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INTRODUCTION

Molecular dynamics simulation of the interaction between the Tenebrio molitor alpha-amylase and its inhibitor at different
proportion of crystal water was carried out with OPLS force field by hyperchem 7.5 software. In the correlative study, the
optimal temperature of wheat monomeric and dimeric protein inhibitors was from 273 K to 318 K. The the average temperature
of experimentation is 289 K. (1) The optimal temperature of interaction between alpha-amylase and its inhibitors was 280 K
without crystal water that was close to the results of experimentation. The forming of enzyme-water and inhibitor-water was easy,
but incorporating third monomer was impossible. (2) Having analyzed the potential energy data, the optimal temperature of
interaction energy between alpha-amylase and its inhibitors covering 9:1,5: 5,4 : 6, and 1 : 9 proportion crystal water was 290 K.
(3) We compared the correlative QSAR properties. The proportion of crystal water was close to the data of polarizability (12.4%)
in the QSAR properties. The optimal temperature was 280 K. This result was close to 289 K. These findings have theoretical and
practical implications.

Copyright © 2008 Zhu Zhi-Fei et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

nst pathogens [6]. Comparatively less is known about the

Alpha-amylases (1, 4-a-D-glucan-4-glucanohydrolase; EC3.
2.1.1) are endoglycosidases which catalyze the hydrolysis of
internal a-1, 4-D-glucosidic linkages in starch and dextrins,
thereby generating smaller dextrins and oligosaccharides
with a C;—OH group in the wa-anomeric configuration
[1].The enzyme is a subset of the alpha-amylases group
of enzymes that are classified as glycosyl hydrolase family
13 based on amino acid sequence similarity [2]. Alpha-
amylases play a central role in carbohydrate metabolism
of microorganisms, plants, and animals [3]. Furthermore,
they are widely used in food and starch processing industry
and, after proteases, have become the most used enzymes in
modern biotechnology [4].

Enzyme inhibitors are important tools of nature for
regulating the activity of enzymes in cases of emergency.
Plant seeds are known to produce a variety of enzyme
inhibitors that are thought to protect the seed against
insects and microbial pathogens. Proteinase inhibitors are
the best studied of this group [5]; expression of proteinase
inhibitor genes in transgenic plants provides protection agai-

inhibitors of alpha-amylase which might, on the other
hand, be equally attractive candidates for conferring pest
resistance to transgenic plants since many of them inhibit
both proteinases and alpha-amylase. Plants have evolved
defense strategies to counteract these effects through enzyme
inhibitors impeding the action of insect gut digestive alpha-
amylases and reducing the postprandial glucose peaks [7].
Expression of plants inhibitor genes in transgenic plants
provides protection against pathogens (for a review, see
Ryan). Comparatively less is known about the inhibitors of
alpha-amylases which might, on the other hand, be equally
attractive candidates for conferring pest resistance to trans-
genic plants since many of them inhibit both proteinases and
alpha-amylases [8]. The inhibitor has potentials in various
fields, from the treatment of diabetes to crop protection.
Therefore, we are very interested in which mechanisms
and optimal condition of the inhibitor exerted on alpha-
amylases.

The major alpha-amylases inhibitor (AAI) present in the
seeds of Amaranthus hypochondriacus, a variety of the Mex-
ican crop plant amaranth, is a 32-residue-long polypeptide
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containing 6 cysteines, with 1-4, 2-5, 3—6 three disulfide
bridges. It is the shortest alpha-amylases inhibitor described
so far which has no known close homologs in the sequence
data bases [8]. The structural properties of alpha-amylases
have been elucidated by NMR [9]. People are very interested
in which mechanism and optimal condition of inhibitor
exerted on alpha-amylases.

Quantitative structure-activity relationship (QSAR) rep-
resents an attempt to relate structural descriptors of
molecules with their physicochemical properties and bio-
logical activities. It is widely used for the prediction of
physicochemical properties in chemical, environmental, and
pharmaceutical areas [10, 11]. The main steps implicated
in this method include data collection, molecular descriptor
selection and procurement, correlation model development,
and finally model evaluation. At present, many types of
molecular descriptors have been proposed to describe the
structural features of the molecules [12, 13]. The success
of QSAR approach can be explained by the insight offered
into the structural determination of chemical properties, and
the possibility to estimate the properties of new chemical
compounds without the need to synthesize and test them
[14]. Recently, Anil Kumar has reported the development of
useful QSAR models for antimicrobial activity [15-17] and
anti-inflammatory activity [18].

In this work, we selected the structure of alpha-amylases
from Tenebrio molitor larvae (containing 471 amino acid
residues) and inhibitor from the amaranth. A number of
crystal waters were distributed to alpha-amylases and their
inhibitors manually using hyperchem 7.5 software according
to different proportion via molecular dynamics simulation.
The Tenebrio molitor alpha-amylase and the amaranth
alpha-amylase inhibitor QSAR properties were calculated.
The results showed that the crystal water had affected in the
interaction between the alpha-amylases and their inhibitors.
These findings have theoretical and practical implications.

2. MATERIALS AND METHODS

The structure of Tenebrio molitor alpha-amylase, the ama-
ranth alpha-amylase inhibitor, and crystal water (con-
taining 273 molecules) was taken from Iclv (http://www
.rcsb.org/pdb/). (1) Alpha-amylase and inhibitor QSAR
properties were calculated out to find out the correlation
using OPLS force field by hyperchem 7.5 software. There
are partial charges, surface area [approx.], surface area
[grid], volume, hydration energy, log P, refractivity, polar-
izability, and mass of structural variance. (2) The Tene-
brio molitor alpha-amylase, the amaranth alpha-amylase
inhibitor, and crystal water were 3 monomers. 3 monomers
formed 4 united molecules (enzyme-inhibitor, enzyme-
water, inhibitor- water, and enzyme-inhibitor-water). (3)
The partial crystal water formed united molecules with
alpha-amylase or inhibitor. A number of crystal waters
were distributed to alpha-amylase and its inhibitor manually
according to different proportion (E : I = 9 : 1,8 :
2,...,1:9). The energy of alpha-amylase, inhibitor, crystal
water, and the united molecular structure was calculated out

using OPLS force field by hyperchem 7.5 software. Calculated
detail was the following text.

All modeling procedures, including energy minimiza-
tion and molecular dynamics, were performed using the
hyperchem 7.5 software. Energy calculations were carried
out using the OPLS force field. Optimized molecular
structure until the maximum energy derivative was lower
than 0.1 kcal/moL (0.418kJ/moL) in order to obtain a
correct geometry. Dynamics simulation was performed using
a time step of 0.5femtosecond, and the temperature was
altering 10K from 270K to 370 K. There were 3 processes
in simulation. Firstly, heating, from 0K to simulation
temperature using 7K per step, heating time was 0.1 ps.
Secondly, simulating, simulation time was 20 picoseconds in
simulation temperature. Finally, annealing, from simulation
temperature to 0 K using 7 K per step, annealing time was 0.1
picosecond [19].The system was kept for 20.2 picoseconds
at each temperature. After simulation, we collected data of
EPOT [20].

Recent research showed that enzymes had been used
on all conformation not only during catalysis but also
before catalysis. Since the protein motions necessary for
catalysis were an intrinsic property of the enzyme, motion
was localized not only to the active site but also to a
wider dynamic network [21]. Thus, it can be seen that
molecular state was taken on all possible conformation
during reaction or else process. Therefore, in order to reflect
energy during simulation, we carried out abnegating half
potential energy data of starting simulation and averaging
spare potential energy data (twenty thousand states between
10.1 picoseconds and 20.1 picoseconds). Gained data were
regarded as potential energy at this temperature. We kept
enzyme having enough number of state during the process
of simulate temperature and avoided effective influence that
system had been arrived at simulate temperature but was not
likely to reach balance at the same time.

The energy of interaction was calculated from experi-
mental data using the following equation [22-24]:

AE = E - (E; + E>). (1)

Here, E was the overall energy of the binding system; E; was
the energy of alpha-amylase and crystal water; E, was the
energy of inhibitor and crystal water; AE was the interaction
energy.

3. RESULTS AND DISCUSSION
3.1. The QSAR properties

Since predictions from any QSAR models cannot be intrinsi-
cally better than the experimental data employed to develop
the model, the quality of the input data will greatly influence
the QSAR model performance. In order to build a QSAR
model with good generalized performance, a preliminary
analysis for the quality of the data set (mainly the detection
of outliers) was performed by modeling the complete set of
alpha-amylase and its inhibitor.

The QSAR properties of alpha-amylase and its inhibitor
were provided in Table 1.
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TaBLE 1: The QSAR properties of inhibitor and alpha-amylase.

Species
QSAR Inhibitor alpha-amylase Inhibitor/alpha-amylase (%)
Partial charges 0.00 0.00 —
Surface arealapprox.] 5220.84 over —
Surface area[grid] 8104.71 50393.60 16.1
Volume 6860.60 43349.11 15.8
Hydration energy 2214.75 over —
LogP -1.71 —1218.30 0.1
Refractivity 871.39 6694.71 13.0
Polarizability 351.61 2826.71 12.4
Mass 3661.59 51193.14 7.2
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F1GURE 1: The respective chart of AE among 3 monomers.

Because the inhibitor and alpha-amylase were neutral
molecules, so their partial charges were zero in Table 1. The
proportion of surface area [approx.], hydration energy of
inhibitor, and alpha-amylase was very small and neglected.
But the proportion of surface area [grid], volume, log P,
refractivity, polarizability, and mass were 16.1%, 15.8%,
0.1%, 13.0%, 12.4%, 7.2%, respectively. Therefore, the
different distributed proportion of crystal water was possible
close to these QSAR properties proportion.

3.2. Simulate optimal temperature
among 3 monomers

We calculated the interaction energy among 3 monomers
according to (1). The relation of the interaction energy with
temperature was presented in Figure 1 (the respective chart
of AE among 3 monomers). From Figure 1, the interaction
energy between alpha-amylase and its inhibitor was negative
at 280 K and 290 K, which showed that it was combined and
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FiGUre 2: The compositive chart of AE in different crystal water
proportion.

reacted between alpha-amylase and its inhibitor. However, it
was not combined between alpha-amylase and its inhibitor
at the others temperature. The interaction energy was on the
nadir at 280 K which was the optimal temperature between
alpha-amylase and its inhibitor.

This information showed that the interaction energy
between crystal water and alpha-amylase inhibitor was
negative from 270 K to 370 K, which showed that they were
combined and reacted among crystal water, alpha-amylase,
and its inhibitor. As temperature increases, the interaction
energy between alpha-amylase and its inhibitor tends to
get smaller. However, the interaction energy between crystal
water and alpha-amylase inhibitor was negative, and the
numerical value was very big from 270 K to 370 K.The results
showed that it was easy to combine between crystal water and
alpha-amylase inhibitor.

Analysis of the results indicated that the interaction
energy between alpha-amylase and its inhibitor was negative
from 270K to 370K. The forming of inhibitor-water was
easy, but the incorporating alpha-amylase was impossible.

The interaction energy between alpha-amylase and its
inhibitor was negative, and the numerical value was very big
from 270 K to 370 K. The forming of enzyme-water was easy,
but the incorporating inhibitor was impossible.

The result was as follows: the forming of enzyme-water
and inhibitor-water was easy, but the incorporating third
monomer was impossible.

3.3. Simulate optimal temperature at the
different distributed proportion of crystal water

The interaction energy between alpha-amylase and inhibitor
covering different proportion of crystal water was calculated

according to (1). The relation of the interaction energy
with temperature was presented in Figure 2 (the compositive
chart of AE in different crystal water proportion) and
Figure 3 (the respective chart of AE in different crystal water
proportion).Then, we would discuss them, respectively.

From Figure 2, it could be seen that the interaction
energy between alpha-amylase and its inhibitor covering
different proportion of crystal water was all negative. This
information showed that it was combined and reacted
between alpha-amylase and its inhibitor from 270 K to 370 K.
The interaction energy was on the nadir at 330 K, when the
different distributed proportion of crystal water was 2 : 8. In
this condition, the reaction was the easiest between alpha-
amylase and its inhibitor. However, the interaction energy
was on the peak at 320K, when the different distributed
proportion of crystal water was 9 : 1. In this condition,
the reaction was the hardest between alpha-amylase and its
inhibitor.

From Figure 3, the optimal temperature of the interac-
tion between alpha-amylase and its inhibitor was changed by
the distributed proportion of crystal water. In the correlative
study, it was reported that the optimal temperature of wheat
monomeric and dimeric protein inhibitors was from 273 K
to 318 K [25, 26].

The absolute value of the interaction energy was the
greatest at 300 K when the distributed proportion of crystal
water was 9 :1,8:2,7:3,5:5 4:6,3:7,and 1:09.
The results showed the optimal temperature via molecular
dynamics simulation which was agreed with the results of
experimentation. And the binding of alpha-amylase average
temperature was 289 K.The interaction energy between
alpha-amylase and its inhibitor was on the nadir at 290 K in
figure when the distributed proportion of crystal water was
9:1,5:5,4:6,and 1 : 9. In the case of 1 : 9, the optimal
temperature may be related to some QSAR properties.

The interaction energy between alpha-amylase and its
inhibitor was on the nadir at 340K, 330K when the
distributed proportion of crystal water was, respectively,
6 : 4 and 2 : 8. These results were disagreeing with the
experimental results that may be caused by the distributed
proportion of crystal water and others causation, which had
studied as follow.

3.4. Simulate optimal temperature in the case of
the different distributed proportion of crystal
water is 12.4%

For the sake of an accurate result, we must treat jointly
the experimental results related to some QSAR properties.
In the case of 1 : 9 (about 11.1%), the interaction energy
between alpha-amylase and its inhibitor was the greatest
in all figures above, and this proportion of crystal water
was close to the data of polarizability (12.4%) in the QSAR
properties. This indicated that polarizability of the QSAR
properties possibly had higher influence to the interaction.
We want to validate below that polarizability affected reactive
temperature condition of interaction between alpha-amylase
and its inhibitor.
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