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Abstract

Background: Cancer cells harbor a large number of molecular alterations such as mutations, amplifications and
deletions on DNA sequences and epigenetic changes on DNA methylations. These aberrations may dysregulate
gene expressions, which in turn drive the malignancy of tumors. Deciphering the causal and statistical relations of
molecular aberrations and gene expressions is critical for understanding the molecular mechanisms of clinical
phenotypes.

Results: In this work, we proposed a computational method to reconstruct association modules containing driver
aberrations, passenger mRNA or microRNA expressions, and putative regulators that mediate the effects from
drivers to passengers. By applying the module-finding algorithm to the integrated datasets of NCI-60 cancer cell
lines, we found that gene expressions were driven by diverse molecular aberrations including chromosomal
segments’ copy number variations, gene mutations and DNA methylations, microRNA expressions, and the
expressions of transcription factors. In-silico validation indicated that passenger genes were enriched with the
regulator binding motifs, functional categories or pathways where the drivers were involved, and co-citations with
the driver/regulator genes. Moreover, 6 of 11 predicted MYB targets were down-regulated in an MYB-siRNA treated
leukemia cell line. In addition, microRNA expressions were driven by distinct mechanisms from mRNA expressions.

Conclusions: The results provide rich mechanistic information regarding molecular aberrations and gene
expressions in cancer genomes. This kind of integrative analysis will become an important tool for the diagnosis
and treatment of cancer in the era of personalized medicine.

Background
Cancer cells harbor a large number of alterations at
genetic, epigenetic and phenotypic levels. High-through-
put screenings identified hundreds of somatic mutations
(e.g., [1,2]), thousands of gene and microRNA expres-
sion changes (e.g., [3,4]) and copy number variations (e.
g., [5]), large-scale epigenetic variations (e.g., [6]) in a
typical cancer cell. Only a small fraction of these altera-
tions may drive the malignancy of cancers, whereas the
majority of them are likely the by-products of chromatin
instability and dysregulation of transcriptional/transla-
tional apparatus. Separation of driver from passenger

aberrations is a key question of cancer genomics for its
strong implications in prognosis and treatments.
Finding the causal and mechanistic links connecting

driver aberrations and clinical phenotypes is challenging
due to the complexity of the underlying processes.
Alternatively, molecular phenotypes such as gene
expressions are considered. Genetic and epigenetic
alterations on DNAs modulate the expressions and
activities of key regulators such as transcription factors
and microRNAs. Dysregulation of these molecules in
turn affects a large number of downstream genes. The
global gene expression and activity changes then influ-
ence clinical phenotypes such as proliferation rates, drug
resistance and capability of metastasis.
Within the context of mechanisms we modify and

extend the definitions of drivers and passengers. A dri-
ver is a molecular aberration (mutation, copy number
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variation, DNA methylation, etc.) that causes variations
of gene expressions. A passenger is a protein-coding
gene or microRNA whose expression is modulated by
the driver molecular aberration. Notice our definitions
of drivers and passengers specify mechanistic/causal
relations of genes but do not require information about
clinical phenotypes. We term the conventional defini-
tions of drivers and passengers as phenotypic and the
extended definitions as mechanistic. A phenotypic driver
is usually also a mechanistic driver, since it may affect
clinical phenotypes by altering the regulatory programs
in cancer cells. Conversely, a mechanistic driver may
not be a phenotypic driver if the altered passenger genes
do not pertain to the clinical phenotypes. Similarly, a
mechanistic passenger can be a phenotypic driver if the
expression change of the gene affects the cancer
phenotype.
Comprehensive characterization of diverse molecular

aberrations in tumors is a major trend of cancer research
in the post-genomic era. Several international consortia
and research institutions have launched large-scale pro-
jects to catalog the genomic, transcriptomic and epigenetic
changes across multiple tumor types. Two noted endea-
vors are The Cancer Genome Atlas (TCGA) [7] and the
International Cancer Genome Consortium (ICGC) [8].
Beyond these coordinated efforts, comprehensive assays
on the NCI-60 cell lines have been performed by distinct
research groups over the last two decades (e.g., [9-19]).
As large-scale, comprehensive cancer genomic data

become more abundant, it is essential to develop com-
putational tools to integrate heterogeneous data in order
to acquire a systematic understanding of cancer cells. A
rich collection of previous studies attempted to identify
the driver mutations responsible for tumorigenesis from
cancer genomic data (e.g., [2,20]). These studies
hypothesized that the driver mutations conferred selec-
tive advantages for tumor growth thus occurred in mul-
tiple independent instances. Accordingly they aimed for
finding recurrent aberrations with high frequencies.
Beyond single genes a variety of computational tools
have been proposed to examine the abnormal pathway
activities by combining the molecular information of
their constituent genes, such as the gene set enrichment
analysis [21], principal component analysis [22], factor
graph models [23], and others (e.g., [24]). Causal and
mechanistic relations of molecular aberrations and gene
expressions were not addressed in these studies. Some
studies tracked the causes of abnormal gene expressions
by correlating them with DNA copy numbers, gene
mutations, DNA methylations or microRNA expressions
(e.g., [7,25-27,4]). However, these studies were often
restricted to pairwise comparisons between two types of
data and lacked a unifying framework to integrate multi-
ple types of data in the same model.

Beyond cancer data analysis many generic computa-
tional models of data integration have been proposed.
Causal relations were constrained by a variety of proper-
ties such as conditional independence of observed vari-
ables (e.g., [28,29]), molecular interactions and pathways
(e.g., [30]), and data generated from intervention experi-
ments (e.g., [31]). While many of these tools have been
applied to cancer data, most of the questions of interest
are phenotype-driven (e.g., finding genes responsible for
a clinical trait) rather than mechanism-driven (e.g., find-
ing the causal relations connecting driver aberrations
and passenger gene expressions).
Akavia et al. inferred mechanistic relations of gene

expressions and phenotypes in melanoma [32]. They
identified the gene copy number changes that modu-
lated their own expressions and indirectly affected the
expressions of their target genes. Curiously, these
mechanistic drivers were also phenotypic drivers, as
their knock-downs abrogated tumor cell proliferation.
Despite the value of connecting mechanistic and pheno-
typic characterization, this study was restricted to copy
number variations and discarded other types of molecu-
lar aberrations.
Recently, we proposed a layered modeling framework

for integrative analysis of cancer genomic data [33]. The
goal was to explain gene expressions with observed
molecular aberrations. Associations with molecular aber-
rations were incrementally included according to levels
of uncertainty and mechanistic information. In this
work, we extended and modified the layered modeling
framework to identify association modules of driver
molecular aberrations and passenger gene/mircroRNA
expressions from the integrated datasets of NCI-60 cell
lines. For each type of molecular aberrations, we found
the downstream passengers putatively affected by the
drivers and regulators mediating the effects from drivers
to passengers. The causal relations between drivers/reg-
ulators and passengers were supported by both experi-
mental and in-silico validations. The analysis results
justify the utility of association modules for other cancer
genomic data.

Results
Construction of association modules from integrated
datasets
Diverse molecular aberrations can modulate variations
of gene expressions in cancer cells. The dependencies
between molecular aberrations and gene expressions
may be modular, as multiple genes with coherent
expression profiles are likely to be affected by common
molecular aberrations. The goal of this study is to find
the modules of genes or microRNAs whose coherent
expression profiles are possibly driven by common
molecular aberrations. We define an association module
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as a tuple consisting of three components: (1)observed
driver molecular aberrations, (2)passen-ger genes or
microRNAs whose expression profiles are associated
with driver molecular aberrations, (3)regulators (tran-
scription factors) that mediate the effects between dri-
vers and passengers. We consider the following types of
association modules:

1. Cis-acting effects with copy number variations of
chromosomal segments. The copy number variation
(CNV) of a chromosomal segment is associated with
the expressions of its constituent genes or
microRNAs.
2. Trans-acting effects with copy number variations of
chromosomal segments. A chromosomal segment CNV
possesses cis-acting effects with intermediate regula-
tors on the segment, and both segment CNV and reg-
ulator expressions are associated with the expressions
of genes or microRNAs on other segments.

3. Effects with gene mutations. The mutational state
of a gene is associated with the expressions of itself
and other genes or microRNAs.
4. Effects with DNA methylations. The coherent
DNA methylation state of a collection of genes is
negatively associated with the expressions of genes
or microRNAs.
5. Regulatory effects with microRNAs. The coherent
expressions of a collection of microRNAs are nega-
tively associated with the expressions of a collection
of genes.
6. Regulatory effects with transcription factors. The
coherent expressions of a collection of transcription
factors are associated with the expressions of a col-
lection of other genes.

The association modules are visually summarized in
Figure 1 and elaborated in Materials and Methods and
Additional file 1, Text S1.

Figure 1 Types of association modules. From top-left to bottom-right: cis-acting effects with copy number variations of chromosomal
segments, trans-acting effects with copy number variations of chromosomal segments, associations with gene mutations, associations with DNA
methylations, regulatory effects with microRNAs, regulatory effects with transcription factors. Black solid lines: information flows from central
dogma. Green dashed lines: regulatory links from transcription factors or microRNAs to their targets on other chromosomal locations. Red dotted
lines: associations between observed aberrations and mRNA/microRNA expressions. Arrows indicate positive associations and bar-ends indicate
negative associations.
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Associations between driver aberrations and passenger
expressions are established by a series of hypothesis test-
ing procedures using logistic regression models. In brief,
an association between a driver and a passenger is
selected only if it cannot be replaced by any other asso-
ciation (with the same passenger) without a significant
loss of the explanatory power. Procedures of construct-
ing association modules are described in Materials and
Methods and Additional file 1, Text S1.

Diverse molecular aberrations drive mRNA responses in
NCI-60 cell lines
We identified association modules from integrated data-
sets of NCI-60 cell lines, including mRNA and micro-
RNA expressions, copy number variations, mutations,
and DNA methylations (see Materials and Methods for
the data sources and processing). 6888 genes possessed
coherent expression profiles among three mRNA data-
sets. 48.16% (3317 of 6888) of the valid mRNA expres-
sion profiles were explained by observed molecular
aberrations. Intriguingly, each type of association mod-
ules in Figure 1 were detected, suggesting diverse mole-
cular mechanisms drive mRNA expressions.
Summary of mRNA association modules
Table 1 shows the summary information of association
modules for mRNA expressions. Associations with seg-
ment CNVs dominate the inferred modules. 1699 of
3317 passenger expressions explained by observed aber-
rations are associated with CNVs on their own seg-
ments, and 43 of 84 association modules are cis-acting
effects with segment CNVs. Trans-acting effects with
segment CNVs comprise 18 association modules and
506 passenger genes. 522 passenger expressions and 14
association modules are positively or negatively asso-
ciated with mutations of 8 oncogenes and tumor sup-
pressors. 161 passenger expressions and 5 association
modules are negatively associated with DNA methyla-
tions. Two association modules with microRNA expres-
sions comprise 121 and 120 passenger genes
respectively. Moreover, two association modules with
transcription factor expressions comprise 338 and 338
passenger genes respectively. The complete list of asso-
ciation modules are reported in Additional file 2, Table
S1, and driver aberrations and passenger mRNA expres-
sions are visualized in Additional file 1, Figures S1, S2,
S3, S4, S5, S6, S7, S8, S9, S10, S11, S12 and S13. The
complete list of microRNA association modules are
reported in Additional file 3, Table S2, and driver aber-
rations and passenger microRNA expressions are visua-
lized in Additional file 1, Figures S14, S15, S16.
The credibility of associations between multiple vari-

ables was assessed by false discovery rates (FDR,

[34,35]). We adopted the permutation tests described in
[36] as the null model and evaluated two types of FDRs:

(1)
expected # false positives according to the null model

#positive calls from the date
, (2)

# false positives in the 99 percentile of the null model
# positive calls from the date

Table 2 shows the FDRs for each type of associations
and for all associations together. The FDRs for cis and
trans acting effects with segment CNVs are substantially
smaller than those for other types of associations. This
is sensible as the cis-acting effects with segment CNVs
are constrained by chromosomal locations of passenger
genes, and the trans-acting effects with segment CNVs
are constrained by coherent segment CNVs and expres-
sions of their regulators. In contrast, other types of asso-
ciations possess no additional constraints beyond driver
aberrations and passenger expressions, thus are more
likely to be spurious. Furthermore, the FDRs calculated
from the expected number of false positives are lower
than those calculated from the 99 percentile of the null
distribution. This is also sensible since the latter gives a
much more conservative estimate of the false positive
numbers. The overall FDRs calculated by these two
methods are 0.235 and 0.326 respectively.
To justify the biological meanings of association mod-

ules, we conducted several in-silico validations based on
prior literature. First, we extracted putative targets of
transcription factors from the TRANSFAC database [37]
and those of microRNAs from three databases ([38-40]).
For each association module, we then evaluated the
enrichment p-values for the putative targets of their reg-
ulators (transcription factors or microRNAs) in the pas-
senger genes. Table 3 reports the enrichment p-values
for the putative targets of regulators in the association
modules. Among the 14 modules whose regulators pos-
sess putative target information, 9 of them are signifi-
cantly enriched (p-value < 0.05) with putative targets in
their passenger genes. All but one modules containing
more than 60 passenger genes are enriched with puta-
tive targets of their regulators. Only one large module -
positive associations with APC mutations - is not
enriched with the putative targets of the regulator since
APC is not a transcription factor and has no binding
motifs.
Second, we incurred a batch search for all pairs of

drivers/regulators and passengers of association mod-
ules on NCBI PubMed database and checked whether
they were co-cited in previous publications. Table 4
summarizes the information of co-cited (driver/regula-
tor, passenger) pairs for each association module. In
total, 449 (driver/regulator, passenger) pairs co-occur
in the same publications, and 22 of 46 association
modules with non-local aberrations have co-cited (dri-
ver/regulator, passenger) pairs. To assess the signifi-
cance of co-citations we randomly sampled passenger
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Table 1 Summary information of association modules for mRNA expressions

index driver type drivers reg sign N index driver type drivers reg sign N

1 intra CNV seg 30 (chr 6p) NA + 84 44 inter CNV seg 18 (chr 3p) ZIC1,MITF + 118

2 intra CNV seg 54 (chr 12q) NA + 77 45 inter CNV seg 31 (chr 6q) TBP,MYB,HDAC2 + 77

3 intra CNV seg 1 (chr 1p) NA + 74 46 inter CNV seg 84 (chr 22q) SREBF2,EP300 + 49

4 intra CNV seg 57 (chr 14q) NA + 62 47 inter CNV seg 30 (chr 6p) E2F3,NFYA,SRF + 31

5 intra CNV seg 69 (chr 17q) NA + 62 48 inter CNV seg 42 (chr 10q) TCF7L2 + 30

6 intra CNV seg 11 (chr 2p) NA + 58 49 inter CNV seg 55 (chr 12q) NR2C1,NFYB + 22

7 intra CNV seg 42 (chr 10q) NA + 55 50 inter CNV seg 19 (chr 3q) ZNF148 + 22

8 intra CNV seg 3 (chr 1p) NA + 53 51 inter CNV seg 63 (chr 16pq) NFATC3,RBL2 + 21

9 intra CNV seg 37 (chr 8q) NA + 53 52 inter CNV seg 69 (chr 17q) SPOP,NME2,POLG2 + 20

10 intra CNV seg 59 (chr 14q) NA + 53 53 inter CNV seg 42 (chr 10q) NFKB2 + 19

11 intra CNV seg 16 (chr 3p) NA + 49 54 inter CNV seg 16 (chr 3p) UBP1 + 18

12 intra CNV seg 63 (chr 16pq) NA + 49 55 inter CNV seg 83 (chr 22q) EWSR1 + 17

13 intra CNV seg 33 (chr 7q) NA + 47 56 inter CNV seg 57 (chr 14q) APEX1 + 16

14 intra CNV seg 84 (chr 22q) NA + 47 57 inter CNV seg 16 (chr 3p) RPA2,EIF2C1 + 15

15 intra CNV seg 55 (chr 12q) NA + 44 58 inter CNV seg 19 (chr 3q) CNBP + 15

16 intra CNV seg 51 (chr 11q) NA + 43 59 inter CNV seg 51 (chr 11q) RICS + 14

17 intra CNV seg 2 (chr 1p) NA + 42 60 inter CNV seg 56 (chr 13q) GTF3A + 13

18 intra CNV seg 73 (chr 19p) NA + 42 61 inter CNV seg 4 (chr 1q) RUNX3 + 10

19 intra CNV seg 50 (chr 11q) NA + 40 62 mutation APC NA + 136

20 intra CNV seg 68 (chr 17q) NA + 39 63 mutation APC NA - 56

21 intra CNV seg 65 (chr 17p) NA + 37 64 mutation PIK3CA NA + 50

22 intra CNV seg 32 (chr 7p) NA + 36 65 mutation CDKN2A NA - 43

23 intra CNV seg 35 (chr 7q) NA + 35 66 mutation TP53 NA - 35

24 intra CNV seg 31 (chr 6q) NA + 33 67 mutation BRAF NA - 34

25 intra CNV seg 19 (chr 3q) NA + 32 68 mutation TP53 NA + 33

26 intra CNV seg 18 (chr 3p) NA + 30 69 mutation CDKN2A NA + 32

27 intra CNV seg 9 (chr 1q) NA + 29 70 mutation KRAS NA + 25

28 intra CNV seg 22 (chr 4p) NA + 29 71 mutation PTEN NA + 20

29 intra CNV seg 62 (chr 15q) NA + 29 72 mutation KRAS NA - 16

30 intra CNV seg 41 (chr 9q) NA + 28 73 mutation BRAF NA + 16

31 intra CNV seg 49 (chr 11q) NA + 28 74 mutation PIK3CA NA - 13

32 intra CNV seg 56 (chr 13q) NA + 28 75 mutation PTEN NA - 13

33 intra CNV seg 60 (chr 15q) NA + 28 76 methylation PAX8 NA - 61

34 intra CNV seg 44 (chr 11p) NA + 27 77 methylation BCR NA - 58

35 intra CNV seg 61 (chr 15q) NA + 26 78 methylation HOXC13 NA - 19

36 intra CNV seg 80 (chr 21q) NA + 24 79 methylation CCND1,PPARG NA - 13

37 intra CNV seg 36 (chr 8p) NA + 23 80 methylation COL5A1 NA - 10

38 intra CNV seg 27 (chr 5q) NA + 22 81 microRNA mir group 1 NA - 121

39 intra CNV seg 39 (chr 9p) NA + 22 82 microRNA mir group 2 NA - 120

40 intra CNV seg 12 (chr 2q) NA + 20 83 TF TF group 1 NA + 338

41 intra CNV seg 74 (chr 19q) NA + 20 84 TF TF group 2 NA + 338

42 intra CNV seg 83 (chr 22q) NA + 20

43 intra CNV seg 85 (chr 23pq) NA + 20

Index: module index. Reg: intermediate regulators. Sign: the functional direction (activation or repression) from drivers to passengers. N: number of passenger
genes. Intra CNV: intra-segment CNV. Inter CNV: inter-segment CNV. TF: transcription factor expressions. The locations of segments are reported in Supplementary
Table S5. Mir group 1 consists of mir-92,mir-96,mir-106a,mir 20b,mir-17,mir-19b,mir-32,mir-135,mir-25,mir-106b,mir-93,mir-106,mir-18,mir-20. Mir group 2 consists
of mir-24,mir-99b,mir-27b,mir-21,mir-125a,mir-23b,mir-27a,mir-23a. TF group 1 consists of SMAD3,FOXD1,PLAU,BDNF,FOSL2,FOSL1,RBMS1. TF group 2 consists of
ERG,ELK4,NFATC1,RFX3,POU5F1,ZNF350.
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genes of each module and counted the maximum
number of co-cited pairs over 10 random trials.
Among the 23 association modules possessing co-cited
pairs, 7 of them have more than 1.4 fold of the num-
ber of co-cited pairs compared to random samples
(Table 4). The complete co-cited (driver/regulator, pas-
senger) pairs among all association modules are
reported in Additional file 4, Table S3.
Third, for the passenger genes in each association

module we evaluated the enrichment p-values for func-
tional categories [41] and curated pathways ([42-44]).
Table 5 reports representative GO categories and path-
ways. 38 of the 84 association modules have at least one
enriched GO category/pathway with p-value ≤ 0.001.

The complete list of enriched GO categories and path-
ways are reported in Additional file 5, Table S4.
Genes of cis-acting effects with segment CNVs exhibit a
clustering tendency
We partitioned the CGH data into 86 coherent seg-
ments (Additional file 1, Text S1) and examined positive
associations between segment CNVs and the mRNA
expressions of their constituent genes. The cis-acting
effects with segment CNVs constitute a substantial por-
tion of the associations with mRNA expressions: 1699 of
6888 mRNA expressions can be explained by the local
segment CNVs. These associations are grouped by seg-
ments into 43 modules. The members of association
modules for local segment CNVs are reported in Addi-
tional file 2, Table S1, and information about partitioned
segments is reported in Additional file 6, Table S5.
The passenger genes associated with local segment

CNVs are not evenly distributed on chromosomes. Fig-
ure 2 marks the locations of these passenger genes (blue

Table 2 False discovery rates of mRNA and microRNA
association modules

mRNA modules:

FDR evaluation driver type FDR

mean intra CNV 0.0259

mean inter CNV 0.0035

mean mutation 0.3467

mean methylation 0.4334

mean microRNA 0.2248

mean TF 0.2197

mean all 0.2353

99% intra CNV 0.0855

99% inter CNV 0.0899

99% mutation 0.4949

99% methylation 0.6322

99% microRNA 0.3109

99% TF 0.2815

99% all 0.3262

microRNA modules:

FDR evaluation driver type FDR

mean intra CNV NA

mean inter CNV 0.0021

mean mutation 0.2535

mean methylation 0.4403

mean microRNA NA

mean TF 0.2857

mean all 0.2924

99% intra CNV NA

99% inter CNV 0.0455

99% mutation 0.3645

99% methylation 0.6379

99% microRNA NA

99% TF 0.3600

99% all 0.3943

Mean: using the expected number of false positives to evaluate FDR. 99%:
using the 99 percentile of the number of false positives to evaluate FDR. Intra
CNV: intra-segment CNV. Inter CNV: inter-segment CNV. TF: transcription factor
expressions. All: the FDR over all associations.

Table 3 Enrichment of driver/regulator binding motifs on
passenger promoters of mRNA association modules

index reg N1 N2 N3 p-value

44 MITF 118 2023 23 0.0464

45 TBP 77 8009 56 5.3704 × 10-4

45 MYB 77 10684 65 0.0076

46 SREBF2 49 9755 36 0.1581

47 E2F3 31 8123 21 0.0989

47 NFYA 31 2170 3 0.8513

47 SRF 31 75 0 1.0

51 NFATC3 22 2170 5 0.2097

53 NFKB2 19 531 0 1.0

66 TP53 35 3576 16 0.0041

76 PAX8 61 5376 34 0.0014

78 HOXC13 19 5421 12 0.0164

79 PPARG 13 20 0 1.0

81 mir-96 121 636 11 0.0147

81 mir-106a 121 319 6 0.0463

81 mir-17 121 830 12 0.0379

81 mir-93 121 832 12 0.0385

81 mir-106 121 718 11 0.0323

82 mir-21 120 291 7 0.0093

83 SMAD3 338 10025 271 1.058 × 10-7

84 ERG 338 2231 67 0.0093

84 ELK4 338 2803 76 0.0518

84 NFATC1 338 10187 265 3.1517 × 10-5

84 RFX3 338 2751 75 0.0481

84 POU5F 338 379 18 0.0027

Index: module index. Reg: the transcription factor or microRNA with putative
targets. N1: number of passenger genes in a module. N2: total number of
putative targets in human genes. N3: number of passenger genes containing
the transcription factor binding motif. p-value: hyper-geometric p-value of
enrichment. For modules with microRNAs as drivers, N2: number of putative
targets of a microRNA. N3: number of passenger genes belonging to the
putative targets of the microRNA.
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lines) on each chromosome. The passenger genes asso-
ciated with local segment CNVs exhibit a clustering ten-
dency. To rule out the possibility that the clustering
patterns arise from the distributions of all protein-cod-
ing genes on chromosomes, we also marked the loca-
tions of passenger genes associated with non-local
segment CNVs (trans-acting effects) in Figure 2 (red
lines). Despite the presence of dense clusters, the pas-
senger genes with trans-acting effects are more scattered
on chromosomes. We evaluated the entropies (disper-
sions) of gene densities for cis and trans-acting genes on

each chromosome (Figure 2). The trans-acting genes
have higher entropies than the cis-acting genes in the
majority of the chromosomes, confirming the visual
observation about their differences.
Trans-acting effects with segment CNVs are mediated by
transcription factors
506 mRNA expressions are associated with non-local
segment CNVs. One possible mechanism to establish
these trans-acting associations is through intermediate
regulators on segments: segment CNVs have cis-acting
effects on the expressions of their constituent regula-
tors, which in turn modulate the expressions of down-
stream targets on other loci. We identified 18
association modules with intermediate regulators and
reported them in Table 1. Module 44 has segment 18
(chromosome 3p) as the driver, MITF and ZIC1 as
intermediate regulators, and 118 passengers. The driver
CNV as well as regulator and passenger mRNAs all
exhibit melanoma-specific elevation in NCI-60 cell
lines (Figure 3). MITF encodes a transcription factor
that regulates the differentiation and development of
melanocytes and pigment cell-specific transcription of
the melanogenesis enzyme genes. ZIC1 encodes a zinc
finger transcription factor involved in brain develop-
ment. Multiple lines of evidence support the associa-
tions with MITF in this module. First, amplification of
the chromosome 3p region covering MITF is consid-
ered as a typical driver mutation in melanoma [26].
Second, the passenger genes in this module are
enriched with experimentally validated MITF targets
from [45] (14 of 118 genes, hyper-geometric p-value ≤
1.036 × 10-13), and with genes belonging to the GO
category of melanosome (4 of 7 genes in the GO cate-
gory, hyper-geometric p-value ≤ 1.3 × 10-7). Third,
promoters of passenger genes are also enriched with
MITF-binding motifs (Table 3, 23 of 118 passenger
genes containing the motif, hyper-geometric p-value ≤
0.0464). Fourth, MITF and 12 of the 118 passenger
genes are co-cited in previous publications (Table 4).
Module 45 has segment 31 (chromosome 6q) as the

driver, MYB, TBP and HDAC2 as intermediate regula-
tors, and 77 passengers. The driver CNV as well as reg-
ulator and passenger mRNAs all exhibit leukemia-
specific elevation (Figure 3). MYB (c-myb) is a transcrip-
tion factor involved in cell cycle progression, cell prolif-
eration and differentiation in hematopoiesis.
Amplifications of this oncogene cause its abnormal
expressions in leukemia and other solid tumors [46,47].
TBP is a TATA-binding protein belonging to the gen-
eral transcription apparatus. HDAC2 is a histone deace-
tylase that modifies chromatin structures and represses
transcription. Associations of MYB and TBP with the
passenger genes are supported by enrichment of their
binding motifs on promoters (Table 3, 65 of 77 genes

Table 4 Summary of co-citations in mRNA and microRNA
association modules

mRNA modules

index drivers/regulators N1 N2 N3

44 ZIC1,MITF seg 18 CNV (+) 118 14 6

45 TBP,MYB,HDAC2 seg 31 CNV (+) 77 28 20

46 SREBF2,EP300 seg 84 CNV (+) 49 3 2

47 E2F3,NFYA,SRF seg 30 CNV (+) 31 5 4

48 TCF7L2 seg 42 CNV (+) 30 1 3

54 UBP1 seg 16 CNV (+) 18 1 0

62 APC mutation (+) 136 17 10

63 APC mutation (-) 56 3 6

65 CDNK2A mutation (-) 43 3 6

66 TP53 mutation (-) 35 11 3

67 BRAF mutation (-) 34 3 3

68 TP53 mutation (+) 33 4 6

69 CDKN2A mutation (+) 32 6 3

71 PTEN mutation (+) 20 1 2

72 KRAS mutation (-) 16 1 1

73 BRAF mutation (+) 16 3 1

75 PTEN mutation (-) 13 2 4

76 PAX8 methylation (-) 67 1 4

77 BCR methylation (-) 58 5 10

79 CCND1,PPARG methylation (-) 13 4 7

80 COL5A1 methylation (-) 10 1 1

83 TF group 1 (+) 338 236 48

microRNA modules

index drivers/regulators N1 N2 N3

4 ZIC1,MITF seg 18 CNV (-) 19 3 5

5 DNMT1 seg 15 CNV (+) 15 1 2

6 SRF seg 30 CNV (+) 13 1 1

7 MAP2K4 seg 66 CNV (-) 13 2 2

10 TP53 mutation (+) 17 3 3

12 APC mutation (+) 10 1 1

14 BCR methylation (-) 12 1 4

15 SMAD3,BDNF (+) 28 8 10

20 HIF1A (+) 14 1 2

Index: module index. N1: number of passengers in the module. N2: number of
co-cited driver/regulator-passenger pairs in the module. N3: max number of
co-cited driver/regulator-passengers over 10 random modules of the same
size. TF group 1 consists of SMAD3,FOXD1,PLAU,BDNF,FOSL2,FOSL1,RBMS. TF
group 2 consists of ERG,ELK4,NFATC1,POU5F1,ZNF350.
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for MYB motifs, hyper-geometric p-value ≤ 0.0076, 56 of
77 genes for TBP motifs, hyper-geometric p-value ≤
5.370 × 10-4) and co-citations of regulators and passen-
gers in literature (Additional file 4, Table S3, 14 passen-
ger genes are co-cited with MYB, and 8 passenger genes
are co-cited with TBP). Intriguingly, the passenger genes
in this module are highly enriched with the GO cate-
gories or pathways involved in generic DNA and RNA
synthesis such as RNA Pol II regulation and chromatin
remodeling (Table 5). The elevated activities of DNA
and RNA synthesis probably reflect high division rates
of leukemia: leukemia has the second lowest (next to
colon cancers) average doubling time among the NCI-
60 cell lines [48].
Associations do not necessarily imply causality as mul-

tiple types of causal structures may yield the same statis-
tical associations [29]. We confirmed the causal relations
of MYB and its associated genes by intervention experi-
ments. We selected 11 putative target genes whose

mRNAs were associated with segment 31 CNV and
MYB expressions in multiple datasets (see Materials and
Methods and Additional file 1, Text S1). As a control
we selected 6 additional genes with high expression
levels across all 60 cell lines. The K562 leukemia cell
line was treated with c-myb siRNA, and the expression
responses of putative MYB targets and control genes
were measured by qPCR. Expressions of 6 of 11 putative
MYB targets were down-regulated with the t-test p-
value ≤ 0.05 under the c-myb siRNA treatment: CTCF,
KHDRBS1, NFATC3, ORC1L, PAICS, and ZNF131, and
RBMX was significantly up-regulated (Figure 4, green
bars; Additional file 7, Table S6). In contrast, the control
genes were not differentially expressed under the c-myb
siRNA treatment (Figure 4, blue bars; Additional file 7,
Table S6). The primers and the probe used for detecting
each gene are listed in Additional file 8, Table S7.
Module 46 has segment 84 (chromosome 22q) as the

driver, SREBF2 and EP300 as intermediate regulators,

Table 5 Representative enriched GO categories and pathways in mRNA association modules

index drivers/regulators N1 function p-value

44 ZIC1,MITF seg 18 CNV (+) 118 melanosome 1.300 × 10-7

45 TBP,MYB,HDAC2 seg 31 CNV (+) 77 RNA polymerase II regulation 1.35 × 10-5

45 TBP,MYB,HDAC2 seg 31 CNV (+) 77 condensed chromosome 7.928 × 10-5

46 SREBF2,EP300 seg 84 CNV (+) 49 cholesterol biosynthesis 3.781 × 10-4

47 E2F3,NFYA,SRF seg 30 CNV (+) 31 ceramide signaling pathway 4.302 × 10-5

47 E2F3,NFYA,SRF seg 30 CNV (+) 31 NFKB signaling pathway 8.632 × 10-4

48 TCF7L2 seg 42 CNV (+) 30 multi-drug resistance factors 5.884 × 10-5

48 TCF7L2 seg 42 CNV (+) 30 positive regulation of epithelial cell proliferation 1.096 × 10-4

49 NR2C1,NFYB seg 49 CNV (+) 22 mRNA translation 2.314 × 10-4

54 UBP1 seg 16 CNV (+) 18 RNA Pol II phosphorylation 4.429 × 10-4

56 APEX1 seg 57 (+) 16 cleavage of growing transcript 7.872 × 10-4

57 RPA2,EIF2C1 seg 16 CNV (+) 15 mRNA splicing 1.945 × 10-6

57 RPA2,EIF2C1 seg 16 CNV (+) 15 mRNA Pol II transcription initiation 7.260 × 10-4

59 RICS seg 51 CNV (+) 14 regulation of apoptosis 1.397 × 10-4

62 APC mutation (+) 136 liver development 4.932 × 10-4

66 TP53 mutation (-) 35 caspase activation 1.101 × 10-3

66 TP53 mutation (-) 35 P53 signaling pathway 4.138 × 10-4

68 TP53 mutation (+) 33 cell cycle 9.787 × 10-4

69 CDKN2A mutation (+) 32 cell motility 8.510 × 10-4

70 KRAS mutation (+) 25 DNA replication 2.689 × 10-3

71 PTEN mutation (+) 20 JNK cascade 2.904 × 10-4

75 PTEN mutation (-) 13 positive regulation of I-�B kinase/NF-�B cascade 1.745 × 10-3

79 CCND1,PPARG methylation (-) 13 negative regulation of cell proliferation 6.074 × 10-3

81 mir group 1 (-) 121 transport vesicle 3.297 × 10-4

82 mir group 2 (-) 121 translation 3.694 × 10-4

83 TF group 1 (+) 338 integrin signaling pathway 4.664 × 10-8

83 TF group 1 (+) 338 TGFb signaling pathway 9.555 × 10-4

84 TF group 2 (+) 338 T cell differentiation 1.128 × 10-4

Index: module index. N1: number of passengers in the module. Function: enriched GO category or pathway. p-value: hyper-geometric p-value for enrichment. Mir
group 1 consists of mir-92,mir-96,mir-106a,mir 20b,mir-17,mir-19b,mir-32,mir-135,mir-25,mir-106b,mir-93,mir-106,mir-18,mir-20. Mir group 2 consists of mir-24,mir-
99b,mir-27b,mir-21,mir-125a,mir-23b,mir-27a,mir-23a. TF group 1 consists of SMAD3,FOXD1,PLAU,BDNF,FOSL2,FOSL1,RBMS. TF group 2 consists of ERG,ELK4,
NFATC1,POU5F1,ZNF350.
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Figure 2 Clustering tendency of cis-acting effects with segment CNVs. Top: Locations of passenger genes explained by segment CNVs. Blue
lines on the bottom mark the locations of passenger genes explained by cis-acting effects. Red lines on the top mark the locations of passenger
genes explained by trans-acting effects. Bottom: Evenness (entropies) of the distributions of cis and trans acting genes on each chromosome. X-
axis shows the entropies of cis-acting genes, Y-axis shows the entropies of trans-acting genes.
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and 49 passengers. SREBF2 encodes a sterol regulatory
element binding transcription factor. The SREBF2-bind-
ing motif is not enriched on the passenger promoters
(hyper-geometric p-value ≤ 0.1581, Table 3). However,
two passenger genes are involved in cholesterol bio-
synthesis (FDFT1 and HMGCR), and the enrichment is
significant (p-value ≤ 3.781 × 10-4, Table 5).
Module 47 has segment 30 (chromosome 6p) as the

driver, E2F3, NFYA and SRF as intermediate regulators,
and 31 passengers. The passenger genes are moderately

enriched with E2F3-binding motifs (Table 3, 21 of 31
genes, p-value ≤ 0.0989), and five (regulator, passenger)
pairs are co-cited in the same studies (Table 4). SRF
(serum response factor) is known to regulate RAF1 (ser-
ine/threonine-protein kinase), a member of passenger
genes [49]. Moreover, SRF and RAF1 co-participate in
multiple signaling pathways including IGF1, PDGF, and
MAPK pathways (Additional file 5, Table S4). SRF is also
associated with two other passenger genes (RELA and
SMAD4) in previous studies (Additional file 4, Table S3).

Figure 3 Gene expressions of two segment CNV association modules and one mutation association module. Top: From the top to
bottom: segment 18 (chr 3p) CNV, ZIC1 expressions, MITF expressions, and expressions of passenger genes. Middle: From the top to bottom:
segment 31 (chr 6q) CNV, HDAC2 expressions, TBP expressions, MYB expressions, and expressions of passenger genes. Bottom: From the top to
bottom: TP53 mutation states and expressions of passenger genes. Passengers are ordered by their similarity to driver aberration profiles. The
top row has the highest similarity. BR: breast cancers, CNS: brain tumors, CO: colorectal cancers, LE: leukemias, ME: melanomas, LC: lung cancers,
OV: ovarian cancers, PR: prostate cancers, RE: renal cancers.
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Associations with aberrations on individual genes or
microRNAs reveal the causal relations of their targets
Associations with aberrations on individual genes or
microRNAs provide direct causal explanations for gene

expressions. 894 mRNA expressions are associated with
aberrations on individual genes or microRNAs - muta-
tions, DNA methylations of genes and microRNA
expressions. They are grouped into 21 modules and are
reported in Table 1. The causal relations between dri-
vers and passengers are supported by previous studies in
20 association modules.
Positive and negative associations with gene mutations

comprise 12 mRNA expression modules and 522 passen-
ger genes. APC encodes a tumor suppressor protein that
acts as an antagonist of the Wnt signaling pathway and is
involved in other processes such as cell migration and
adhesion. APC is mutated exclusively in colon cancer cell
lines. APC mutations are positively associated with 136
passenger genes and negatively associated with 56 pas-
senger genes (Additional file 1, Figure S9). More previous
studies support the positive associations with APC muta-
tions: 21 passenger genes are co-cited with APC in pre-
vious publications. Some of these passenger genes are
members or downstream targets of the Wnt signaling
pathway: BMP4, CD9, CDH1, GPX2, HDAC1, PPARG,
and SOX9 (Additional file 4, Table S3). Mutations of
APC activate the Wnt pathway thus up-regulate its target
genes. Other passenger genes are associated with APC
aberrations in selected tissue or disease samples: DDR1,
DLG3, ETS2, HOXA10, ITGB4, MEST, PLA2G4B,
SIGIRR, and SPINT2 (Additional file 4, Table S3). In
contrast, only 4 negative associations with APC are sup-
ported by prior publications. APC and PSMD2 are in the
pathway of b-catenin degradation (Additional file 5,
Table S4). APC and CMTM3, EXO1 and HLTF are
reported to be hyper-methylated in selected colon cancer
samples (Additional file 4, Table S3).
CDKN2A (TP16) encodes a tumor suppressor that

inhibits cyclin-dependent kinase 4 (CDK4) in cell cycle
control. It possesses loss-of-function mutations (mostly
frameshift insertions/deletions) in 33 samples. CDKN2A
mutations are negatively associated with 43 passenger
genes and positively associated with 32 passenger genes
(Additional file 1, Figure S10). Three negative associa-
tions are supported by previous studies: ERBB3, FOS
and HSD17B4 (Additional file 4, Table S3). Six positive
associations are supported by previous studies: CAV1,
LIMK1, MSN, THBD, TRDMT1, and YWHAG (Addi-
tional file 4, Table S3). Moreover, the positively asso-
ciated genes are enriched with the GO category of cell
motility (p-value ≤ 8.51 × 10-4) and signaling pathways
of cell motility (p-value ≤ 2.28 × 10-3) and integrin (p-
value ≤ 2.42 × 10-3).
TP53 encodes a master regulator for apoptosis, cell

cycle control and senescence in response to stress con-
ditions. TP53 mutations are negatively associated with
35 passenger genes and positively associated with 33
passenger genes (Additional file 1, Figure S9). Negative

Figure 4 Validation of putative MYB targets with siRNA
treatments. Top: qRT-PCR measurements of c-myb mRNA levels in
the K562 leukemia cell line without treatment (left), treated with the
siRNA against c-myb (middle), and treated with the siRNA against
GFP (right). Bottom: Relative mRNA levels of selected genes under
the c-myb siRNA treatment with respect to the qRT-PCR
measurements under the control siRNA treatment. Green bars:
expression responses of putative MYB targets. Blue bars: expression
responses of control genes.
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associations are highly enriched with known TP53 tar-
gets from multiple lines of evidence. First, the passenger
genes are enriched with a list of 45 known TP53-
responsive genes confirmed by ChIP-Seq assays ([50], 7
of 35 genes, hyper-geometric p-value ≤ 7.6608 × 10-12).
Second, promoters of the passenger genes are enriched
with TP53-binding motifs (16 of 35 genes, hyper-geo-
metric p-value ≤ 0.0041, Table 3). Third, 11 of the 35
passenger genes are co-cited with TP53 in previous pub-
lications (Table 4): BAX, CCNG1, CDKN1A, DDB2,
EGFL7, FDXR, GDF15, LTBR, MDM2, TNFRSF10B
(Additional file 4, Table S3). Most of these co-citations
pertain to well-known pathways of TP53 regulation. For
instance, MDM2 is a ubiquitin ligase and transcriptional
target of TP53, CDKN1A (TP21) is a cyclin dependent
kinase inhibitor and transcriptional target of TP53, BAX
is a BCL2-associated protein involved in apoptosis.
Fourth, the passenger genes are enriched with GO cate-
gories of caspace activation (hyper-geometric p-value ≤
0.001), cyclin-dependent kinase activity (p-value ≤
0.0025), cell cycle arrest (p-value ≤ 0.0069), and path-
ways of TP53 signaling (p-values ≤ 1.55 × 10-5,≤ 4.14 ×
10-4), and G2/M checkpoint (p-value ≤ 0.0012) (Table
5). In contrast, positive associations with TP53 muta-
tions are not enriched with known TP53 targets or pro-
moters containing TP53-binding motifs. Negative
associations with TP53 mutations imply positive regula-
tion of TP53 since most TP53 mutations are loss-of-
function mutations.
161 mRNA expressions are negatively associated with

DNA methylations of five gene clusters (Table 1). They
include the association modules of PAX8 (61 passenger
genes), BCR (58 passenger genes), HOXC13 (19 passen-
ger genes), CCND1 and PPARG (13 passenger genes),
and COL5A1 (10 passenger genes). The passenger genes
of PAX8 and HOXC13 modules are enriched with the
binding motifs of their drivers (PAX8: 34 of 61 genes,
hyper-geometric p-value ≤ 0.0014, HOXC13: 12 of 19
genes, hyper-geometric p-value ≤ 0.016). Furthermore, a
passenger gene in the CCND1/PPARG module, KLF4, is
regulated by both CCND1 and PPARG from multiple
previous studies (Additional file 4, Table S3).
241 mRNA expressions are negatively associated with

two clusters of microRNA expressions (Table 1). Asso-
ciation module 81 possesses mir-92, mir-96, mir-106a,
mir-20b, mir-17, mir-19b, mir-32, mir-135, mir-25, mir-
106b, mir-93, mir-106, mir-18, and mir-20 as drivers
and 121 passenger genes. Association module 82 con-
tains mir-24, mir-99b, mir-27b, mir-21, mir-125a, mir-
23a, mir-23b, and mir-27a as drivers and 120 passenger
genes. The passenger genes in both modules are
enriched with the predicted targets of their driver
microRNAs (Table 3, association module 81: mir-96, p-
value ≤ 0.015, mir-106a, p-value ≤ 0.046, mir-17, p-

value ≤ 0.038, mir-93, p-value ≤ 0.032; association mod-
ule 82: mir-21, p-value ≤ 0.001). Therefore, some pas-
senger mRNA expressions in these modules are
probably regulated by their driver microRNAs.
Gene clusters with coherent expression profiles are likely to
be regulated by transcription factors
A unique characteristic of NCI-60 mRNA expression
data is the presence of a few large clusters with highly
coherent expression profiles (Additional file 1, Figures
S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13).
Two of the largest clusters are not associated with any
observed molecular aberrations. We identified the tran-
scription factors that were associated with the mRNA
expressions in these clusters as candidates for inter-
mediate regulators. These transcription factors may reg-
ulate the coherent expressions of downstream genes, yet
the drivers that control the regulator expressions are
unknown. Two association modules with intermediate
regulators are reported in Table 1. Module 83 contains
SMAD3, FOXD1, PLAU, BDNF, FOSL2, FOSL1 and
RBMS1 as regulators and 338 passenger genes. Module
84 contains ERG, ELK4, NFATC1, RFX3, POU5F1 and
ZNF350 as regulators and 338 passenger genes. The
expression profiles of the two modules are shown in
Figure 5.
Associations of regulators and passengers in these

modules are supported by rich prior studies. Promoters
of module 83 passengers are highly enriched with
SMAD3-binding motifs (Table 3, 271 of 338 genes,
hyper-geometric p-value ≤ 1.058 × 10-7). SMAD3
encodes a transcriptional modulator activated by trans-
forming growth factor-b (TGFb). Indeed, many passen-
ger genes are members or downstream targets of the
TGFb signaling pathway according to previous studies,
such as TGFBR2, ADAM12, CAV1, CCNB1, and EGFR
(Table 6 and Additional file 4, Table S3). In addition,
many passenger genes are co-cited with other candidate
regulators (PLAU, BDNF, FOSL1) in previous publica-
tions. For instance, associations of BDNF and passenger
genes such as ADAM17, AXL, and BCAT1 in neuron
cells are previously reported (Additional file 4, Table
S3).
Promoters of module 84 passengers are enriched with

the binding motifs of NFATC1 (265 of 388 genes,
hyper-geometric p-value ≤ 3.15 × 10-5), POU5F (18 of
338 genes, hyper-geometric p-value ≤ 0.0027), ERG (67
of 338 genes, hyper-geometric p-value ≤ 0.0093), RFX3
(75 of 338 genes, hyper-geometric p-value ≤ 0.0481),
and ELK4 (76 of 338 genes, hyper-geometric p-value ≤
0.0518). Many passenger genes are co-cited with some
of these regulators in previous studies (Table 4).
Most association modules exhibit tissue-specific expressions
NCI-60 cell lines constitute 9 distinct tissue origins. The
patterns of molecular aberrations and gene expressions
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are likely to vary between tissue types. The inferred
modules capture strong associations between drivers
and passengers across all samples. Strong associations,
however, can be manifested by either tissue-specific or
tissue-independent patterns. These two types of patterns
are illustrated in Figure 3. The driver of module 44 (seg-
ment 18 CNV) is amplified in melanoma cell lines alone,
and its passenger expressions are up-regulated in mela-
noma cell lines. In contrast, the driver of module 66
(TP53 sequence) has prevalent mutations among all tis-
sue types, and its passenger expression patterns are
independent of tissue types. To check whether the
effects of dysregulation are universal or tissue-specific,
we extracted the tissue-specific patterns of drivers and
passengers in each module (see descriptions in Materials
and Methods and Additional file 1, Text S1) and visua-
lized them in Figure 6. We observed the following intri-
guing results. First, about half of the cis-acting modules
(internal segment CNVs as drivers) are coherently up or
down regulated in at least one tissue type. In contrast,
the majority of the trans-acting modules (all other types
of drivers) have the same property. Second, despite
many association modules possess tissue-specific pat-
terns, none of them are coherently up or down

regulated among all tissue types. In other words, a mod-
ule has incoherent driver aberrations and passenger
expressions in at least one tissue type. Third, the tissue-
specific patterns are dominated by four tissue types:
melanoma, leukemia, colon and central nervous system.
For instance, 8 and 4 of 41 trans-acting modules contain
up and down regulated passengers in leukemia respec-
tively. 8 and 9 of 41 trans-acting modules contain up
and down regulated passengers in melanoma respec-
tively. 5 trans-acting modules contain differentially
expressed passengers in renal cancers. In contrast, very
few modules possess tissue-specific patterns on lung,
ovarian or prostate cancers. Fourth, no module is coher-
ently up or down regulated in breast cancer cell lines.
Yet several of them possess coherent expressions in
estrogen (ER)-positive or ER-negative samples. For
instance, module 83 (Figure 5) passengers are up-regu-
lated in ER-negative samples and down-regulated in ER-
positive samples. Fifth, tissue-independent patterns
belong to transacting modules with external segment
CNVs or mutations as drivers. Five of 14 modules asso-
ciated with mutations are tissue-independent: module
65 (CDKN2A), module 68 (TP53), module 70 (KRAS),
module 74 (PIK3CA) and module 75 (PTEN). The

Figure 5 Gene expressions of two TF expression association modules. Top: From the top to bottom: expressions of putative regulators of
the module (SMAD3, FOXD1, PLAU, BDNF, FOSL2, FOSL1, RBMS1) and expressions of passenger genes. Bottom: From the top to bottom:
expressions of putative regulators of the module (ERG, ELK4, NFATC1, RFX3, POU5F1, ZNF350) and expressions of passenger genes. Regulators
are ordered by hierarchical clustering with their aberration profiles, and their dendrogram are displayed on the left of the panel. Passengers are
sorted by their average similarity to the driver aberration profile. The top row has the highest similarity. BR: breast cancers, CNS: brain tumors,
CO: colorectal cancers, LE: leukemias, ME: melanomas, LC: lung cancers, OV: ovarian cancers, PR: prostate cancers, RE: renal cancers. Samples 1
and 5 are estrogen-positive breast cancers, and samples 2-4 are estrogen-negative breast cancers.
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mutational states of these genes on the samples are not
aligned with their tissue types. In contrast, modules
associated with mutations of APC and BRAF possess tis-
sue-specific patterns, as APC and BRAF mutations occur
primarily on colon cancer and melanoma samples
respectively. Similarly, the majority of microRNA asso-
ciation modules possess tissue-specific patterns, and
these patterns are dominated by up/down regulations in
leukemias, central nervous systems and colons. Different
from mRNA modules, only two microRNA modules
possess melanoma-specific patterns. The tissue-specific
patterns of microRNA modules are displayed in Addi-
tional file 1, Figure S17.

MicroRNA expressions are driven by distinct aberration
mechanisms from mRNA expressions
195 of 303 microRNA expressions are associated with
observed molecular aberrations. We grouped these asso-
ciations into 25 modules and summarized their informa-
tion in Table 6. Intriguingly, the drivers of the top-
ranking microRNA modules are marginally overlapped
with those of the top-ranking mRNA modules, suggest-
ing that microRNA and mRNA expressions are driven
by distinct molecular aberrations. The complete list of
association modules are reported in Additional file 3,
Table S2, and driver aberrations and passenger micro-
RNA expressions are visualized in Additional file 1, Fig-
ures S14, S15, S16.
Table 2 shows the FDRs for each type of associations

and all association together for microRNA modules. The

Table 6 Summary information of association modules for
microRNA expressions

index driver type drivers reg sign N

1 inter CNV seg 69 SPOP,NME2,POLG2 - 38

2 inter CNV seg 55 NR2C1,NFYB - 29

3 inter CNV seg 51 RICS + 23

4 inter CNV seg 18 ZIC1,MITF - 19

5 inter CNV seg 15 DNMT1,MBD3 + 15

6 inter CNV seg 30 SRF + 13

7 inter CNV seg 66 MAP2K4 - 13

8 inter CNV seg 68 BRCA1 - 12

9 inter CNV seg 13 NFE2L2 - 10

10 mutation TP53 NA + 17

11 mutation KRAS NA - 15

12 mutation APC NA + 10

13 mutation STK11 NA - 10

14 methylation BCR NA - 12

15 TF TF group 1 NA + 28

16 TF MBD1 NA + 19

17 TF TFE3 NA + 18

18 TF BR2F1 NA + 17

19 TF GRLF1 NA + 15

20 TF HIF1A NA + 14

21 TF E4F1 NA + 12

22 TF TFDP1 NA + 12

23 TF FOXM1 NA + 11

24 TF ATF2 NA + 10

25 intra CNV chr14p NA + 14

Annotations follow Table 1.

Figure 6 Tissue-specific patterns of mRNA association modules. Each row represents the tissue-specific pattern of a module. Red: coherent
up-regulation in a tissue type. Green: coherent down-regulation in a tissue type. Black: incoherent expressions in a tissue type. Cis-acting
modules range from 1 to 43. Trans-acting modules range from 44 to 84. BRER+: ER-positive breast cancers, BRER-: ER-negative breast cancers,
CNS: brain tumors, CO: colorectal cancers, LE: leukemias, ME: melanomas, LC: lung cancers, OV: ovarian cancers, PR: prostate cancers, RE: renal
cancers.
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microRNA FDRs exhibit same trend as the mRNA
FDRs. Associations with segment CNVs yield the lowest
rates, followed by associations with mutations and tran-
scription factor expressions. Associations with DNA
methylation yield the worst performance. Associations
with microRNA expressions and local segment CNVs
were not considered. The overall FDRs calculated by the
two methods are 0.292 and 0.394 respectively.
Information about regulators and functions of micro-

RNAs is much more scattered than those of protein-
coding genes. We incurred a batch search on PubMed
to identify co-citations of drivers/regulators and passen-
ger microRNAs in these modules. Overall, co-citations
of drivers/regulators and passengers were found in 9
associations modules. Table 4 and Additional file 4,
Table S3 report the co-citation outcomes for microRNA
modules.
Cis-acting effects with segment CNVs are absent on
microRNAs
A remarkable distinction between mi-croRNA and
mRNA associations is the lack of associations with local
segment CNVs in microRNA modules. Mi-croRNA
expressions are poorly correlated with their local seg-
ment CNVs compared to mRNA expressions (Addi-
tional file 1, Figure S18). The only possible exception is
a module of microRNAs located on chromosome 14p
(Additional file 3, Table S2). These microRNAs exhibit a
coherent expression pattern (Additional file 1, Figure
S16) and are localized on chromosome 14p. Thus they
are likely to be modulated by local segment CNVs. Yet
we cannot verify these associations since chromosome
14p is not covered by the CNV data.
Associations suggest the existence of feedback loops
between microRNAs and protein-coding genes
Co-citation search outcomes demonstrate bidirectional
regulatory links between the driver/regulator genes and
passenger mircroRNAs. Table 7 summarizes these regu-
latory links reported from prior studies. Most drivers/
regulators of these microRNA modules are known or
predicted targets of the passenger microRNAs. Hence

there are possible bidirectional links connecting tran-
scription factors and microRNAs. In some cases, bidir-
ectional links are reported. For instance, MAP2K4 in
module 7 is both a known regulator and target of two
passenger microRNAs mir-25 and mir-92. Similarly,
TP53 in module 10 is both a known regulator and target
of two passenger microRNAs mir-15a and mir-16.

Discussion
Uncovering causal relations of genes from static, obser-
vational data alone is challenging due to the ambiguities
of transferring associations into causal information. We
address this problem by exploiting two widely accepted
hypotheses in cancer genomics: (1)molecular aberrations
on DNAs (mutations, copy number variations, DNA
methylations) affect the levels of RNA transcripts but
not the other way around, (2)if both cis-acting and
trans-acting effects of segment CNVs are detected, then
cis-acting effects are more likely to be the direct causes
for expression changes. Based on these hypotheses we
built association modules between putative driver mole-
cular aberrations and passenger mRNA or microRNA
gene expressions. Our predictions are supported by var-
ious validation results. First, the downstream targets of
several well-known cancer-related genes such as MITF,
TP53 and APC are retrieved from our association mod-
ules. Second, the passenger genes of large modules are
enriched with the putative targets of their regulators or
drivers. Third, putative targets of MYB are down-regu-
lated under the MYB siRNA treatment. Fourth, associa-
tions between molecular aberrations and microRNA
expressions reveal the bidirectional regulatory links
between transcription factors and microRNAs.
One intriguing observation is that each type of mole-

cular aberrations participate in at least one association
module. Therefore, to track the causes of expression
variations it is necessary to interrogate multiple types of
molecular aberrations concurrently. NCI-60 datasets are
sparse in mutations (24 valid genes), copy number varia-
tions (219 valid genes) and DNA methylations (320 valid

Table 7 Regulatory links between drivers/regulators and microRNAs

index link PMID index link PMID

4 mir-182, mir-183 ®MITF 17597072 15 mir-21 ® SMAD3 19816956

4 mir-130b ® ZIC1 20676061 15 mir-23a ® SMAD3 18508316

5 DNMT1 ® let-7a 17308078 15 mir-24 ® SMAD3 18353861

6 SRF ® mir-143 21069820 15 mir-10a ® BDNF 20309390

7 mir-25 ↔ MAP2K4 19861690, 15652477 15 mir-125b ® BDNF 19635812

7 mir-92 ↔ MAP2K4 17683260, 15652477 15 mir-134 ® BDNF 20622856, 16421561

10 mir-15a, mir-16 ↔ TP53 19347736, 15652477 15 mir-210 ® BDNF 19826008

14 mir-203 ® BCR 18538733 20 mir-34c ® HIF1A 20861672

Index: microRNA association module index. Link: regulatory links between regulators and microRNAs. Arrows indicate the directions of regulation. PMID: the
PubMed ID of the reported link.

Li et al. BMC Systems Biology 2011, 5:186
http://www.biomedcentral.com/1752-0509/5/186

Page 15 of 22



genes). Consequently, about half of the mRNA expres-
sion data (3571 genes) are not significantly associated
with observed aberrations. This drawback will become
less prominent in new generations of comprehensive
cancer genomics projects (e.g., TCGA [7] and ICGC
[8]), as they employ high density microarrays and next-
generation sequencing to cover the entire genomes.
Associations with driver molecular aberrations can be

extended to clinically relevant phenotypes such as drug
resistance [51]. Unlike mRNA or microRNA expres-
sions, these phenotypes are not the direct products of
molecular aberrations. Thus associations are likely to be
mediated by the genes functionally related to the pheno-
types. For instance, from the drug response data on
NCI-60 cell lines [19] we found leukemia cell lines were
sensitive to the majority of compounds tested (data not
shown). This observation coincides with up-regulation
of genes involved in transcriptional and translational
processes in leukemia (Additional file 5, Table S4). Both
drug responses and gene expressions reflect the high
growth and division rates of leukemia cell lines relative
to other samples.
Two of the largest association modules (modules 83

and 84) lack driver aberrations but consist of intermedi-
ate regulators. In particular, multiple lines of evidence
indicate the expressions of module 83 are controlled by
TGFb pathway activities. Yet it is unclear which molecu-
lar aberrations modulate the expressions of the inter-
mediate regulators. Examination of the mutations and
DNA methylations of members on the TGFb pathway
may reveal their driver aberrations.
Cis-acting and trans-acting effects with segment CNVs

dominate the association modules of mRNA expressions
(61 of 84 association modules). Amplifications and dele-
tions of chromosomal segments are powerful driver
aberrations, as they can possibly affect many genes on
the segments and downstream targets on other loci.
Determination of cis-acting and trans-acting effects with
CNVs remains an open problem. We observed a ten-
dency of cis-acting genes to cluster on certain hot-
regions of chromosomes. Yet many cis-acting genes are
still scattered around the entire chromosomes. The dis-
tributions of cis and trans-acting genes will become
more clear from the data of high density CGH arrays.
Associations with mutations of several cancer-related

genes - TP53, CDKN2A, APC - are largely consistent
with their known targets. However, the passenger sets of
positive and negative associations exhibit differential
levels of enrichment. Passenger genes negatively asso-
ciated with TP53 mutations (module 66) are enriched
with TP53-binding motifs (Table 3) and known targets
of TP53 (Table 5 and [50]). In contrast, passenger genes
positively associated with TP53 mutations (module 68)
do not possess the enrichment. TP53 undergoes loss-of-

function mutations, thus negative associations imply
positive regulation between TP53 and its targets.
Although negative regulation of TP53 has been pre-
viously reported [52], on NCI-60 TP53 seems to be an
activator of its prominent direct targets. The enriched
functional information is reversed in APC and CDKN2A
mutations. 15 of the passenger genes positively asso-
ciated with APC mutations (module 62) are involved in
the Wnt pathway or associated with APC. In contrast,
only 3 of the passenger genes negative associated with
APC mutations (module 63) are related to APC. Simi-
larly, 5 of the passenger genes positively associated with
CDKN2A mutations (module 69) are related to
CDKN2A, whereas only 2 of the passenger genes nega-
tively associated with CDKN2A mutations (module 65)
are related to CDKN2A. Unlike TP53, APC and
CDKN2A are inhibitors of signaling pathways (Wnt and
cell cycle control) and possess no direct targets. Hence
their loss-of-function mutations would activate the
downstream targets of the pathways. In contrast, genes
down-regulated in APC or CDKN2A mutants are likely
to arise from secondary effects instead of direct conse-
quences of APC or CDKN2A mutations.
Two large clusters of mRNA expressions are nega-

tively associated with groups of microRNA expressions
(modules 81 and 82). The causality between microRNAs
and mRNAs are ambiguous since regulation can take
place in both directions. The passenger genes are
enriched with the predicted targets of driver micro-
RNAs. Additional evidence is required to determine
their causal directions.
In NCI-60 cell lines, microRNA and mRNA expres-

sions seem to be driven by distinct molecular aberra-
tions. Unlike mRNA expression modules, none of the
microRNA expression modules are associated with
local segment CNVs. This is curious since many
microRNAs in this study are located on the partitioned
segments and between the protein-coding genes pos-
sessing the cis-acting effects with segment CNVs. Poor
correlations between microRNA expressions and their
local segment CNVs suggest either the low resolution
of the CGH data or the trans-acting nature of micro-
RNA regulation.
It is more difficult to validate the association modules

of microRNA expressions due to the paucity of regula-
tory and functional information. Intriguingly, we found
that many drivers and regulators were known or pre-
dicted targets of their passenger microRNAs (Table 7).
In some cases, regulation along both directions between
drivers and passengers is reported (for instance,
MAP2K4 v.s. mir-25 and mir-92). The association out-
comes and prior studies suggest feedback regulation
between driver transcription factors and passenger
microRNAs.
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It is worth noting that pairwise associations inferred
from the data are projections of multi-variate models from
drivers to the target passenger. A driver links to a pas-
senger if their association cannot be explained by other
driver variables. Therefore, “pairwise associations” in this
study carry a very different meaning from purely pairwise
scores such as correlation coefficients. A more adequate
analogy is conditional independence in probabilistic gra-
phical models. A driver A links to a passenger X if A is
not conditionally independent of X given any other dri-
ver variable. Such direct and indirect relations can be
captured by a variety of prior approaches such as Baye-
sian networks, mutual information and regression. Our
contribution is not to invent/introduce a new mathemati-
cal tool to tackle the same problem, but to develop a
data integration framework to exploit the statistical and
mechanistic properties of the data. More specifically, the
novelty of this work includes (1)Prioritize the order of
adding association links according to mechanistic infor-
mation. Cis-acting effects are first considered as they
provide direct explanation for passenger expression fluc-
tuations. Trans-acting effects with aberrations on DNA
as drivers (CNV, mutations, DNA methylations) are
taken into account only if they provide additional expla-
natory power relative to cis-acting effects. Finally, trans-
acting effects without DNA aberrations (microRNA or
transcription factor expressions) are introduced on top of
the lower layered models. (2)Project the complex net-
work of conditional independence relations onto pairwise
links and group these links as driver-centric association
modules. This simplification is useful and practical as it
is much easier to examine and validate a coherent mod-
ule than a complex network.
Projecting a complex regulatory network onto well-

structured modules certainly yields information loss.
Genes are often regulated by combinatorial interactions
of multiple transcription factors, chromatin modifiers
and signaling proteins. Moreover, the regulatory pro-
grams may vary with tissue types. In this work, we
chose to ignore combinatorial interactions and tissue-
specific regulatory programs and focused on strong mar-
ginal effects manifested on the variations across all 60
cell lines. This simplification seems necessary given the
limited size of NCI-60 data. A new generation of cancer
genomic data - such as TCGA and ICGC - often cover
much more patients with a specific tumor type. There-
fore, it is possible to include the combinatorial interac-
tions and tissue-specific regulations in an extension of
the current models.
The FDR values clearly depend on the constraints of

associations. Internal segment CNVs require the physi-
cal proximity of drivers and passengers, and external
segment CNVs require the existence of intermediate
regulators linking segment CNVs and passenger

expressions. These additional constraints push the FDRs
below significant levels. In contrast, modules of muta-
tions, DNA methylations, microRNA and TF expres-
sions as drivers rely only on associations between
drivers and passengers. Thus their FDRs are substan-
tially higher than standard significant values. To lower
the FDRs on those modules, additional constraints such
as evidence of physical interactions between drivers and
passengers are probably needed. However, since the
FDRs reported in Table 2 are the aggregate results over
all modules of the same type, the high values do not
deteriorate the relevance of individual modules. For
instance, multiple lines of evidence support the modules
associated with TP53 mutations, CDKN2A mutations,
PAX8 methylations, as well as TF groups 1 and 2
expressions. It is difficult to discriminate these biologi-
cally relevant modules from potentially spurious mod-
ules from the NCI-60 data alone. External information
or experimental validation has to be incorporated. In
this work, we use external information and experimental
validation to justify the models inferred from data alone.
A refined version of the model construction algorithm
should include these additional information in the loop.
Only 5 transcription factor binding motifs are signifi-

cantly enriched on module passengers after Bonferroni
correction (TBP, PAX8, SMAD3, NFATC1 and POU5F).
These unsatisfactory results can be attributed to both
the conservative nature of Bonferroni correction and the
accuracy of motif presence as a proxy for regulation.
We sought the presence of motifs within 5kb upstreams
of the transcription start sites. This simple scheme may
create many false positives and false negatives. For
instance, only 27 of the 113 experimentally validated
MITF targets [45] contain the MITF-binding motif
within 5kb promoters, and only 13 of the 67 experimen-
tally validated TP53 targets [50] contain the TP53-bind-
ing motif within 5kb promoters. The discrepancy
between motif presence and experimentally validated
targets may partially explain the relatively high motif
enrichment p-values of modules 44 (MITF) and 66
(TP53). Restrictions to promoters with multiple motif
occurrences reduce false positives but increase false
negatives. The enrichment results are worse than Table
3 (Additional file 9, Table S8). Consequently, we should
treat motif enrichment analysis as one error-prone vali-
dation and use it together with other validations (co-
citations, functional category or pathway enrichments).
Other types of validations are also subjected to error. It
remains an open problem to systematically validate the
large-scale models inferred from high-throughput data.
In this work, we built association modules from NCI-

60 data alone and attempted to validate the inferred
modules with external information. An alternative and
common approach is to start with prior models using
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external information (e.g., pathways, GO categories, pro-
tein-DNA and protein-protein interactions) and learn
the models explained by the data. As a simple compari-
son, we treated each pathway and GO category as the
passenger gene set of a module and identified the dri-
vers that significantly explained their expressions. The
results are reported in Additional file 10, Table S9.
Overall, only a small number of GO categories and
pathways are significantly explained by driver aberra-
tions in NCI-60 data. Prominent ones include genes
involved in melanosome and melanin biosynthesis and
explained by MITF transcription factor expressions,
ribosome genes explained by a cluster of 9 microRNAs,
and members of proteasome genes explained by internal
segment CNVs on chromosome 14q. Notice that genes
involved in melanosome and melanin biosynthesis sub-
stantially overlap with module 44.

Conclusions
We proposed a computational method to build associa-
tions between molecular aberrations (drivers) and
mRNA/microRNA expressions (passengers) and grouped
the genes/microRNAs into modules according to their
associated molecular aberrations. Intriguingly, a consid-
erable portion of these associations implied causal rela-
tions according to in-silico and experimental validations.
We found passengers in these association modules were
enriched with the putative targets of the drivers, func-
tional categories and pathways in which the drivers were
involved, and regulatory/association links confirmed by
prior publications. Moreover, we demonstrated that the
predicted MYB targets were down-regulated in a MYB-
siRNA treated leukemia cell line. The reported associa-
tion modules indicated that gene/microRNA expressions
in cancer were driven by diverse aberration mechanisms
including copy number variations, mutations, DNA
methylations, microRNA and transcription factor
expressions. In addition, the results suggested distinct
driver mechanisms between mRNA and microRNA
expressions and the existence of bidirectional regulatory
links between microRNAs and transcription factors.

Methods
Data sources and processing
NCI-60 constitutes a panel of 60 cell lines derived from
9 tissue types: breast (5 cell lines), central nervous sys-
tem (6 cell lines), colon (7 cell lines), leukemia (6 cell
lines), melanoma (10 cell lines), lung (9 cell lines), ovary
(7 cell lines), prostate (2 cell lines) and kidney (8 cell
lines). Melanoma cell line MDA-N is derived from
MDA-MB435, thus the two cell lines are highly similar.
Among the 5 breast cancer cell lines 2 are estrogen-
positive (MCF7 and T47D) and the remaining 3 are
estrogen-negative (MDA-MB-231, HS578T. BT-549).

Seven datasets of NCI-60 cell lines were downloaded
from the website of the Genomics and Bioinformatics
Group at NCI (GBC): mutation analysis of 24 cancer
genes [10], Comparative Genomic Hybridization (CGH)
array data of DNA copy number variations [11], cytosine
methylation profiling on promoters [12], cDNA microar-
ray data [15], Affymetrix transcript profile data [16], and
Agilent transcript profile data [17] of mRNA expres-
sions, and microRNA expression data [13]. The union of
these datasets covered 14856 genes and 303 microRNAs.
Continuous data (CNVs, mRNA expressions, micro-

RNA expressions, DNA methylations) were first rank-
transformed into cumulative distribution function (CDF)
values and then converted into probability vectors of
trinary states using probabilistic quantization [33]. This
transformation normalizes the data in the same scale
and preserves the information from continuous data.
Discrete data (mutations) was directly fed into the
model without processing. Detailed procedures of data
normalization and combination are reported in Addi-
tional file 1, Text S1.
Spatial dependency of CNV data was manifested from

the measurements of 219 genes in a CGH array [33].
Adjacent probes on the same chromosome tend to have
higher correlations than randomly selected probes. To
exploit the spatial dependency of CGH probes, we
devised a recursive algorithm to partition each chromo-
some into correlated segments using the CNV data. The
algorithm is described in Additional file 1, Text S1. 86
segments were obtained from the CNV data and
reported in Additional file 6, Table S5. The CNV data
of a segment is the mean over the CNV data of all its
constituent probes.

Logistic regression models
We used logistic regressions to model the effects of
molecular aberrations on gene or microRNA expres-
sions. Denote y the expression of a gene or microRNA
and x the driver aberrations that explain y. The condi-
tional probability is

P(y|x) =
1

Z(x)
e
∑

iλifi(x)y, λi ≥ 0, ∀i. (1)

fi(x)’s are scalar feature functions specifying the rela-
tions of x and y. li’s are nonnegative parameters, and Z
(x) is the partition function that normalizes the condi-
tional probabilities. In this work fi(x)’s are linear func-
tions of feature values. fi(xi) = xi if aberration xi
activates expression y, fi(xi) = -xi if aberration x
represses expression y.
Given observed data D and two nested models M0,M1

⊇ M0, we incurred a standard hypothesis testing proce-
dure to calculate the log-likelihood ratio and p-value of
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D. The pairwise scores measured the goodness of fit of
M1 against the null model M0. Furthermore, given the
models M1 and M2 of two candidate driver aberrations
we tested the joint model M12 against M1 and M2

respectively. The testing results provide information
whether the explanatory power of one model can be
covered by another. Detailed procedures of parameter
estimation, evaluation of log likelihood ratios and p-
values as well as model selection are described in Addi-
tional file 1, Text S1.

Building association modules
An association module consists of a small number of
bona fide driver molecular aberrations and a subset of
passenger genes or microRNAs. The expression pro-
files of passengers are explained by fluctuations of dri-
vers. For trans-acting effects with segment CNVs, the
associations between drivers and passengers are
mediated by regulators on the segments. We require
that a valid association module should satisfy the fol-
lowing conditions. First, a driver explains each passen-
ger expression with a significant pairwise score.
Second, a driver provides an explanatory power that
cannot be replaced by any other drivers. Third, cis-
acting effects have a higher priority than associations
with non-local aberrations. Fourth, a module has at
least 10 passengers. Toward this goal the association
modules were constructed by the following proce-
dures.

1. For each passenger mRNA or microRNA expres-
sion, evaluate the pairwise association scores with all
candidate driver aberrations. Keep the associations
that pass the threshold values of these scores.
2. If a passenger gene or microRNA is associated
with an external segment CNV, then find the tran-
scription factor mediating the associations between
external segment CNVs and passenger expressions.
3. Rule out a transcription factor as a candidate dri-
ver for the modules of regulatory effects if the tran-
scription factor is associated with any observed
molecular aberration.
4. For each passenger mRNA or microRNA expres-
sion, incur model selection to rule out the driver
aberrations that can be replaced by other drivers.
Briefly, for the models M1 and M2 of two candidate
driver aberrations, test the joint model M12 against
M1 and M2 respectively. If M12 is significantly better
than M1 but does not outperform M2, then remove
M1. Apply this filtering procedure for all pairs of dri-
ver aberrations.
5. Group passenger genes or microRNAs into mod-
ules by their drivers. Report the modules with ≥ 10

passenger members. Passengers of distinct associa-
tion modules may overlap.

Detailed procedures for building association modules
are described in Additional file 1, Text S1.

Experimental validation
Selection of putative targets and control genes of MYB
To validate the causal implications of association out-
comes we selected several putative targets of MYB and
measured their expression responses with and without
the treatment with an MYB siRNA. Putative MYB tar-
gets satisfy the following criteria: (1)their mRNA expres-
sions were positively associated with segment 31 CNV,
(2)their mRNA expressions were positively associated
with MYB expression in NCI-60 data under normal
conditions, (3)their mRNA expressions were positively
associated with MYB expression in another expression
dataset of NCI-60 cell lines exposed under radiation
([53], Additional file 1, Figure S19), (4)their mRNA
expressions were positively associated with MYB in a
dataset containing 73 normal tissues [54]. 31 genes
passed these filtering criteria. Among them we then
selected 11 genes based on the constraints of primer
design: CPSF6, CTCF, HCLS1, KHDRBS1, NFATC3,
ORC1L, PAICS, POLD3, RBMX, SMC1A, and ZNF131.
In addition to predicted MYB targets we also selected

several control genes which were constituently
expressed across the NCI-60 cell lines, regardless of the
MYB expression levels. From the top 10 candidates we
selected 6 based on the constraints of primer design:
SSR2, GNB2, HSPC152, EIF4A1, RPS15, HINT1.
Detailed procedures of selecting putative MYB targets
and control genes are described in Additional file 1,
Text S1.
siRNA treatments and RNA measurements
Human erythroleukemia cells (K562) were purchased
from NCI (Frederick, MD) and maintained in RPMI
1640 medium (Invitrogen, CA). The sequences of siR-
NAs were adopted from previous reports: siRNA against
c-myb (c-myb siRNA); sense: 5-UGUUAUUGCCA
AGCACUUAAA -3; anti-sense: 5-UAAGUGCUUGG-
CAAUAACAGAA -3; siRNA against GFP (control
siRNA): sense sequence: 5-UGCGCUCCUGGAC-
GUAGCCTT-3; antisense: 5-GGCUACGUCCAG-
GAGCGCATT-3.
siRNA transfection was performed as described pre-

viously with minor modifications. Briefly, cells were
seeded at a density of 2 × 105 cells/well in a 6-well plate
with 2 mL culture medium per well. Right after the
seeding, the cells were transfected with c-myb siRNA or
control siRNA using LipofectAMINE 2000 (Lf 2000,
Invitrogen, CA). The siRNA/Lf2000 complex was then
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incubated with the cells (siRNA concentration = 100
nM) for 48 h and the cells were harvested for further
assays.
RNA isolation and cDNA synthesis were demon-

strated according to the manufacturers protocols.
Briefly, total RNA of the treated K562 cells was isolated
and then converted to cDNA by incubating 1 μg RNA
with 2.5 μM Oligo(dT)23, 500 μM dNTP and 1 μl of
RNase Inhibitor (New England Biolabs, Beverly, MA), 5
mM DDT, 4 μl of 5 First-Strand buffer and 1 μl of
SuperScript III Reverse transcriptase (Invitrogen) for 1 h
at 50 degrees Celsius in a total volume of 20 μl in a
microtube.
Real-time PCR was performed in a Mastercycler ep-

gradient-S thermocycler (Eppendorf, Hamburg, Ger-
many) with FastStart TaqMan Probe Master (ROX) and
Universal ProbeLibrary (Roche Diagnostics GmbH,
Manheim, Germany) according to the manufacturers
instructions. The primers and the probe used for detect-
ing each gene are listed in Additional file 8, Table S7.
The amplification conditions were 10 min at 95 degrees
Celsius, followed by 40 cycles of 95 degrees Celsius for
15 s and 60 degrees Celsius for 1 min. The quantity was
determined from the experimental threshold cycle on a
standard curve of the data from a series of serial dilu-
tion of the mixture of generated cDN A. The mRN A
level of the gene of interest was normalized by that of
ACTB (b-actin) as an endogenous control. Detailed pro-
cedures of RNA quantification are described in Addi-
tional file 1, Text S1. The measured data of qRT-PCR
are reported in Additional file 7, Table S6.

In-silico validation
Evaluation of false discovery rates
For each type of association modules, we randomly per-
muted aberration and expression data 1000 times and
estimated the empirical distribution of the number of
significant pairwise associations arising from permuted
data. The expected number and the 99 percentile num-
ber of false positives were calculated from this empirical
distribution. The number of positive calls from the data
was the number of significant pairwise associations.
Two types of false discovery rates were evaluated
accordingly:
(1)

expected # false positives according to the null model
#positive calls from the date

, (2)
# false positives in the 99 percentile of the null model

# positive calls from the date .
Enrichment analysis of putative targets on passenger genes
19 transcription factors appear in both drivers/regulators
of the association modules and the TRANSFAC data-
base [37]. We extracted their binding motifs from
TRANSFAC and 5kb promoter sequences of 27748
human genes from the UCSC Genome Browser [55].
For each transcription factor, the occurrences of its
binding motif on all promoters and on the passenger

promoters were counted. A standard Fisher’s exact test
was applied to evaluate the significance of motif enrich-
ment on passenger genes. Motif search and Fisher’s
exact test were implemented by our own C programs.
Two association modules of mRNA expressions con-

tain microRNA expressions as drivers. We extracted the
putative targets of the driver microRNAs from the
union of three databases: TargetScan [38], microRNA.
org [39], and miRBase [40]. Enrichment analysis was
carried out on the passenger genes of these modules.
Co-citation analysis on PubMed database
We incurred a batch search on the PubMed database to
find all the pairs of drivers/regulators and passengers
that were co-cited in the same publications. The spur-
ious results from the automated search were removed
by human inspection. Manual curation also identified
the pairs conferring regulatory or association relations.
To assess the confidence of co-citation outcomes, for
each module we replaced passengers with random genes
or microRNAs and counted co-cited pairs. The maxi-
mum numbers of co-cited pairs over 10 random trials
are reported in Table 4.
Enrichment analysis of functional categories and pathways
We extracted 4822 functional categories from the Gene
Ontology database [41] and 889 pathways from three
pathway databases: Reactome [43], BioCarta [44], and
the NCI Pathway Interaction Database [42]. For each
association module, we applied standard a Fisher’s exact
test to identify enriched GO categories and pathways for
the passenger genes.

Extraction of tissue-specific patterns
We extracted tissue-specific patterns of association
modules with the following procedures. First, we
obtained the tissue-specific pattern for each mRNA
expression profile. An expression profile was written as
a linear combination of “ideal” tissue-specific expression
profiles, and the up/down regulation on a tissue type
was determined by its mixture coefficient. An ideal tis-
sue-specific expression profile has 1s on samples belong-
ing to the target tissue and 0s on all other samples.
Second, for each association module we checked
whether its passengers were enriched with tissue-specific
genes of each tissue type. Third, we employed gene set
enrichment analysis [21] to find tissue-specific patterns
of drivers. Finally we reported the intersection of tissue-
specific patterns of drivers and passengers. Detailed pro-
cedures are elaborated in Additional file 1, Text S1.

Additional material

Additional file 1: Text S1 includes procedures of data processing,
model selection, experimental and in-silico validations, heatmap
visualizations of molecular aberrations and mRNA/microRNA
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expressions of association modules, and distributions of correlation
coefficients between segment CNVs and their constituent genes
and microRNAs.

Additional file 2: Table S1 reports the association modules of
mRNA expressions.

Additional file 3: Table S2 reports the association modules of
microRNA expressions.

Additional file 4: Table S3 reports the co-cited driver/regulator-
passenger pairs and the PubMed IDs of the citations in association
modules.

Additional file 5: Table S4 reports the enriched GO categories and
pathways for each association module.

Additional file 6: Table S5 reports the information of partitioned
segments.

Additional file 7: Table S6 reports the expression responses of
putative targets and control genes in c-myb siRNA experiments.

Additional file 8: Table S7 reports the primer sequences for RT-PCR
in c-myb siRNA experiments.

Additional file 9: Table S8 reports the enrichment of driver/
regulator binding motifs on passenger promoters with multiple
motif occurrences.

Additional file 10: Table S9 reports the association outcomes
between candidate drivers and GO categories/pathways.
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