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Novel roles for hERG Kþ channels in cell proliferation
and apoptosis

J Jehle1, PA Schweizer1, HA Katus1 and D Thomas*,1

The human ether-a-go-go-related gene potassium channel (hERG, Kv11.1, KCNH2) has an essential role in cardiac action
potential repolarization. Electrical dysfunction of the voltage-sensitive ion channel is associated with potentially lethal
ventricular arrhythmias in humans. hERG Kþ channels are also expressed in a variety of cancer cells where they control cell
proliferation and apoptosis. In this review, we discuss molecular mechanisms of hERG-associated cell cycle regulation and cell
death. In addition, the significance of hERG Kþ channels as future drug target in anticancer therapy is highlighted.
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Ion Channels Involved in Cell Proliferation and Death

Ion channels have been implicated in signaling pathways
leading to cell proliferation or apoptosis (programmed cell
death). Their identification and functional characterization in
tumor cells suggest potential significance in anticancer
therapy. Transient receptor potential channels form a super-
family of ubiquitously expressed channels influencing the
balance between cell survival and death.1,2 In addition,
hyperpolarization-activated cyclic nucleotide-gated channels
were detected in embryonic stem cells where they exert pro-
proliferatory effects. Potassium channels represent the
largest group of channels involved in cell death and prolifera-
tion.3,4 Calcium-activated KCa3.1 channels contribute to
proliferation and atherosclerosis, and inhibition of the
current attenuates fibrosis and lymphocyte proliferation.5–8

Furthermore, voltage-gated Kþ channels (e.g. Kv1.3) or two-
pore-domain channels (e.g. K2P5.1) determine growth of
adenocarcinomas.9,10 Voltage-sensitive human ether-a-
go-go-related gene (hERG) potassium channels have
recently emerged as novel regulators of growth and death in
cancer cells. This review focuses on hERG channels in
proliferation and apoptosis. Current knowledge on expres-
sion, function and regulation is reviewed, and clinical
implications are discussed.

Differential Expression of hERG Potassium Channels

Cardiac expression and function of hERG Kþ channels.
Repolarization of cardiac ventricular myocytes is mainly
regulated by outward potassium currents. One of the most
important currents is the delayed rectifier potassium current,

IK, which has rapidly and slowly activating components
(IKr and IKs).

11 Activation of the rapid component of the
delayed rectifier potassium current, IKr, terminates the plateau
phase and initiates repolarization of the cardiac action
potential. The hERG encodes the voltage-gated potassium
channel a-subunit underlying IKr.

12–14 hERG potassium
channels form homo-tetramers of identical six trans-
membrane spanning domains, with a cluster of positive
charges localized in the S4 domain serving as voltage
sensor. hERG channels are a primary target for the
pharmacological management of arrhythmias with class III
antiarrhythmic agents.15,16 Blockade of hERG currents causes
lengthening of the cardiac action potential, which may produce
a beneficial class III antiarrhythmic effect. Excessive reduction
of HERG currents due to mutations in hERG or via blockade
produces chromosome-7-linked congenital long QT syndrome
(LQTS-2) and acquired long QT syndrome, respectively. Both
forms of LQTS are associated with delayed cardiac
repolarization, prolonged electrocardiographic QT intervals,
and a risk for the development of ventricular ‘torsade de
pointes’ arrhythmias and sudden cardiac death. hERG
channels are inhibited by a variety of non-antiarrhythmic
compounds. This undesirable side effect is now considered a
significant hurdle in the development of new and safer drugs,
and has forced removal of several drugs from the market. In
addition to LQTS, cardiomyocyte apoptosis has been reported
following pharmacological hERG Kþ channel blockade.17

hERG Kþ channels in cancer. Various cancer cell lines of
epithelial, neuronal, leukemic, and connective tissue origin
express hERG Kþ channels (Table 1), whereas
corresponding non-cancerous cells and cell lines do not
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Table 1 Cells and cell lines expressing hERG

Derivation Cell type/cell line Comment

Cancer cells
Epithelial Colorectal cancer18–20 No expression of herg1b

Gastric cancer21

Esophageal squamous cell carcinoma ESCC22

Human endometrial cancer23

Leukemic Leukemic blast cells from AML patients24

B-CLL primary lymphocytes from B-cell CLL patients25

Leukemia stem cells CD34+/CD38�/CD12326

Connective and soft tissue Glioblastoma multiforme27

Glioma28

Cancer cell lines
Epithelial Colon

Colo 20518

C2619

HCT820 No expression of herg1b
HCT11619,20 No expression of herg1b
HT-2919

T8429

DLD120 No expression of herg1b
H63020 No expression of herg1b

Stomach
SGC790121

AGS21

MGC80321

MKN4521

Lung
PG highly metastatic human lung giant-cell carcinoma29

A549 human lung adenocarcinoma30

NCI-N592 lung microcytoma31

Small cell lung cancer GLC8 and H6931

Breast
MCF-732

SKBr330,33 Cancer cell line expressing hERG3
Skin

MDA-MB-435S melanoma cells34

Eye
Human retinoblastoma cell line Y-7935

Prostate
LNCaP human prostatic adenocarcinoma30

Neuronal Brain
SH-SY5Y human neuroblastoma30,33,35–38 Expression of hERG1 and hERG1b
SK-NBE human neuroblastoma31

N18T42 murine neuroblastoma31

41A3 murine neuroblastoma31

F11 rat DRG–mouse N18TG2 neuroblastoma hybrid31

NG108-15 mouse–rat hybrid neuroblastoma–glioma39,40

GH, GH4 MMQ pituitary tumors31

Leukemic Blood/bone marrow
FLG 29.1 human preosteoclast cell line24,35,41 Expression of hERG1 and hERG1b
BL2 Burkitt’s lymphoma25

Raji Burkitt’s lymphoma25

K562 chronic myelogenous leukemia cell line25

U937 pro-myelocytic leukemia25

CEM (pro-B cell ALL)25

UT-7 megakaryoblastic leukemia cell line42

Connective and soft tissue Glia
U138 GBM cell line27

Muscle
TE671 rhabdomyosarcoma31

Adrenal gland
Rat pheochromocytoma PC 1231

Non-cancerous tissue
Epithelial Pancreas

Pancreatic islet43

Connective and soft tissue Heart
Human heart44 hERG1 and hERG1b
Rat heart44 hERG1 and hERG1b
Mouse heart44 hERG1 and hERG1b
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exhibit significant hERG protein levels. In corresponding
human cancers, hERG protein may serve as biomarkers of
malignant transition. Furthermore, hERG expression is
implicated in enhanced cell proliferation, invasiveness,
lymph node dissemination, and reduced cell differentiation
and prognosis.21,22 In addition, increased neoangiogenesis,
another hallmark of malignant tissue growth, has been
reported for glioblastoma where the generation of blood
vessels was stimulated by hERG-dependent secretion of
vascular endothelial growth factor.27

Differential hERG expression patterns during ontogenesis.
While hERG expression in normal adult human tissue is limited
to heart, brain, myometrium, pancreas, and hematopoietic
progenitors, other species have been described to undergo
changes in their ERG expression profile during ontogenesis:
quail embryos express ERG Kþ channels in peripheral ganglia
and skeletal muscle in addition to heart and central nervous
system.47 This observation illustrates that hERG expression in
tumor cells might either represent ectopic re-expression of a
gene that remains silent in differentiated cells, or reflect re-
activation of embryonic genes, which is well recognized in
cancers.35

Cell Proliferation

Functional role of hERG Kþ channels in cell proliferation. In
differentiated adult cells, resting membrane potential varies
from �40 mV to about �90 mV.48 These distinct differences
are closely correlated to the proliferative potential of
respective cell types, ranging from slowly proliferating or
non-proliferative neurons or muscle cells (�70 mV to
�90 mV) to highly proliferative glandular epithelia of liver,
thyroid, pancreas, or salivary glands (�40 mV to �55 mV).48

hERG Kþ channels are closed at membrane potentials
below a threshold of B�60 mV1 whereas classical inwardly
rectifying channels remain open at more negative membrane
potentials.49 The predominance of hERG in cycling cells may
thus account for the depolarized resting membrane potential
in these cells.31 The membrane potential of cycling cells is
particularly depolarized during the G1 phase. However, Kþ

channel-dependent hyperpolarization appears to be critical
for progression to the S phase. Hyperpolarization evokes

Ca2þ influx, which is further augmented by calcium-
dependent Kþ (KCa) channels and permits synthesis of
mitogenic factors. In addition, hyperpolarization provides the
electrical gradient necessary for Naþ -dependent transport of
metabolic substrates and ions across the plasma membrane,
which is required for DNA synthesis.50 Considering that Kþ

channels are involved in cell cycle progression, abundant
expression of Kþ channels is expected to cause loss of
proliferative control if endogenous pathways fail to block
excessively expressed Kþ channels.50 Interestingly, the
promoter region of the hERG gene harbors multiple binding
sites for oncoproteins, such as specificity protein 1 and
nuclear factor kappa light chain enhancer of activated
B-cells, and for the tumor suppressor protein Nkx3.1 (Nk3
homeobox 1).30 We may hypothesize that mutations in
oncoproteins constitutively activate hERG gene expression,
shifting resting membrane potentials of cancerous cells
toward more depolarized values and repolarizing them at
the end of G1 phase, thereby facilitating cell cycle
progression and thus leading to cell proliferation. Here,
pharmacological intervention using hERG antagonists will
serve to arrest the cell cycle in the G1 phase. Furthermore,
human gastric cancer cells exhibit reduced levels of the
regulatory b-subunit KCNE2, leading to hERG current
increase.51,52 In addition, genetic deletion of KCNE2 is
associated with gastric neoplasia and increased nuclear
cyclin D1 levels in mice, revealing genetic manipulation of
cell proliferation mediated by a hERG b-subunit.52

Various cancer cell lines and cardiomyocytes have been
reported to express an N terminally truncated splice variant of
hERG, hERG1b, that confers specific electrophysiological
properties.53 Pharmacological approaches targeting the
hERG1/hERG1b ratio may modulate the resting membrane
potential of cycling cells. Increased hERG1b levels are
expected to depolarize cells, while high hERG1 levels will
shift membrane potential toward more hyperpolarized
values35 and suppress cell proliferation.

hERG potassium channel blockers modulate proliferation.
Leukemic cell lines express hERG Kþ channels whereas non-
cancerous lymphocytes do not exhibit hERG protein. Selective
hERG channel blockade by E-4031 reduced proliferation in
cancerous cell lines.25 Unspecific deceleration of the cell cycle
and reduction of cell proliferation50 were ruled out in

Table 1 (Continued )

Derivation Cell type/cell line Comment

Blood
PBCD34 peripheral blood, hemopoietic progenitor cells24 Rapid induction of hERG expression by

cytokines/growth factors
Uterus

Myometrium23

Neuronal Brain
Rat brain44

Mouse brain44

Human prolactin-secreting adenoma cells45

Native rat lactotroph cells45

Non-cancerous cell lines
Connective and soft tissue Heart

HL-1 (murine atrial tumor cell line)46
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mechanistic analyses, confirming specific cell cycle arrest as
underlying mechanism. Cell cycle analysis of FLG29.1
leukemia cells revealed accumulation of cells in the G1 phase
following treatment with hERG channel blockers.24

Furthermore, additional structurally different hERG blockers
have been shown to achieve cell cycle arrest in G1 phase of
hERG-positive cells (Table 2). It is noteworthy that the hERG
blocker erythromycin blocks cell cycle in G2 phase if
administered together with vincristine.29 In addition, hERG
blockers doxazosin and terazosin did not cause cell cycle arrest
despite hERG expression in distinct cell lines, for example,
LNCaP prostate carcinoma cells.30,57

Significance of hERG Ion Channels in Apoptosis

Proapoptotic effects of hERG Kþ channel inhibitors.
hERG channel blockers have been shown to induce
apoptosis in different cell types. This mechanism is
independent of their capacity to inhibit cell proliferation via
cell cycle arrest. The significance of hERG Kþ channels in
apoptotic pathways has been demonstrated in hERG-
transfected HEK293 cells, which underwent apoptosis upon
administration of doxazosin, compared with control HEK293
cells lacking endogenous hERG.58 Doxazosin is an
a1-adrenocepor antagonist with hERG-blocking properties
that is clinically used as antihypertensive drug.59 In the
Antihypertensive and Lipid-Lowering Treatment to Prevent
Heart Attack Trial (ALLHAT), which compared novel
antihypertensive drugs to diuretic treatment in 33 000
patients, the doxazosin arm had to be discontinued due to
an increase in congestive heart failure that may be attributed
to cardiomyocyte apoptosis.60,61 The proapoptotic effect of
doxazosin has been confirmed in vitro in the murine atrial
tumor cell line HL-1 and in isolated adult human
cardiomyocytes,17 providing a possible explanation for the
increased incidence of congestive heart failure in the
doxazosin arm of the ALLHAT trial. In addition to
hypertension, doxazosin is used for treatment of lower
urinary tract symptoms caused by benign prostatic
hyperplasia (BPH). Smooth muscle relaxation due to
a1-adrenergic blockade was initially thought to underlie the
relief of symptoms in BPH patients. However, subsequent
studies revealed an apoptotic effect of doxazosin in
hyperplastic prostatic tissue that may contribute to its clinical
efficacy.62 Furthermore, doxazosin induced apoptosis in

prostatic cancer cells.63 Limitations arise from the lack of
studies directly comparing hERG expression in normal,
hyperplastic, and cancerous prostatic tissue, respectively.
Finally, hERG channel expression is well documented in
pituitary adenoma cells.45 When treated with doxazosin in
vitro, antiproliferative and proapoptotic effects were observed
in pituitary adenoma cells independent of antiadrenergic
properties of the drug.55

Molecular mechanisms of hERG-associated apoptosis.
hERG Kþ channel blockers such as doxazosin activate
multiple apoptotic pathways. However, evidence for a direct
mechanistic link between hERG Kþ channels and apoptotic
proteins remains sparse to date. In HL-1 cardiomyocytes,
doxazosin induces apoptosis via the endoplasmic reticulum
pathway, involving enhanced phosphorylation of p38
mitogen-activated protein kinase, which activates
GADD153/CHOP (growth arrest and DNA damage-induced
gene 153/c/EBP homologous protein). GADD153/CHOP
subsequently forms heterodimers with DNA-binding protein
c/EBPb (CCAAT enhancer-binding protein beta) and
translocates into the nucleus, where it augments
transcription of the carbonic anhydrase DOC-1 (down-
stream of CHOP-1). DOC-1 then acidifies intracellular pH
and facilitates apoptosis.64 Finally, the CHOP pathway
results in activation of a key apoptotic enzyme, caspase
3.65 Caspase activation by doxazosin induces cleavage of
the protein-tyrosine kinase FAK (focal adhesion kinase) in
HL-1 cells, which compromises cell adhesion and leads to
apoptosis.64 FAK is an essential component of integrin
signaling and is phosphorylated when cells are adhered to
the extracellular matrix. Thus, it provides a survival signal
and prevents apoptosis.66 In prostate cancer cells, FAK is
cleaved by caspase 3 upon treatment with doxazosin, which
leads to apoptosis or anoikis (i.e. apoptosis due to loss of cell
adhesion).67 Furthermore, hERG1, integrin b1, and FAK form
a macromolecular complex in hERG1-transfected HEK293
cells and SH-SY5Y neuroblastoma cells. Cell adhesion via
integrin b1 causes activation of hERG1, which is essential for
direct FAK phosphorylation (Figure 1).37

FAK and hERG overexpression have independently been
related to enhanced dissemination and invasiveness of
tumors.20,66 FAK phosphorylation due to hERG activation
may explain the ability of malignant cells to circumvent
apoptosis once they have lost contact to the extracellular

Table 2 Cell cycle arrest induced by hERG K+ channel inhibitors

Cell type hERG blocker Comment

Human osteoclast/preosteoclast cells FLG 29.124 E-4031; WAY 123398; CsCl Arrest in G1 phase
Human leukemia cell lines K562 and HL6054 E-4031 Arrest in G1 phase
Human neuroblastoma SH-SY5Y36 HERG1/1b shRNA Arrest in G1 phase
Human gastric cancer cell line SGC790121 HERG-specific siRNA Arrest in G1 phase
Murine corticotroph AtT20 cells55 Doxazosin Arrest in G1 phase
Rat somatolactotroph GH3 cells55 Doxazosin Arrest in G1 phase
MCF-7 breast cancer cell line56 Astemizole Arrest in G1 phase

Human colon carcinoma cell line HT-2929 Erythromycin (+vincristine) Potentiation of the effect of vincristine
(arrest in G2/M phase)

Prostate cancer cell line LNCaP57 Doxazosin (25mM); terazosin (25mM) No antiproliferative effect, no change in cell
cycle distribution
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matrix. The abundant expression of hERG and FAK might
provide crucial survival signals in the absence of cell
adhesion, and thus account for increased invasiveness and
dissemination of hERG-positive tumors. In addition, coloca-
lization with hERG potassium channels activates the GTPase
Rac1 and may contribute to adhesion-dependent modulation
of tumor cell motility.37

Cell type- and environment-specific effects on apoptosis
are suggested by reports of hERG activity promoting
apoptosis. In hERG-positive SKBr3, SH-SY5Y, and HL-1
cells, apoptosis occurs via a caspase 3-dependent pathway in
response to extracellular administration of H2O2 or TNFa
(tumor necrosis factor a), whereas selective inhibition of
hERG conductance by dofetilide attenuates the proapoptotic
effect of H2O2 and TNFa.33 The methodology in the latter
study is different from investigations mentioned above. Cells
were first incubated with H2O2 or TNFa to induce apoptosis,
followed by application of hERG blockers. In the same study,
hERG is revealed to recruit TNFa receptor 1 to the plasma
membrane, which might explain increased responsiveness to
TNFa in these cells.33 The authors describe a proliferative
effect in hERG-expressing cells at low doses of TNFa and an
antiapoptotic effect of the hERG inhibitor dofetilide upon
pretreatment with H2O2 and TNFa. These observations
appear to be at odds with proapoptotic effects of hERG Kþ

channel blockers. The hERG blocker doxazosin has been
proven as a proapoptotic agent in a wide range of in vitro and
in vivo studies. Doxazosin increases the intracellular H2O2

content in BPH stromal cells. This is considered to facilitate
TNFa-related pathways.68 Administration of H2O2 before
hERG inhibition appears to interfere with hERG-induced

signaling pathways, which augment intracellular H2O2 levels.
The antiapoptotic effect of hERG channel blockade may be
due to this interference. However, pro- and antiapoptotic
effects of hERG blockers might coexist, and proapoptotic
effects, including the increase in intracellular H2O2, could
outweigh a possible antiapoptotic effect through suppression
of the apoptotic H2O2 – TNFa pathway. However, an
unambiguous differentiation between effects of hERG
conductance and hERG expression is lacking, and the
mechanism by which hERG conductance facilitates H2O2-
and TNFa-mediated apoptosis remains unclear at the
molecular level.

Clinical and Therapeutic Implications

Diagnostic value of hERG Kþ channel expression in
tumors. hERG may be utilized as a potential tumor marker,
given their expression in a variety of tumor cells and their
absence from most non-cancerous human tissues.
Specifically, hERG was detected in endometrial cancer at
mRNA (sensitivity¼ 67%; n¼ 18) and protein levels
(sensitivity¼ 82%; n¼ 18), whereas only 18% (n¼ 11) of
non-cancerous endometrial samples exhibited hERG mRNA
or protein.23 In colon carcinomas, hERG mRNA was a more
sensitive and more specific indicator for malignancy (100%
sensitivity and specificity; n¼ 23) than mRNA of the established
tumor markers CEA (sensitivity¼ 94.4%; n¼ 18), CK19
(sensitivity¼ 77.8%; n¼ 18), or CK20 (sensitivity¼ 94.4%;
n¼ 18).18 Immunohistochemical staining for hERG protein

doxazosin

nucleus

mitochondria

bax

bak

caspase 3

FAK

ER-stress

p38MAPK

CHOP

c/EBP�

DOC-1

pH

APOPTOSIS

cleavage

inhibition of
phosphorylation

integrin β1

hERG K+

channel

Figure 1 Pathways of hERG-associated apoptosis. Doxazosin induces apoptosis via two independent mechanisms, inhibition of FAK phosphorylation via blockade of
hERG Kþ channels37 and caspase 3-mediated cleavage of FAK67 via induction of ER stress,64 respectively. In addition, DOC-1 causes a decrease in intracellular pH, which
facilitates apoptosis64
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reached similar sensitivity and specificity as hERG mRNA.18

Further validation is required in larger patient populations.

Prognostic significance of hERG Kþ channel
expression in tumors. The prognostic value of hERG
expression in tumors has been evaluated in several
tissues. In acute myeloid leukemia (AML) blasts, hERG Kþ

channel expression is associated with a 50% reduction of
relapse-free and overall survival time compared with patients
with hERG-negative AML (12 versus 23 months).69 Patients
with esophageal squamous cell carcinomas similarly exhibit
reduced survival (30 versus 56 months) when hERG is
detected.22 However, hERG Kþ channel expression was not
significantly associated with invasiveness, dissemination, or
tumor grade in this study. In gastric cancer cells, levels of
hERG expression are positively correlated to tumor de-
differentiation and TNM stage.21 Moreover, tumor growth
was observed in BALB/c nu/nu mice following injection of
gastric cancer cells. Injection of cancer cells that were
pretreated with hERG siRNA significantly attenuated
tumorigenesis,21 confirming the pathological significance of
hERG in tumor growth and suggesting a potential novel
target in anticancer therapy (see below). In colonic
adenocarcinomas, there is a significant correlation between
hERG Kþ channel expression and invasiveness or
dissemination. hERG is not detected in normal colonic
mucosa (0%; n¼ 60) and rarely observed in adenoma (9%;
n¼ 11). In contrast, substantial hERG was found in patients
with non-metastatic adenocarcinoma (75%; n¼ 52) and
metastatic adenocarcinoma (100%; n¼ 8), with the most
pronounced staining found in hepatic and peritoneal
metastasis.20

Anticancer therapy. The antihypertensive a1-adrenoceptor
blocker doxazosin is an established treatment option in BPH.
Its therapeutic efficacy has been attributed to induction of
apoptosis in hyperplastic and cancerous prostate cells.57

Furthermore, hERG-positive cancer cells have been reported to
be particularly susceptible to chemotherapeutics vincristine,
paclitaxel, and hydroxycamptothecin.29 Direct effects of
vincristine, paclitaxel, and hydroxycamptothecin on hERG
channels remain to be investigated. Erythromycin, a
macrolide antibiotic with hERG-blocking properties, further
enhances the antiproliferative effect of these chemo-
therapeutics.29 The most intriguing perspective of anticancer
therapy targeting hERG channels is direct blockade of the
potassium channel, which is expected to produce
antiproliferative and proapoptotic effects that diminish tumor
growth and invasiveness. The first proof of concept study
confirmed prevention of gastric cancer cell proliferation by the
hERG Kþ channel blocker cisapride.70 A systematic in vivo
investigation of chemotherapeutic properties and potential
cardiac side effects of hERG inhibitors is required.

Potential side effects and limitations of anticancer
therapy based on hERG current inhibition. Proarr-
hythmic14 and cardiotoxic risks of hERG inhibitors require
careful evaluation7 when applying these compounds in
clincial oncology. Systemic treatment of cancers with hERG
antagonists may affect cardiac myocytes, resulting in

apoptosis and heart failure. In addition, application of
hERG antagonists may induce QT prolongation and
ventricular tachycardia. Although cancer treatment usually
occurs in life-threatening situations, and in some cases
potential cardiac damage is accepted (e.g. during use of
anthracyclines), optimal suppression of these events will be
required. To prevent proarrhythmic side effects, short-term
drug application may be sufficient to induce apoptosis in
tumor cells with minimal effects on cardiac electrophysiology.
ECG monitoring should be performed during application of
the drug. Additional pharmacological inhibition of cardiac
L-type calcium channels or b-adrenoceptors may offset
the limiting proarrhythmic effects of hERG channel
inhibitors.71–73 Cardiomyocyte apoptosis may be
circumvented through targeted delivery techniques such as
direct injection or trans-arterial drug application. Gene
therapy represents an additional therapeutic approach to
targeted suppression of hERG channel expression in
cancers. Different proliferative states of cardiac and tumor
cells may render cancerous tissue more susceptible to pro-
apoptotic and antiproliferative stimuli, reducing the overall
risk of heart failure during systemic application of hERG
antagonists. Feasibility of tumor-selective hERG-based
anticancer therapy will further depend on differential drug
effects on cancerous and non-cancerous tissue expressing
hERG Kþ channels.

Conclusion

hERG potassium channels, previously recognized to promote
cardiac action potential repolarization, are now revealed to
serve as regulators of proliferation and apoptosis in cancer
cells. Their significance in anticancer therapy is supported by
mechanistic data and preliminary in vivo studies. Limitations
arise from potential cardiac side effects that require attention.
Further studies are warranted to provide a more complete
understanding of hERG effects on apoptotic pathways.
Downstream signaling proteins may serve as more specific
therapeutic drug targets in future anticancer therapy.
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