effects on the IPN as the mediator of nicotine aversion,

but the projection from IPN to LDTg is an important site where
nicotine can alter synapses and behavior.

It should be noted that there are many subnuclei within the
IPN, and each of these receives unique projections from the
MHb and other regions, with distinct projections to different
target regions in a cell-specific manner21,33,34,49,50. Our goal was
to establish that GABAergic IPN projections to the LDTg play a
role in the aversive effects of high doses of nicotine. To that end,
we expressed ChR2 in the IPN in a non-subregion-specific
manner to achieve high levels of expression in axon terminals
within the LDTg, while avoiding expression in the nearby VTA
(Supplementary Fig. 1). As a result, it is likely that ChR2
expression was lower in the rostral part of the IPN, which has
been shown to contain specific cell populations that project to the
LDTg33,34,51. While our studies did not focus on specific IPN cell
types or subregions, it is possible that distinct subnuclei or cell-
type-specific IPN projections to the LDTg mediate different
behavioral end points, and this is an exciting direction for further
understanding of this important pathway. In fact, one recent
study has shown that a specific population of neurons that reside
in the IPN mediates nicotine reward by inhibiting MHb terminals
to reduce excitatory drive in the IPN and that these neurons
project to the LDTg and the dorsal raphe51. However, it is unclear
what consequences this cell-specific reduction in excitatory drive
in the IPN has on signaling in projection regions. Given that the
LDTg is a heterogeneous nucleus, it is also possible that different
populations of IPN neurons target different cell types in the LDTg
or target LDTg cells that project to different brain regions. We
focused these initial studies on LDTg neurons that project to the
VTA because activation of LDTg inputs to the VTA mediates
reward37, and LDTg connections to the VTA promote burst
firing36,52. Given our findings, it is of great interest to further
dissect these connections to determine the contribution of dif-
ferential IPN innervation to specific LDTg cell types to the bal-
ance between nicotine reward and aversion.

While we have identified one nAChR subunit that contributes
to the concentration-dependent effects of nicotine at the
IPN–LDTg synapse, the precise subunit combinations that are
relevant to aversion to high nicotine doses remain unknown.
Our pharmacological approach was aimed at assessing receptor
subunits implicated in nicotine reward and aversion as suggested
by previous work53,54. The nAChRs identified here that modulate
IPN–LDTg synapses have lower nicotine affinity than other β2-
containing receptors expressed elsewhere. Identifying the other
subunits of these receptors may provide novel therapeutic targets
for addiction treatment, but this identification will be difficult

Fig. 3 IPN inputs to LDTg are concentration-dependently modulated by nicotine via β2-containing nAChRs. a Left: example time course, normalized oIPSC
amplitudes (30ms, 50 pA scale). Right: representative traces (black: baseline, color: nicotine). b Normalized average oIPSC amplitudes, baseline (gray) vs.
nicotine (colored); ratio paired t-tests (one-tailed), 10 μM: t8= 3.492, P= 0.0041, n= 9 cells from 6 mice; 1 μM: t6= 3.367, P= 0.0075, n= 7 cells from 3
mice; 100 nM: t6= 1.708, P= 0.0692, n= 7 cells from 3 mice. c Prevalence of increase in oIPSC amplitudes; chi-square (two-sided), Z6.112, 1= 2.472,
P= 0.0134, n= 9, n= 7 cells. d Representative PPR traces (50ms, 25 pA scale). e Summary PPR graph; unpaired t-test (one-sided), t12= 1.804,
P= 0.0482, n = 7 cells from 3 mice. f Upper: Representative mIPSC traces (50ms, 50 pA scale). Lower: Representative histograms of mIPSC frequency.
g Normalized average mIPSC frequencies, baseline (gray) vs. nicotine (colored); ratio paired t-tests (one-tailed), 10 μM: t8= 3.33, P= 0.0052, n = 9 from
7 mice; 1 μM: t7= 3.176, P= 0.0078, n= 8 cells from 3 mice; 100 nM: t7= 1.546, P= 0.0830, n= 8 cells from 4 mice. h Prevalence of increase in mIPSC
frequency; chi-square test (one-sided), Z2.951, 1= 1.718, P= 0.0429, n= 9, n= 8 cells. i Upper: Representative cumulative amplitude histogram, baseline
(black) vs. 10 μM nicotine (red). Lower: Normalized average mIPSC amplitudes, baseline (gray) vs. nicotine (colored). j Upper: 10 μM nicotine vs. 10 μM
nicotine application + BAPTA in recording pipette; unpaired t-test (one-tailed), t17= 1.012, P = 0.1629, n= 9 cells from 6 mice, n= 10 cells from 5 mice.
Lower: Prevalence of mIPSC frequency increase; chi-square test (one-sided), Z0.09048, 1= 0.3008, P= 0.3818, n= 9, n= 10 cells. k Normalized
average mIPSC frequencies, 10 μM nicotine vs. 10 μM nicotine +DhβE or MEC; one-way ANOVA, y= log(y) transform, F2, 26= 6.175,
P= 0.0064 (main effect), Holm–Sidak P = 0.3830, P= 0.0048, for DhβE or MEC, respectively. l Prevalence of mIPSC frequency increase; chi-square test
(one-sided), Z3.104, 1= 1.762, P= 0.0391, n= 9 cells from 2 mice, n= 11 cells from 3 mice. m Normalized average mIPSC frequencies, 10 μM nicotine vs.
10 μM+ SR or 10 μM+ αBTX; n= 9, n= 7 cells from 2 mice, n= 6 cells from 2 mice. n Prevalence of mIPSC frequency increase. Data presented as
mean ± SEM, * P< 0.05
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using pharmacology alone given the lack of subunit-selective
agonists and antagonists, especially for α5 and α2 subunits, and
genetic tools will be required to fully elucidate this detailed
information53,54.

Nicotine withdrawal is also mediated by the MHb–IPN path-
way11, and future work should investigate the contribution of
the IPN–LDTg connection to the aversive aspects of withdrawal.
Our findings suggest that this pathway might be especially
relevant for withdrawal-induced anxiety, which has already
been investigated at the level of the IPN29,49,50,55. It is interesting
to consider the relationship between anxiety and aversion
more generally. Recent work has focused on understanding
the role of the IPN in modulating reward-related behaviors
but not via aversion per se. One such study shows that
inhibiting GABA neurons in the IPN can enhance the
rewarding properties of a familiar encounter, while activating
these neurons reduces the value of a novel encounter49. The
novel encounter never becomes aversive, but it seems that the
IPN activity shifts the motivational valence of the novel
encounter toward the less rewarding valence of a familiar
encounter. Another study has shown that GLP-1 signaling in the
IPN can control nicotine self-administration by altering excita-
tory drive from the MHb28. As in the familiarity study, GLP-1
signaling in the IPN is not aversive per se, but it does limit
nicotine intake. Because GLP-1 is also involved in feeding and
satiety, the authors suggest a satiety-like mechanism for limiting
nicotine intake via GLP-1 signaling in the IPN. The IPN has
also been implicated in fear learning56,57. More work is clearly

required to fully understand the role that the IPN plays in these
various but related behavioral states.

Methods
Animals. All experiments were done with the approval of the University of Chi-
cago’s Institutional Animal Care and Use Committee. Adult male (>8 week old)
C57/Bl6 mice (Jackson Laboratories or bred in-house) were group housed in a
colony room on a standard light–dark cycle (6 A.M.–6 P.M.). Upon arrival, mice
were undisturbed for at least 72 h to allow acclimatization to the colony room.
Water and standard chow were available ad libitum, and cages were changed
twice per week. Experiments were conducted during the day, during the animals’
light period.

Drugs and reagents. All chemicals were obtained from Sigma Aldrich unless
otherwise indicated: nicotine (nicotine hydrogen tartrate salt), DNQX (6,7-dini-
troquinoxaline-2,3-dione, ABCAM), bicuculline (Tocris), TTX (tetrodotoxin
citrate, ABCAM), BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic
acid, Tocris), SR-16584 (1,3-dihydro-1-(3-exo)-9-methyl-9-azabicyclo[3.3.1]non-3-
yl]-2H-indol-2-one, Tocris), MEC (mecamylamine, Tocris), αBTX (α-Bungar-
otoxin, Tocris), and DhβE (di-hydro-β-erithroidine hydrobromide, Tocris).

Surgical procedures and viruses used. All mice were at least 8 weeks of age
before undergoing surgery. Anesthesia was induced and maintained with iso-
fluorane at 4 and 1%, respectively. Mice were placed in a stereotaxic frame, and
craniotomies were performed for brain injections. AAV2-hSyn-hChR2(H134R)-
EYFP, AAV2-hSyn-EYFP, and AAV-hSyn-eArch3.0-EYFP were obtained from the
University of North Carolina vector core and were injected directly into the IPN at
a volume of 250 nl (AP: −3.5 mm, ML: −1.0 mm, DV: −4.92 mm from Bregma at
a 10° angle). These coordinates target the ventral IPN to avoid infection of the
nearby VTA, but in many cases, most of the IPN expressed ChR2 (Fig. 1b, Sup-
plementary Fig. 1).

600

400

200

N
or

m
al

iz
ed

 p
re

fe
re

nc
e 

(s
)

Δ 
P

re
fe

re
nc

e 
(s

)

La
te

nc
y 

to
 li

gh
t (

s)

0

–200

–400

400

200

40

30

20

10

0

0

–200

–400

–600

***

**

EYFP
ARCH

Pre-test Post-test EYFP ARCH EYFP ARCH

EYFPARCH

N
o 

in
hi

bi
tio

n
+

 v
eh

ic
le

P
ho

to
-in

hi
bi

tio
n

+
 1

.5
 m

g/
kg

 n
ic

Green light
in LDTg

IPN

Day 1 Day 42 Day 43–45 Day 46

Post-test
20 min

AM: Veh+no light
PM: Nic+light

Pre-test
20 min

Virus injection
Optic implant

ARCH

a b

c d e

Fig. 4 Inhibition of IPN terminals in LDTg blocks nicotine conditioned place aversion. a Upper: experimental timeline. Lower left: schematic of viral
expression and fiber implants. Right: functional expression of ARCH, (500ms, 100 pA; 2 sec, 5 mV scale). b Representative plots of animal position during
post-test. c Normalized average preference scores; two-way RM ANOVA with Bonferroni post-hoc: P= 0.0022, EYFP n= 13 mice; ARCH n= 8 mice.
d Change in preference for nicotine-paired side after conditioning: unpaired t-test (two-tailed), t19= 3.018, P= 0.0071. e Latency to enter bright side;
unpaired t-test (one-tailed), t11= 1.858, P= 0.0450, EYFP n= 7, ARCH n= 6 mice. Data presented as mean ± SEM, ** P < 0.01, * P < 0.05

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04654-2 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2710 | DOI: 10.1038/s41467-018-04654-2 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


For behavioral experiments, fiber optics were permanently implanted either
above the IPN (AP: −3.5 mm, ML: −1.0 mm, DV: −4.36 mm from Bregma at a 10°
angle) (Fig. 1c, Supplementary Fig. 2A) or unilaterally above the LDTg (AP: −5.25
mm, ML: + or −0.4 mm, DV: −3.4 mm from Bregma) (Fig. 2e, Supplementary
Figs. 4A, 9D). These coordinates target the caudal LDTg to avoid IPN terminals in
the nearby dorsal raphe nucleus. Dental acrylic (Lang Dental, Wheeling, IL) was
used to secure the fiber optic implants58.

For electrophysiology experiments, retrograde labeling was accomplished by
injecting fluorescent microspheres (FluoSpheres, Life Technologies) bilaterally into
the VTA (AP: −3.0 mm, ML: +/−0.5 mm, DV: −3.0 mm from bregma) (Fig. 2a,
Supplementary Fig. 3A, B). For behavioral and electrophysiological experiments
requiring direct light stimulation of the IPN, animals were allowed to recover for at
least 3 weeks before experiments were conducted to allow adequate somatic protein
expression. For behavioral and electrophysiological experiments requiring light
stimulation of IPN terminals, animals were allowed to recover for at least 6 weeks
before experiments were conducted to ensure adequate protein expression in the
terminals.

Slice preparation. Mice were rapidly decapitated following anesthesia with iso-
flurane (Baxter, Deerfield, IL). Brain slices were obtained using a neuroprotective
recovery method adapted from ref. 59. Briefly, brains were dissected in a solution of
ice-cold protective artificial cerebrospinal fluid (aCSF) including: in mM, 92 N-
methyl-D-glucamine, 2.5 KCl, 1.25 NaH2PO4, 30 NaHCO3, 20 HEPES, 25 glucose,
2 thiourea, 5 Na-ascorbate, 3 Na-pyruvate, 0.5 CaCl2·4H2O, and 10 MgSO4·7H2O,
pH adjusted to 7.3–7.4 with HCl and then bubbled continuously with 95% O2–5%
CO2. 250-μm-thick sagittal or coronal slices containing IPN or LDTg were cut with
a vibratome (VT100S, Leica) and incubated in a holding chamber at 32–34 °C for
≤15–20 min in the same protective aCSF. Slices were then transferred to a second
holding chamber containing room temperature aCSF including: in mM, 119 NaCl,
2.5 KCl, 1.25 NaH2PO4, 26 NaHCO3, 12.5 glucose, 2 CaCl2·4H2O, 2 MgSO4·7H2O,
2 thiourea, 5 Na-ascorbate, 3 Na-pyruvate, 20 HEPES, bubbled continuously with
95% O2–5% CO2 and perfused at a rate of 20 ml min−1 for at least 30 min before
recording.

Slice electrophysiology. Recording chambers were superfused (∼2 ml min−1)
with room temperature aCSF (in mM, 125 NaCl, 25 NaHCO3, 20 glucose, 2.5 KCl,
2.5 CaCl2, 1 MgCl2, 1 NaH2PO4, at pH 7.4, saturated with 95% O2 and 5% CO2).
Neurons were visualized under infrared illumination using a fixed-stage upright
microscope (Axioskop, Zeiss). Data were acquired with a Multiclamp 700A/Axo-
patch 200B amplifier and pCLAMP 9 software (Molecular Devices). Whole-cell
patch-clamp recordings were achieved with microelectrodes (3–6MΩ) pulled on a
Flaming/Brown micropipette puller (model P-97, Sutter Instrument, Novato, CA).

All electrophysiology experiments were performed on back-labeled neurons
in the LDTg or on neurons in the IPN that expressed either ChR2 or ARCH
(verified by EYFP fluorescence). Retrogradely labeled or virally infected
neurons were visualized under fluorescence and bright field illumination
(Supplementary Fig. 3C).

Recording electrodes were filled with either a low Cl− (ECl −125 mV)
potassium gluconate internal solution (in mM, 154 K-gluconate, 1 KCl, 1 EGTA, 10
HEPES, 10 glucose, 5 ATP, 0.1 GTP, pH 7.4 with KOH) or an intermediate Cl−

(ECl −17 mV) potassium gluconate internal solution (in mM, 70 K-Gluconate, 70
KCl, 1 EGTA, 10 HEPES, 10 Glucose, 5 ATP, 0.25 GTP, 15 sucrose, pH 7.4 with
KOH) (Fig. 2d).

To activate light-sensitive proteins, light was delivered through the objective at
maximal power (>40 mW; 473 nm or 532 nm). Except for the experiments
shown in Fig. 2a, d, DNQX (100 μM) was included in the aCSF to block AMPA-
mediated currents during all experiments during which GABAergic currents
were measured. When blocking GABAergic currents, bicuculline (20 μM) was
included in the aCSF. To record mIPSCs, TTX (1 μM) was included in the aCSF.
To determine the nAChR subunit compositions at IPN terminals, nicotinic
antagonists were included in the aCSF at the following concentrations: 50 μM
MEC, 25 μM SR-16584, 50 nM α-Bungarotoxin, 500 nM DhβE. Nicotine was bath-
applied at concentrations of 10 μM, 1 μM, or 100 nM. Data were only included
from recordings with series resistance <30MΩ, and where input resistance or series
resistance varied by <25% throughout the recording. Current-clamp recordings
were all done at I= 0.

Histology. For electrophysiology experiments: After recordings, slices were trans-
ferred to 4% paraformaldehyde for at least 24 h. Correct localization of dye was
confirmed by conducting immunohistochemistry. A rabbit antibody to tyrosine
hydroxylase (1:500, Thermo OPA1-04050)60 was used to identify dopamine neu-
rons and indicate the boundaries of the VTA (Fig. 1b, Supplementary Fig. 3B). If
the majority of the dye was found to be outside of the VTA, the data recorded from
that animal was excluded (Supplementary Fig. 1).

Correct localization of viral infection was confirmed by immunohistochemistry
as well. A chicken antibody to green fluorescent protein (which also detects EYFP)
(1:5000, Abcam Ab13970)61 was used to enhance the fluorescence for visualization
of EYFP expression. If the expression of EYFP was not confined to the IPN without
impinging on the proximal VTA, data recorded from that animal was excluded
(Supplementary Fig. 1).

In a subset of slices, immunohistochemistry to visualize acetylcholine-
expressing neurons was performed in an effort to confirm that recordings from
back-labeled neurons were indeed conducted in the LDTg. A goat antibody to
choline acetyltransferase (1:1000, Millipore Ab144)62 was used to this end
(Supplementary Fig. 3C, D).

For behavioral experiments: Animals were anesthetized with isofluorane and
transcardially perfused with 4% paraformaldehyde. Brains were kept in
paraformaldehyde for >24 h and then transferred to 30% sucrose in phosphate-
buffered saline (PBS) for >24 h. Brains were frozen in embedding medium
(OCT Compund, Tissue-Tek, Sakura Finetechnical) and 50 μm slices were
taken using a cryostat (Leica CS3050 S). Fiber optic and viral expression were
confirmed using anatomical markers63. Animals with incorrect placement of
either fiber optics or viral injections were excluded from analysis (Supplementary
Fig. 1, 2A, 4A, 9D).

Behavioral testing. Animals were habituated to the experimenter, the behavior
room, and handling for 3–5 days prior to the start of experiments. Mice were
connected to an optical fiber connected to a laser during this habituation
period. For ChR2 experiments, blue light (473 nm) was delivered through the
fiber optic implants at a frequency of either 20 Hz or 1 Hz. For ARCH
experiments, green light (532 nm) was delivered continuously. All light was
delivered at 7–12 mW power.

Real-time preference test (RTPT): Mice were placed into a custom-made
black acrylic, two-chambered box (52.5 × 25.5 × 25.5 cm3) and allowed to
explore each of the two chambers for 20 min64–66. Using Noldus Ethovision
hardware controller connected to a master 9 function generator, light
stimulation was delivered through fiber optic implants during the duration of
time the mouse spent in the light-paired side of the chamber. Light stimulation
was stopped when the animal returned to the side paired with no light. Light
was delivered in 10 ms pulses at either 20 Hz (as in Fig. 1a, lower right) or 1 Hz.
The experimental animals were counterbalanced for both group and light-
delivery side. Preference or aversion in each experiment was determined by
subtracting the amount of time spent in the no stimulation side from the time
spent in the photo-stimulation side during this real-time testing (Figs. 1 and 2).
The same animals received both 20 Hz and 1 Hz light delivery on separate
testing days. Frequencies were counter-balanced such that animals
randomly received one stimulation on the first test day and the other
stimulation on the second day. All behavioral data were analyzed using
Noldus Ethovision (v11).

Conditioned place aversion (CPA): Mice were trained in an unbiased, balanced
three-compartment conditioning apparatus as described in refs. 67,68. The
compartmentalized box is divided into two equal-sized outer sections joined by a
small center compartment accessed through a single doorway on each side. The
compartments differed in wall striping (vertical vs. horizontal, alternating black
and white lines). All exposures to the apparatus were recorded with a video
camera and analyzed using Ethovision 11 (Noldus). Any time that the animals
were exposed to the conditioning apparatus, they were connected to the fiber
optic cables.

We randomly divided animals into four groups: ARCH+nicotine, EYFP
+nicotine (Fig. 4a, d), ARCH+vehicle, and EYFP+vehicle (Supplementary Fig. 9B,
C, E). On the pre-conditioning day (day 1), mice were allowed free access to all
three chambers for 20 min. Mice were assigned vehicle and nicotine
compartments based on their initial preference during the pre-conditioning day.
We used a biased design, wherein nicotine was paired with the initially
preferred side, and vehicle was paired with the initially less preferred side. This
design has been reported to be the best method for assessing expression of
nicotine conditioned preference or aversion in rodents43. For mice that received
only vehicle injections, light was paired with the initially preferred side, to
mimic the conditions of the nicotine groups. Mice received a vehicle (filtered
PBS) injection in the morning (10 ml kg−1, intraperitoneal (i.p.)) paired with no
light (no inhibition), and they received a nicotine injection (1.5 mg kg−1, i.p. as
base) in the afternoon paired with light delivery (photo-inhibition) for the
duration of time in the conditioning chamber (20 min, continuous light). The
nicotine+light treatment was at least 4 h after the morning training, and this
conditioning paradigm was repeated on 3 consecutive days. Nicotine was always
administered during the afternoon session to increase the time between the last
nicotine dose and the next conditioning session. This limits the possible confound
of residual nicotine in the system influencing the conditioning. Pre- and post-
conditioning testing were done at midday to avoid any confounds related to
testing at the same time as only one of the conditions. On the fifth day, the mice
were placed in the apparatus and allowed free access to the three compartments
for 20 min. Pre- and post-conditioning sessions were videotaped for analysis of
CPA. For the vehicle control experiment (Supplementary Fig. 9B, C, E), animals
received vehicle injections during both photo-inhibition and no inhibition
conditioning sessions.

Light–dark box experiments: Mice were habituated to the experimenter and to
fiber optic connection. The apparatus consisted of two compartments with no
distinctive contextual cues. One side was covered (dark side), resulting in light
intensity of ~10 lx, and the other side was exposed to light (bright side) so that light
intensity was ~400 lx inside the compartment. Animals were placed in the dark
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side, and photo-inhibition was delivered continuously. Latency to enter the bright
side was measured using Ethovision (Fig. 4E).

In all behavioral experiments, animals that exhibited any signs of illness were
excluded from analysis. Additionally, animals were sometimes excluded owing to
loss of fiber optic implants.

Data analysis. In all experiments, outliers, as determined by the ROUT method69

(Q= 0.1%), were removed from further analysis.
mIPSCs were analyzed with Mini-Analysis (Synaptosoft, Decatur, GA).

Amplitude and area thresholds were used to acquire events and each event was
visually inspected to protect against software errors. The number of events per 10 s
bin was assessed, and unpaired t-tests (one-tailed) were used to identify significant
frequency differences between baseline (100 s prior to nicotine application) and
nicotine application periods (at least a 30 s duration) (Supplementary Fig. 6B-E, 8).
The number of cells in which the frequency was significantly increased during
nicotine application compared to baseline was used to determine the prevalence of
a nicotine-induced increase (Fig. 3h, j, l, n). Chi-square tests were used to assess
differences in prevalence of nicotine effects between groups. Baseline (ten 10 s bins)
frequencies and nicotine (at least three 10 s bins) frequencies were averaged for
each cell. These values were used in comparisons within groups after being
normalized to baseline. Ratio paired t-tests (one-tailed) were then used to
determine differences between nicotine and baseline frequencies within groups
(Fig. 3g, Supplementary Fig. 6A). One-way ANOVA, or unpaired t-test if only
comparing two groups, was used to determine differences in the magnitude of
nicotine’s effect between groups, and if the variance differed between groups, a
y= log(y) transform was used (Fig. 3k, j), followed by a Holm–Sidak post-hoc test
as appropriate. Changes in amplitude were tested using Kolmogorov–Smirnov tests
on cumulative amplitude probability histograms (Supplementary Fig. 7). Baseline
and nicotine periods were the same for frequency and amplitude analyses.

sIPSCs were analyzed in the same way as mIPSCs. Baseline was defined as the
100 s prior to light delivery, and light delivery effects were divided into two groups:
the first 30 s of light delivery and the last 60 s of 5 min of light delivery. Within
cells, unpaired t-tests (one-tailed) were done for baseline vs. first 30 s and baseline
vs. last 60 s of light to determine the prevalence of effects of light delivery
(Supplementary Fig. 9G). A paired t-test (one-tailed) was then used to determine
whether, on average, the longer duration of light exposure enhanced sIPSC
frequency (Supplementary Fig. 9I).

Light-evoked IPSCs were differentiated from failures by the same amplitude
criteria used in the analysis of spontaneous transmission: deflections from baseline
were required to have an onset consistent with light-delivery onset, to be >5× root
mean square noise, and to have appropriate rise and decay characteristics in order
to be considered evoked synaptic currents. The amplitude, rise time, and decay
time of the oIPSCs were determined in real time by the pCLAMP 9 software (Axon
Instruments). Care was taken in all electrophysiological studies to ensure that the
holding current and series resistance were stable through the entire experiment.
Every oIPSC was visually inspected to ensure that the software determined the
parameters correctly. oIPSCs were evoked every 30 s.

RM one-way ANOVA was used to assess whether bicuculline effectively
blocked oIPSCs and could be washed out (Fig. 2c). Linear regression was used to fit
lines to the data points obtained from the current–voltage relationship experiment
and to determine whether their intercepts or slopes were different from each other
(Fig. 1d).

Unpaired t-tests (one-tailed) were used to identify significant light-evoked
amplitude differences between baseline periods (five oIPSCs prior to nicotine
application) and nicotine application periods (at least three oIPSCs)
(Supplementary Fig. 3E-G). The number of cells in which the amplitude was
significantly increased during nicotine application compared to baseline
was used to determine the prevalence of a nicotine-induced increase (Fig. 2c). Chi-
square tests were used to assess differences in the prevalence of nicotine effects
between groups. Average amplitude values were used in comparisons between
groups after being normalized to baseline. Ratio paired t-tests (one-tailed) were
then used to determine differences between nicotine and baseline oIPSC
amplitudes within groups (Fig. 2b, Supplementary Fig. 3D). A new slice was used
for each experiment in which nicotine was applied so that each slice was only
exposed to nicotine once.

During behavioral experiments, animals were recorded on video, and
movements were analyzed using Ethovision software (Noldus). For RTPT, time
spent in each side of the apparatus was recorded, as was gross locomotion
(Supplementary Fig. 2B, 4B 2B, 4B). Unpaired t-tests were used to assess
differences in preference scores between groups. During the first experiment when
we stimulated the IPN directly, two-tailed test was used (Fig. 1d). When we
followed up with IPN terminal stimulation in the LDTg, one-tailed test was used, as
we predicted that, if there was a behavioral effect, it would be in the same direction
as for the previous experiment (Fig. 2f). To test for any effects of these
manipulations on locomotion, one-way ANOVA with Holm–Sidak post-hoc test
was used (Supplementary Fig. 2B, 4B).

For CPA, time spent in each side of the apparatus was recorded, as was gross
locomotion (Supplementary Fig. 9F). Two-way RM ANOVA was used to analyze
this data. Time (pre- vs. post-conditioning) and Group (ARCH vs. EYFP) were the
two factors. Bonferroni post-hoc analysis was used as appropriate (Fig. 4c,
Supplementary Figs. 9A-C). To determine the difference in the change in

preference between these two groups, unpaired t-test (two-tailed) was used (Fig. 4d,
Supplementary Fig. 9E). Nicotine and vehicle cohorts were analyzed separately. To
test for any effects of these manipulations on locomotion, one-way ANOVA with
Holm–Sidak post-hoc test was used (Supplementary Fig. 9F).

No statistical methods were used to predetermine sample sizes, but our sample
sizes are similar to those reported in previous publications.

Randomization and blinding. Mice were not selected for any experimental con-
dition based on previous observations or tests. Cages were selected arbitrarily to
receive control or experimental viral injections. Individual mice were arbitrarily
given numbers and tail marks reflecting those numbers. Behavior boxes were
numbered left to right, starting with box one, and the animal number determined
which box the mouse experienced throughout testing. Animal numbers also
determined the order of testing. For example, ChR2 mice 1 and 2 would be tested at
the same time as EYFP mice 1 and 2, and this would occur just prior to the session
that would include ChR2 3 and 4 and EYFP 3 and 4. Care was taken that each box
had equal numbers of control and experimental animals assigned to it over the
course of an experiment (i.e., box 1 would not be assigned to only ChR2 mice).
Light-stimulation frequencies were arbitrarily assigned along the same lines, with
care taken that the same number of mice received each stimulation between groups
and between days. Nicotine vs. saline conditions were assigned arbitrarily as well.

Behavioral tests and electrophysiological data acquisition were performed by
investigators with knowledge of the experimental groups. All behavioral
experiments were controlled by computer systems, and data were collected and
analyzed in an automated and unbiased way. Histological verifications always took
place prior to analysis of behavioral data. Experimenters were not blinded to the
groups during this verification step but were blinded to the actual observed
behavior of individuals and groups.

Data availability. All relevant data are available from the authors upon reasonable
request.
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