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Abstract
The genome composition of a given avian influenza virus is the primary determinant of 
its potential for cross-species transmission from birds to humans. Here, we introduce 
a viral genome-based computational tool that can be used to evaluate the human 
infectivity of avian isolates of influenza A H7N9 viruses, which can enable prediction 
of the potential risk of these isolates infecting humans. This tool, which is based on a 
novel class weight-biased logistic regression (CWBLR) algorithm, uses the sequences 
of the eight genome segments of an H7N9 strain as the input and gives the probabil-
ity of this strain infecting humans (reflecting its human infectivity). We examined the 
replication efficiency and the pathogenicity of several H7N9 avian isolates that were 
predicted to have very low or high human infectivity by the CWBLR model in cell 
culture and in mice, and found that the strains with high predicted human infectivity 
replicated more efficiently in mammalian cells and were more infective in mice than 
those that were predicted to have low human infectivity. These results demonstrate 
that our CWBLR model can serve as a powerful tool for predicting the human infec-
tivity and cross-species transmission risks of H7N9 avian strains.
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1  | INTRODUC TION

Since 2013, H7N9 avian influenza virus has been one of the most seri-
ous public health events in China and Southeast Asia (Gao, et al., 2013; 
Zhang, Luo, & Shen, 2018). During 2013–2019, there were 1,568 con-
firmed cases in humans, which resulted in 616 deaths (Nations, 2019).

Since its first reemergence in 2013, H7N9 viruses have diversified 
into multiple HA sequence-based clades and dispersed to varying de-
grees across China (Petrie & Lauring, 2019; Su, et al., 2017). Substantial 
genetic diversity in the internal genes among different strains has also 
been demonstrated (Qi, et al., 2018). This genetic diversity among H7N9 
strains raises two key questions: do H7N9 avian isolates with different 
genome sequences have the same potential to infect humans, and can 
the infectivity of a specific H7N9 strain be quantitatively predicted?

For an avian influenza virus strain to be able to undergo cross-spe-
cies transmission from birds to humans, it must first acquire adaptive 
mutations in its genome that enable it to bind to the human-type in-
fluenza virus receptor with high affinity, to escape the host immune 
system effectively and to replicate efficiently in human cells (Long, 
Mistry, Haslam, & Barclay, 2019). Many such adaptive mutations have 
been identified in influenza viruses through gene sequence compar-
ison and phenotype analysis (Schrauwen & Fouchier, 2014; Shi, Wu, 
Zhang, Qi, & Gao, 2014). Furthermore, Chen et al. discovered ‘spe-
cies-associated’ positions in influenza virus genome-encoding proteins 
using position-specific entropy profiling methods, specific mutations 
which may enable an avian virus to become a human virus. (Chen, 
et al., 2006). Together, these findings suggest that the infectivity of 
a given avian influenza virus strain in humans is determined by its ge-
nome and could be predicted using viral genome-based methods.

In this paper, we introduce a novel class weight-biased logistic 
regression (CWBLR) algorithm that can recognize the human H7N9 
strain genome with 100% accuracy and can predict whether an 
avian H7N9 strain has the potential to infect humans based on it 
genome.

2  | METHODS

2.1 | Biosafety and ethical approval

All experiments using H7N9 subtype strains were conducted in 
the BSL-3 level laboratory approved by the Wuhan Institute of 
Virology, Chinese Academy of Sciences. Animal care and housing 
were in compliance with ethical guidelines and approved by the 
Experimental Animal Ethic and Welfare Committee of the Institute 
of Microbiology, Chinese Academy of Sciences.

2.2 | H7N9 virus strain genome 
sequence procession

The complete 877 genome segment sequences of H7N9 avian and 
human isolates were downloaded from the National Institute of 

Allergy and Infectious Diseases Influenza Research Database (IRD) 
(Zhang, et al., 2017). The original FASTA file downloaded from IRD 
containing all of the gene segments for all of the strains was split 
into eight FASTA files for each of the gene segments (PB2, PB1, 
PA, HA, NP, NA, MP and NS). Each segment was then aligned by 
multiple alignment using fast Fourier transform (MAFFT) (Katoh & 
Standley, 2013), following which the non-coding regions of each 
aligned segment were removed and the eight segments of each 
strain were concatenated to generate the aligned full-genome se-
quences. Each strain was then assigned a class label of 0 for avian 
isolates and 1 for human isolates. Finally, the nucleic acid codes 
‘A’, ‘T’, ‘G’, ‘C’ and ‘-’ (where ‘-’ refers to a gap) at each genome 
position were converted to the integer codes 0, 1, 2, 3 and 4, re-
spectively. The aligned, concatenated and integer-coded nucleic 
acid genome sequence of each H7N9 strain was used as the input 
variable x and its class label was used as the output variable Y for 
model building.

2.3 | Comparison of different 
classification algorithms

Different classification algorithms, including logistic regression 
(LR), k-nearest neighbour (KNN), random forest (RF), gaussian 
naive bayes (NB), support vector machine (SVM) and multilayer 
perceptron (MLP) implemented in the scikit-learn library in Python 
(Pedregosa, 2011) were applied to the aligned, concatenated, and 
integer-coded nucleic acid genome sequence data set described 
above, and the corresponding models were fitted with fivefold 
cross-validation. The predictive accuracy (A) in each fitting was 
calculated asfollows:

We considered that a predicted probability of >0.5 for a human 
(or avian) strain being placed in the human (or avian) class was a cor-
rect prediction, whereas a predicted probability of ≤0.5 was an in-
correct prediction.

2.4 | CWBLR Model building and verification

Binomial LR algorithm (Li,  2012) was used to build a classification 
model based on the genome sequences of the H7N9 strains. The 
resulting binomial logistic regression model had the following condi-
tional probability distribution:

(1)Accuracy(A) =
Number of correct predictions

Number of total predictions

(2)P(Y=1|x)= exp(w ⋅x+b)

1+exp(w ⋅x+b)

(3)P(Y=0|x)= 1

1+exp(w ⋅x+b)
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where x ∈ Rn is the input, Y ∈{0, 1} is the output, w ∈ Rn is the weight 
coefficient, and b is the intercept. Let w = (w(1), w(2), …, w(n), b) and let 
x = (x(1), x(2), …, x(n), 1), then:

The parameters of the logistic regression model were estimated 
using the maximum-likelihood method. Let P(Y = 1 | x) = π(x), P(Y = 0 
| x) = 1 − π(x), and the likelihood function:

Then, the logarithmic likelihood function is.

The partial derivative of the logarithmic likelihood function is.

The iterative equation of gradient ascent is.

The gradient ascent algorithm finally finds the parameter w 
which makes the logarithmic likelihood function reach a minimum. 
The parameter w is a vector containing equal number of elements 
with the input variables (x). It is also called the coefficient vector. The 
coefficient value corresponding to each input variable (each genome 
position in the present study) reflects the importance of this variable 
to the probability output. We used the logistic regression algorithm 
implemented in the scikit-learn library in Python (Pedregosa, 2011) 
to fit the model and calculate the parameter w. Our novel consider-
ation was to give the human class a higher weight so that the predic-
tive accuracy of human virus isolates could reach 100%.

We aim to build a logistic regression model which can 100% ac-
curately predict human isolates. A predictive accuracy of 100% for 
the human class means that the model can always correctly recognize 
the genome of a human H7N9 virus isolate and so can also correctly 
recognize avian H7N9 isolates with a high potential of falling into the 

human class. In other words, the ideal model built by our method 
should work as follows: the sequences of the eight genome segments 
of an H7N9 strain are input into the model, following which it will 
calculate the probability that this strain belongs to the human class. If 
the strain is really a human isolate, the probability will always be >0.5, 
whereas if the strain is an avian isolate, the probability will reflect its 
potential of belonging to the human class, with a probability of >0.5 
suggesting that the avian strain has a high risk of infecting humans. 
Therefore, the probability that is calculated by the model can be con-
sidered to reflect the human infectivity of a given H7N9 strain.

We assigned a series of class weights that were >0.5 to the human 
class and then fitted the logistic regression model using fivefold CV. 
For each class weight, the entire data set (887 strains) was randomly 
divided into five subsets of similar size, four of which were used as 
training data sets for model fitting and one of which was used as a 
test data set to calculate the accuracy of the fitted model. There were 
five possible combinations of the training test data sets, so five models 
could be fitted and five accuracies could be calculated. Therefore, the 
average of the five accuracies was used as the overall accuracy of the 
model that corresponded to a particular class weight. The accuracies 
of the human and avian classes were then calculated for each class 
weight, and the class weight that gave a human class accuracy of 100% 
and the largest avian class accuracy was selected. The corresponding 
model was then used to calculate the human infection probabilities of 
the H7N9 virus strains that were isolated in 2016–2017. The procedure 
from genome sequence procession to model selection is illustrated in 
Figure S1.

2.5 | Cell lines and viruses

The H7N9 strains SD183, YZ30, TJ186, BD1 and TZ45 were gen-
erously provided by Professor Xiufan Liu at Yangzhou University, 
Jiangsu Province, China. Human A/Anhui/1/2013 (H7N9, AH1) 
virus was initially isolated from a throat-swab specimen of the third 
case of laboratory-confirmed human A/H7N9 virus, served as pos-
itive control. The viruses were inoculated into 10-day-old embryo-
nated chicken eggs for 48 hr at 37°C, following which the allantoic 
fluid was collected and tested for HA activity using 0.5% chicken 
red blood cells. The median tissue culture infective dose (TCID50) 
of each strain was determined using the Reed and Muench method 
(Cottey, Rowe, & Bender, 2001), based on at least three independ-
ent assays. The virus genome sequences were verified using the 
Sanger method.

The MDCK cell lines were grown in Dulbecco's modified Eagle 
medium (Gibco) supplemented with 10% foetal bovine serum (Gibco) 
at 37°C in 5% CO2.

2.6 | In vitro infections

MDCK cell monolayers were infected with each virus strain at a 
multiplicity of infection (MOI) of 0.001 in phosphate-buffered saline 

(4)P(Y=1|x)= exp(w ⋅x)

1+exp(w ⋅x)

P(Y=0|x)= 1

1+exp(w ⋅x)

(5)
N∏

i=1

[�(xi)]
yi [1 − �(xi)]

1− yi

(6)

logL(w)=

m∑

i

[yilog�(xi)+ (1−yi)log(1−�(xi))]

=

m∑

i

[
yilog

�(xi)

1−�(xi)
+ (1−yi)log(1−�(xi))

]

=

m∑

i

[yi(w ⋅xi)− (1−yi)log(1+exp(w ⋅xi))]

(7)

�logL(w)

�w
=

m∑

i

[
yi−

exp(w ⋅xi)

1+exp(w ⋅xi)

]
⋅xi

=

m∑

i

[yi−�(xi)] ⋅xi

(8)w=w+�[y−�(x)] ⋅x
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(PBS) containing 0.2% bovine serum albumin (BSA) for 1 hr. Unbound 
viruses were then washed away with PBS containing 0.2% BSA, and 
serum-free minimum essential medium, and 0.2% BSA was added. 
The cells were incubated at 37°C under 5% CO2, and virus titres in 
the supernatant were periodically monitored using the TCID50.

2.7 | In vivo infections

The TCID50 values of the H7N9 viruses were measured using 
groups of BALB/c mice (7 weeks old, female). Mice were intrana-
sally (i.n.) inoculated with 50 μL of 100-fold serial dilutions of each 
indicated influenza virus (SD183, YZ30, TJ186, BD1 and TZ45) in 
PBS under isoflurane sedation at 104 TCID50/ml. The survival and 
body weights of the mice were then recorded daily until 14 days 
post-infection (d.p.i.). Animals that showed signs of severe disease 
and weight loss that was >25% of their initial body weight were 
considered moribund and were humanely killed according to ani-
mal ethics guidelines.

Mice in each group were euthanized at 3, 5, and 7 d.p.i. and 
mouse lungs were excised. The lung index was calculated as (wet 
lung weight/body weight) × 100%, following which lung tissue sam-
ples were homogenized in PBS and the viral titres in the superna-
tants were determined. Tissue samples from the lungs and turbinate 
bone were homogenized in PBS with antibiotics in a homogenizer 
and used to determine the viral titres using the plaque assay. In addi-
tion, the lungs were fixed in formalin, sectioned at 4 μm and stained 
with haematoxylin and eosin for inspection by light microscopy.

2.8 | Statistical analysis

Differences in the body weights and virus titres among different 
treatment groups were analysed by one-way analysis of variance, 
while the differences between two groups were analysed using 

Student's t test. A probability value of p < .05 was considered statisti-
cally significant.

3  | RESULTS

3.1 | Comparison of different classification 
algorithms for predicting the hosts of H7N9 strains

At the first stage of this study, we tried to build a classifier which can 
predict the host of a particular H7N9 strains. The eight cDNA fragments 
(with non-coding region removed) of each human or avian H7N9 strain 
were aligned, concatenated, converted to integer codes and labelled, 
as described in details in the Methods section. Different classification 
algorithms, including LR, KNN, RF, NB, SVM and MLP were applied to 
the data set, and the prediction accuracies were used as the evalua-
tion standard. The mean  ±  standard deviation for the accuracies of 
the LR, KNN, RF, NB, SVM and MLP are 0.723 ± 0.259, 0.684 ± 0.205, 
0.657 ± 0.222, 0.630 ± 0.230, 0.568 ± 0.324 and 0.537 ± 0.329, re-
spectively (Figure  1). These results suggest that LR has the highest 
performance and stability in differentiating avian and human strains 
among the tested algorithms. However, the accuracies of these primary 
algorithms, even the highest one of the LR algorithm, are not satisfying.

3.2 | Building and selecting the optimal CWBLR 
model which predicts human infectivities of 
avian strains

To identify H7N9 avian isolates that have the potential to infect hu-
mans, we used the novel CWBLR (described in details in the Methods 
section) to fit a LR model to a data set consisting of 887 H7N9 virus 
strains that were isolated before 2016. We found that when the 
weight of the human class was set at 0.83 (and that of the avian class 
was set at 0.17), both the human and avian classes had the accuracies 

F I G U R E  1   Comparison of the 
accuracies of different classification 
algorithms (LR, KNN, RF, NB, SVM and 
MLP) in predicting the hosts of H7N9 
strains. The boxplot of accuracies of 
fivefold cross-validation are shown. The 
means of the accuracies of the five fitting 
for each algorithm are shown as green 
triangles 
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of 100% (Figure 1). Therefore, the model that was fitted with this class 
weight was selected as the final CWBLR model and was used to cal-
culate the probability that a given H7N9 strain belonged to the human 
class (i.e. its human infectivity). An online version of the computational 
tool is available at http://124.16.144.116:8099/h7n9/Index/​home.do.

As shown in Figure 2a, the accuracy of this model (with the human 
class weight of 0.83) for the 2016–1017 human strains was calculated 
as 100%, while the accuracy for the 2016–1017 avian class was 50%. 
These results suggest that the final CWBLR model can recognize 
human strains with 100% accuracy. The 2016–2017 avian strains that 
had an incorrect prediction using the final CWBLR model were those 
that had high calculated probabilities (> 0.5) of belonging to the human 
class, indicating a risk of cross-species transmission and infection of 
human. In addition, the receiver operating characteristic curve (ROC) 
plotting shows that the mean ROC has an area under curve (AUC) of 
0.99 (Figure 2b), which further confirms the validation of the model.

3.3 | Identification of the critical genome positions 
for human/avian class determination

Once the model had been fitted, we were able to obtain the coeffi-
cients (the parameter w in Equations 2-8 in the Methods section) for 
every genome position, the absolute values of which reflect their at-
tribution or importance for the human/avian classification. By plot-
ting the coefficients against the amino acid position corresponding 
to each genome position (Figure 3), we found that residues 627 and 
701 had the highest absolute coefficient values and so are the most 
important positions for human/avian class determination.

Sequence analysis showed that other genome positions may 
also be relevant to host tropism, despite their low absolute coeffi-
cient values. By comparing the sequences of the 48 H7N9 strains 
with the highest probabilities of belonging to the human class (all 

of which are human strains) and the 48 H7N9 strains with the low-
est probabilities of belonging to the human class (all of which are 
avian strains), we found that the residues at position 191 in the 
PB2 gene were all Glu (E) for the strains with the highest proba-
bilities and Lys (K) for most strains with the lowest probabilities; 
the residues at position 394 in the PA gene were all Asp (D) for the 
strains with the highest probabilities and Gln (N) for most strains 
with the lowest probabilities; the residues at position 256 in the 
HA protein (position 226 of H3 numbering) were either Leu (L) 
or Gln (Q) for strains with the highest probabilities and were all L 
for most strains with the lowest probabilities; and the residues at 
position 27 in the NS1 gene were either K or L for strains with the 
highest probabilities and were Met (M) or L for strains with the 
lowest probabilities. Among these, position 256 in the HA protein 
(226 of H3 numbering) has been shown to be critical for avian/
human receptor specificity, with 226Q preferentially binding to 
the avian receptor (α-2,3-linked sialic acid) and 226L preferen-
tially binding to the human receptor (α-2,6-linked sialic acid) (Shi, 
et al., 2013, 2014). Our findings suggest that K191E in PB2, N291D 
in PA, and K27M in NS1 may be human adaptive mutations.

3.4 | Human infectivity of H7N9 strains according 
to the CWBLR model

We used the CWBLR model with a human class weight of 0.83 to calcu-
late the human infectivity (i.e. the probability of belonging to the human 
class) of all of the H7N9 strains that were used to build the model (i.e. 
the 887 strains isolated before 2016) and 48 strains that were isolated 
in 2016–2017. We found that the calculated probabilities of belonging to 
the human class were >0.5 (i.e. 100% human class accuracy) for all of the 
human strains that were isolated before 2016 and <0.5 (i.e. nearly 100% 
avian class accuracy) for nearly all of the avian strains that were isolated 

F I G U R E  2   Accuracy of the logistic regression models with different human class weights for the avian and human strains. Each model 
was built using genome sequences of avian H7N9 influenza viruses that were isolated before 2016 using a different human strain class 
weight. The accuracy of each model for avian and human strains was then calculated using fivefold cross-validation (CV). In addition, the 
accuracy of each of these models for avian and human strains isolated during 2016–2017 was calculated 

http://124.16.144.116:8099/h7n9/Index/home.do
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F I G U R E  3   Absolute coefficient for each genome nucleotide and the corresponding amino acid position. Amino acid positions with 
absolute coefficients of >0.2 are indicated by a red perpendicular line 
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before 2016 (Figure 4a). Similarly, the calculated probabilities of belong-
ing to the human class were also >0.5 (i.e. 100% human class accuracy) 
for all of the human strains that were isolated in 2016–2017 (Figure 4b 
and Table 1). However, the probabilities of belonging to the human class 
were evenly distributed between 0 and 1 for the avian strains that were 
isolated in 2016–2017. Therefore, we hypothesize that those avian 
strains that had predicted human infectivity (i.e. probabilities of belong-
ing to the human class) of > .5 have genome characteristics that are simi-
lar to human strains and may have the potential to infect humans, with a 
higher probability indicating a higher risk of human infection.

3.5 | Testing the predictions in mammalian cells 
(in vitro model)

To test the validity of our CWBLR model, we selected five H7N9 
avian strains that were predicted to have the lowest and high-
est human infectivity (i.e. probabilities of belonging to the human 
class) and compared their replication capacities in cells of avian or 
mammalian origin. The selected strains with low predicted human 
infectivity included A/chicken/Jiangsu/YZ30/2017 (YZ30) and A/
chicken/Shandong/SD183/2016 (SD183), and the selected strains 
with high predicted human infectivity included A/chicken/Jiangsu/
TZ45/2017 (TZ45), A/chicken/Jiangsu/JT186/2017 (TJ186) and A/
chicken/Jiangsu/0116/2017 (BD1). We also included the human 
strain A/Anhui/01/2013 (AH1), which had a predicted human infec-
tivity of 0.999, as a control (Figure 5a). The replication efficiencies 
of these strains were compared in three cell lines: Madin–Darby ca-
nine kidney (MDCK; mammalian origin), A549 (human origin), and 
Douglas Foster-1 (DF1; chicken origin). Interestingly, in the human 
A549 cells, AH1, BD1, TJ186 and TZ45 exhibited similar replication 
kinetics, while the viral titres of SD183 and YZ30 were significantly 
lower than those of the other viruses at 24–48  hr post-infection 
(Figure 5b). Similarly, in the mammalian MDCK cells, the AH1 and 
TJ86 viruses had the highest replication efficiencies, while SD183 

and YZ30 exhibited the lowest replication efficiencies, particularly 
at 48–60 hr post-infection (Figure 5c). By contrast, in the avian DF-1 
cells, SD183 and YZ30 replicated faster and reached significantly 
higher levels than the other viruses. These findings suggest that the 
BD1, TJ186 and TZ45 viruses have higher replication efficiencies in 
mammalian cells and have the potential to infect humans (Figure 5d), 
which is consistent with our predictive results.

3.6 | Testing the predictions in mice (in vivo model)

To further verify that H7N9 avian isolates with higher predicted prob-
abilities of belonging to the human class have higher infectivity in 
humans, we tested the infectivity of the YZ30, SD183, TZ45, TJ186, 
BD1 and AH1 strains of H7N9 in mice. The average body weights of 
all six groups of mice that were infected with the six virus strains de-
creased from day 0 to day 7 (Figure 6a). However, the average body 
weights of the groups that were infected with the virus strains with 
low predicted human infectivity (i.e. YZ30 and SD183) gradually re-
covered after day 8, with no mice dying in these groups, whereas 
all mice in the groups that were infected with the virus strains with 
high predicted human infectivity (i.e. TZ45, TJ186 and BD1) and the 
human strain AH1, died on days 7–9 (Figure 6a,b). In addition, the 
virus titres in the lungs were significantly higher in mice that had been 
infected with TZ45, TJ186 and BD1 than in those that had been in-
fected with YZ30 and SD183 on days 3 and 5 (Figure 6c), suggesting 
that the virus strains with high predicted human infectivity replicated 
more effectively than those with low predicted human infectivity in 
mouse lungs. The lung index was also significantly higher in mice that 
had been infected with TZ45, TJ186 and BD1 than in those that had 
been infected with YZ30 and SD183 on days 3, 5 and 7 (Figure 6d), 
suggesting that the virus strains with high predicted human infectiv-
ity cause more serious inflammation in mouse lungs.

Histopathological examinations revealed that the lung tissues 
of mice infected with SD183 and YD30 had a multifocal mild or 

F I G U R E  4   Estimated probability of each H7N9 strain belonging to the human class using the final class weight-biased logistic regression 
(CWBLR) model. (a) Strains isolated before 2016, which were used to build the model. (b) Strains isolated in 2016–2017. Each point 
represents a different strain 
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moderate inflammation and consolidation. By contrast, the lung tis-
sues of mice infected with BD1 and YZ40 showed extensive consol-
idation and caseous necrosis, and the lung tissues of mice infected 
with TJ186 also showed serious consolidation, as shown in Figure 7. 
Therefore, the test results in mice are highly consistent with the pre-
dicted results from our CWBLR model.

4  | DISCUSSION

In this paper, we have introduced a novel computational method that 
can be used to predict the human infectivity of avian H7N9 isolates. 
Our CWBLR model can use information from the viral genome to 
recognize H7N9 human isolates with 100% accuracy, allowing it to 
distinguish H7N9 avian isolates with high potential for infecting hu-
mans from those with low potential.

We use viral nucleotide sequences rather than protrein sequences 
to build the model for the following reasons. First of all, nucleotide se-
quences contain more potential information than protein sequences. 
The genome of influenza viruses encodes at least 12 proteins (PB2, 
PB1, PB1-F2, PA, PA-X, HA, NP, NA, M1, M2, NS1, NS2). It is quite pos-
sible that there are unknown proteins encoded in the influenza virus 
genome. That means if we use protein sequences rather than nucleo-
tide sequence as the input for building the model, the information in 
the nucleotide sequences encoding the unknown proteins would be 
missed. Secondly, some proteins such as PB1-F2 are not encoded by all 
influenza virus strains, so using protein sequence to build the model will 

TA B L E  1   The 2016–2017 avian H7N9 strains’ probability of 
being human strains

No. Strain name
Probability of being 
human strain

1 A/chicken/Guangdong/
SD1433/2016

0.024834663

2 A/chicken/Shandong/
SD183/2016

0.029829032

3 A/chicken/Jiangsu/YZ30/2017 0.036512287

4 A/chicken/Zhejiang/S1074/2016 0.0391336

5 A/chicken/Liaoning/LN1/2016 0.042916638

6 A/chicken/Jiangsu/S1045/2016 0.08222006

7 A/duck/Jiangsu/S1220/2016 0.110399144

8 A/chicken/Guangdong/
GD20/2017

0.142770386

9 A/chicken/Jiangsu/S1441/2016 0.193405124

10 A/chicken/Jiangsu/JS11/2016 0.206321077

11 A/chicken/Jilin/SD009/2016 0.236471889

12 A/duck/Zhejiang/S1375/2016 0.241795902

13 A/chicken/Zhejiang/JH16/2017 0.246470525

14 A/chicken/Guangdong/Q1/2016 0.257789959

15 A/chicken/Heilongjiang/
BQC01/2017

0.259065607

16 A/chicken/Guangdong/
Q26/2017

0.268599063

17 A/chicken/Hunan/S12753/2016 0.293752638

18 A/chicken/Guangdong/30/2017 0.303606044

19 A/chicken/Heinan/ZZ01/2017 0.31582883

20 A/chicken/Jiangsu/S1460/2016 0.371993123

21 A/chicken/Guangdong/J1/2017 0.378423664

22 A/chicken/Guangdong/
SD010/2017

0.382724485

23 A/chicken/Zhejiang/
SD001/2016

0.406821438

24 A/chicken/Guangdong/J2/2017 0.464087989

25 A/chicken/Guangdong/
GD15/2016

0.481478747

26 A/chicken/Longquan/
LQ78/2016

0.494869684

27 A/chicken/Ganzhou/GZ79/2016 0.508499539

28 A/chicken/Shandong/
SD216/2016

0.535164193

29 A/duck/Jiangsu/S1700/2016 0.587207668

30 A/chicken/Guangdong/
SD031/2017

0.608101557

31 A/chicken/Guangdong/
SD008/2017

0.608244892

32 A/chicken/Guangdong/
SD032/2017

0.608834928

33 A/chicken/Zhejiang/ZJ19/2017 0.720285739

(Continues)

No. Strain name
Probability of being 
human strain

34 A/chicken/Guangdong/
Q39/2017

0.732032151

35 A/chicken/Guangdong/
SD028/2017

0.738615034

36 A/chicken/Jiangsu/LY246/2017 0.764368019

37 A/chicken/Zhejiang/ZJ14/2017 0.765102218

38 A/chicken/Jiangsu/JT156/2016 0.793610445

39 A/chicken/Guangdong/
SD027/2017

0.801158389

40 A/chicken/Hebei/HB13/2016 0.833050936

41 A/chicken/Jiangsu/JT164/2017 0.840450603

42 A/chicken/Hebei/S1257/2016 0.845365849

44 A/chicken/Zhejiang/1.10 
HZ142/2017

0.874358

43 A/chicken/Guangdong/
SD034/2017

0.902831284

45 A/chicken/Liaoning/05.12 
SY059/2017

0.905891

46 A/chicken/Jiangsu/0116/2017 0.930523603

47 A/chicken/Jiangsu/JT186/2017 0.934247297

48 A/chicken/Jiangsu/TZ45/2017 0.947953526

TA B L E  1   (Continued)
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increase complexity of the operation. Thirdly, there are only four types 
of nucleotides (A, T, C and G) while 20 amino acids (A, R, N, D, C, Q, E, 
G, H, I, L, K, M, S, P, F, T, W, Y and V), so using amino acid coding would 
increase the computational costs. Actually, the nucleotide positions 
important to cross-species transmission identified in the model can be 
conveniently translated into amino acid positions. Using our model, we 
calculated the human infectivity of a number of H7N9 avian isolates 
and tested their predicted human infectivity through both in vitro and in 
vivo experiments. The experimental results were very consistent with 
our predictive model, demonstrating its reliability. Therefore, we believe 
that use of the same model building procedure would allow prediction 
of the human infectivity of other avian influenza viruses, such as H5N1.

In addition to predicting the human infectivity of H7N9 strains 
based on their genome, our model can quantitatively identify the ge-
nome positions that are important to human/avian class determina-
tion or host tropism based on the coefficient corresponding to each 
genome position in the model. Our model explicitly revealed that 
the genome positions corresponding to PB2 protein residues 627 
and 701 are the most important to host tropism, which is consistent 
with the findings of previous experimental studies that E627K and 
D701N in PB2 are critical mutations associated with the mammalian 

adaptation of avian influenza viruses (Russell & Webster,  2005; 
Steel, Lowen, Mubareka, & Palese, 2009; Weber, et al., 2015).

Interestingly, all of the H7N9 strains we experimentally tested 
have the same avian-like residues at positions 627 and 701 in PB2 
(627E and 701D), regardless of whether they had high predicted 
human infectivity (BD1, TJ186 and TZ45) or low predicted human 
infectivity (SD183 and YZ30). However, these strains do have 
many differences in their encoding proteins (Table S1), the collec-
tive effects of which likely produce the genetic basis for the differ-
ences in their infectivity. Therefore, our results suggest that avian 
influenza viruses may have high infectivity in mammals even if they 
do not possess the widely accepted mammal-adaptive mutations.

Virologists have long sought the ability to predict the emergence 
of high risk of influenza viruses that pose a threat to both farm animals 
and humans. Long-term prospective surveillance has revealed the co-
incidence of activity of some influenza virus subtypes (such as H7) in 
wild aquatic birds, poultry and humans and can therefore provide use-
ful, predictive, early-warning information (Krauss, et al., 2007; Krauss 
& Webster, 2012). Some influenza virus risk assessment frameworks 
have been proposed to risk of avian influenza virus cross-species 
transmission and causing a pandemic, and the genetic composition 

F I G U R E  5   Growth curves for the six H7N9 virus strains in various cell lines. (a) Probability that each of the six strains belongs to the 
human class according to the final class weight-biased logistic regression (CWBLR) model. (b) Infection of the human lung cell line A415 by 
the six strains. (c) Infection of the Madin–Darby canine kidney (MDCK) by the six strains. (d) Infection of the Douglas Foster-1 (DF-1) cell 
lines by the six strains. The cells were infected with PBS or the H7N9 strains TZ45, TJ186, BD1, YZ30, SD183 or AH1 at a multiplicity of 
infection (MOI) of 0.001. The virus titres were monitored at the indicated time points. Statistically significant differences are indicated, 
*p < .05 (Student's t test) 
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of influenza viruses is invariably considered to be the top risk factor 
included in these frameworks (Neumann & Kawaoka, 2019; Trock, 
Burke, & Cox, 2015). Our viral genome-based computational tool can 

directly and conveniently predict the risk of H7N9 strains infecting 
humans and will therefore be useful for strengthening the influenza 
virus risk assessment frameworks that are currently used.

F I G U R E  6   Infectivity of the different H7N9 virus strains in mice. Mice were infected with PBS or 50 μl 104× the median tissue culture 
infective dose (TCID50) per ml of TZ45, TJ186, BD1, YZ30, SD183 or AH1 on day 0, and their survival and body weights were recorded daily 
until 14 days post-infection. (a) Changes in the body weights of the mice as a percentage of their initial body weights on day 0. (b) Percentage 
survival each day after infection. Data are shown as mean ± SD (n = 8 mice in each group). (c) Virus titres in the lungs of mice on days 3 and  
5 after infection. (d) Lung index of the mice on days 3, 5 and 7. Data are shown as mean ± SD (n = 4 mice in each group)  

F I G U R E  7   Histopathology of the lungs of mice infected with different H7N9 viruses. Mice were infected with PBS or one of the five 
H7N9 viruse strains, and sections of the lungs were subsequently stained with haematoxylin and eosin (H-E). (a) PBS, (b) SD183, (c) YZ30,  
(d) BD1, (e) TJ186 and (f) TZ45. The main images are ×10 magnification and the insets are ×40 magnification  

(a) (b) (c)

(d) (e) (f)
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