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Abstract

Brain rhythms emerge from synchronization among interconnected spiking neurons. Key

properties of such rhythms can be gleaned from the phase-resetting curve (PRC). Inferring

the PRC and developing a systematic phase reduction theory for large-scale brain rhythms

remains an outstanding challenge. Here we present a theoretical framework and methodol-

ogy to compute the PRC of generic spiking networks with emergent collective oscillations.

We adopt a renewal approach where neurons are described by the time since their last

action potential, a description that can reproduce the dynamical feature of many cell types.

For a sufficiently large number of neurons, the network dynamics are well captured by a con-

tinuity equation known as the refractory density equation. We develop an adjoint method for

this equation giving a semi-analytical expression of the infinitesimal PRC. We confirm the

validity of our framework for specific examples of neural networks. Our theoretical frame-

work can link key biological properties at the individual neuron scale and the macroscopic

oscillatory network properties. Beyond spiking networks, the approach is applicable to

a broad class of systems that can be described by renewal processes.

Author summary

The formation of oscillatory neuronal assemblies at the network level has been hypothe-

sized to be fundamental to many cognitive and motor functions. One prominent tool to

understand the dynamics of oscillatory activity response to stimuli, and hence the neural

code for which it is a substrate, is a nonlinear measure called Phase-Resetting Curve

(PRC). At the network scale, the PRC defines the measure of how a given synaptic input

perturbs the timing of next upcoming volley of spike assemblies: either advancing or

delaying this timing. As a further application, one can use PRCs to make unambiguous

predictions about whether communicating networks of neurons will phase-lock as it is

often observed across the cortical areas and what would be this stable phase-configuration:

synchronous, asynchronous or with asymmetric phase-shifts. The latter configuration
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also implies a preferential flow of information form the leading network to the follower,

thereby giving causal signatures of directed functional connectivity. Because of the key

position of the PRC in studying synchrony, information flow and entrainment to external

forcing, it is crucial to move toward a theory that allows to compute the PRCs of network-

wide oscillations not only for a restricted class of models, as has been done in the past, but

to network descriptions that are generalized and can reflect flexibly single cell properties.

In this manuscript, we tackle this issue by showing how the PRC for network oscillations

can be computed using the adjoint systems of partial differential equations that define the

dynamics of the neural activity density.

This is a PLOS Computational Biology Methods paper.

Introduction

The phase-resetting curve (PRC), popularized by Arthur T. Winfree in 1980 [1], is one of the

central tools to study properties and mechanisms of biological rhythms. The PRC is a measure

that tracks down the phase shift of a rhythm when a transient perturbation is presented at a

determined phase of the oscillatory cycle. The PRC is particularly well adapted to clarify essen-

tial dynamical features across a variety of biological contexts [2, 3]. For instance, it has proven

to be especially efficient to predict the phase-locking behavior of coupled neural oscillators [4]

and rhythms emergent in neural populations [5], to study information flow in networks of

bio-chemical oscillators [6], to illustrate the impact of neuromodulation in single neurons

experimentally [7] and has been a key classical technique in chronobiology [8].

For oscillatory systems described by ordinary differential equations, the adjoint method

provides an accurate procedure to compute the so-called infinitesimal PRC (iPRC) [9]. In the

case of vanishingly small perturbation amplitudes, PRC and iPRC become proportional to

each other, and therefore, any oscillating dynamical system can be reduced to a single phase

equation:

d
dt
yðtÞ ¼ oþ ZðyðtÞÞ � pðtÞ:

Here θ is the oscillation phase, ω is the natural frequency of the oscillator, p(t) represents the

time dependent-perturbation, and the function Z the iPRC.

Data suggest that most cortical rhythms emerge from the interactions of irregular spiking

cells [10, 11]. Thus the brain oscillatory’s activity results from synchronisation among firing

events of large neuronal populations. So far, deriving elementary dynamical systems for such

macroscopic oscillation could not be done without drastic simplifications of the individual

neurons. From now on, to avoid confusion, we term macroscopic PRC (mPRC), the PRC

extracted for an oscillation emerging at the network scale. Initial attempts to derive mPRCs for

emergent oscillations [12, 13] required quadratic integrate-and-fire models to describe the

neurons. As a consequence, extracting the PRCs of realistic oscillating spiking networks has

remained elusive despite its relevance to study brain rhythms [14].

In this paper, we tackle this issue adopting a mean-field description of networks where a

given cell is characterized by the amount of time passed by since its last action potential, i.e.

the age of the cell.
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Originating from the beginning of the 20th century with the paper of Sharpe and Lotka in

1911 [15] and the work of McKendrick in 1926 [16], the study of population dynamics with an

age-structured modeling approach has never lost interest within the scientific community.

Such models track the time evolution of ages of single individuals and are very well adapted to

capture the essential dynamical features of actual data in a wide variety of biological context.

They have proven to be especially effective in epidemiology [17–19], cellular proliferation

[20–22] and population dynamics [23, 24].

Among the different ways of formulating the problem stands out the von Foerster equation;

a continuity equation named after the Austrian American physicist Heinz von Foerster [25].

Written in the form of a partial differential equation, the von Foerster formalism has the tre-

mendous advantage of entailing the other age-structured formulations. So its use is nowadays

widespread and favored by theoreticians. The interested reader may find several textbooks in

mathematical biology that dedicate a chapter to it [26–28].

Applied to neural systems, this continuity equation is known as the refractory density

equation. It was first implemented by Wulfram Gerstner and Leo van Hemmen in 1992 [29].

The refractory equation can rigorously be derived starting from the stochastic process [30],

and is amenable to mathematical analysis [31]. Moreover, this continuity equation has been a

major tool for studying emergent synchronized assemblies [32], transient dynamics [33], low

dimensional reduction [34], and finite-size network activity fluctuations [35–38]. We recom-

mend the reader the textbook [39] for an intuitive introduction on the refractory density

equation.

The construction of the refractory density equation relies on a mean-field description of

spiking networks where a given cell is characterized by the amount of time passed by since its

last action potential. There are undoubtedly alternative ways to describe neurons, however,

such a formalism is general as it can effectively reflect many spiking formulations. For

instance, renewal processes such as the noisy integrate-and-fire [40–42], or spike response

models [32], can be expressed within this framework. Furthermore, this approach provides

approximation schemes for complex biophysically-realistic models [43, 44], for correlated

noise [45], generalized linear models [46], and for neural adaptation [35, 48], see [48] for a

recent review. As a consequence, the refractory density equation can be seen as a general

description of spiking neural networks.

This paper is organized as follows. First, we present the network and neuron model that

will be used throughout. Then, we obtain the adjoint system which gives access to the PRC.

We finish the paper by illustrating a possible application of our framework by studying macro-

scopic phase locking.

Results

Spiking and mean-field description

To describe spiking neurons as renewal processes we need to take into account h(t), the total

input a neuron receives and r, the time since the last action potential. Denoting S(h(t), r) the

escape rate, then, the probability that a firing event occurs during a time interval dt is given by

S(h(t), r)dt. Note that the escape rate reflects the individual properties of neurons, as an exam-

ple, we take an escape rate that captures the dynamics of pyramidal cells [39]. As soon as an

action potential is triggered, the neuron’s age r is reset to zero. The population activity can be

extracted and is given by the sum of all the occurring spikes:

ANðtÞ ¼
1

N

XN

k¼1

X

f

dðt � tf
kÞ: ð1Þ
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where δ is the Dirac mass, N the number of neurons and tf
k the firing time of the cell numbered

k. The total input current is given by

hðtÞ ¼ IextðtÞ þ IsðtÞ;

where Iext(t) is an external current and the synaptic Is(t), which defines the current feedback of

the network, is given by

IsðtÞ ¼ Jsk � ANðtÞ with kðtÞ ¼
e� t=ts

ts
;

here Js is the synaptic efficiency, κ the normalized synaptic filter and τs the synaptic decay.

In the limit of an infinitely large number of neurons N (the thermodynamic limit), the full

network description reduces to a single partial differential equation. Denoting q(t, r) the prob-

ability density for a neuron to have at time t an age r, the density profile evolves according to

the continuity equation:

@

@t
qðt; rÞ þ

@

@r
qðt; rÞ ¼ � SðhðtÞ; rÞqðt; rÞ: ð2Þ

Because once a cell emits an action potential its age is reset to zero, the natural boundary con-

dition is

qðt; 0Þ ¼ AðtÞ;

where A(t) is the neural network activity and is defined as

AðtÞ ¼
Z þ1

0

SðhðtÞ; rÞqðt; rÞ dr: ð3Þ

We recall that in the thermodynamic limit the total input current is given by

hðtÞ ¼ IextðtÞ þ IsðtÞ with IsðtÞ ¼ Jsk � AðtÞ:

The mean-field Eq (2), also termed the von Foerster equation in Mathematical Biology [25],

defines a conservation law and expresses three different processes taking place at the cellular

level: a drift process due to the time passing between action potentials, an escape rate generated

by the randomness of firing events and the individual cell properties, a non-local boundary

condition which describes the reset of the neurons that just fired. As we illustrate in Fig 1, the

essential shape of the full network activity is well captured by the mean-field Eq (3).

Emergent macroscopic oscillatory dynamics

to investigate the emergence of macroscopic oscillations we analyze the refractory density

Eq (2). after algebraic manipulations—see method for details—we find that the mean activity

in the asynchronous regime a1 and the mean input h1 are given by

A� 1
1
¼

Z þ1

0

e�
R r

0
S1ðsÞ ds dr; h1 ¼ Iext þ JsA1; ð4Þ

note that we have used the notation:

S1ðrÞ≔ Sðh1; rÞ:

Linearizing around the steady state we extract the characteristic equation, whose solutions

give the eigenvalues of the linearized operator, see also [32]. The time-independent solution
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loses stability and an oscillatory limit cycle gains stability as soon as an eigenvalue has a posi-

tive real part. The characteristic equation reads

CðlÞ ¼ Jsk̂l

Z 1

0

S1

Z r

0

@S1
@h

q1e�
R r

x
S1þl ds dx dr

þ1 � Jsk̂l

Z 1

0

@S1
@h

q1 dr �
Z 1

0

S1e�
R r

0
S1þl ds dr

where k̂l is the Laplace transform of the synaptic filter κ and q1 the steady density profile,

see Method for details.

The bifurcation line, which separates an oscillatory dynamic from an asynchronous steady-

state regime, can be obtained numerically by solving:

CðioÞ ¼ 0:

As we can see from Fig 2C, for a sufficiently large synaptic strength Js and external current

Iext, the asynchronous state undergoes a bifurcation toward oscillations. The simulated spiking

activity of the full network in Fig 2D and 2E confirms the emergence of a transition from an

asynchronous to a synchronized activity regime when parameters are taken below or above

the bifurcation line.

Note that in Fig 2C, the stability line is only found for τ = 0. Indeed, in this case, the charac-

teristic equation reduces to a simpler equation which can be solved numerically. We find that

Fig 1. Dynamics for a recurrent excitatory network. Comparison of firing activity. A) Time evolution of the stimulus

Iext(t). B) Raster plot of 100 neurons, the blue line displays the resulting firing activity Eq (1) of the full network. C)

Firing activity obtained from a simulation of the mean-field Eq (3). The simulation was initiated with a similar

Gaussian profile for the full network and the mean-field equation, parameters: S(h, r) = exp(h)H(r − Tref) (1 − exp(−(r
− Tref) /τ)), Tref = 10 ms, τs = 10 ms, τ = 5 ms, Js = 15 mV.ms, N = 5000 and Δt = 0.05 ms.

https://doi.org/10.1371/journal.pcbi.1010363.g001
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taking τ to be non-zero affects the position of the stability line. The parameter τ plays the role

of an effective noise level and the bigger τ is, the more current Iext and/or larger synaptic

strength Js is required to induce oscillations.

Finally, let us emphasize that the observed oscillation is an emergent feature of the network.

Individual cells being described by stochastic processes, they cannot produce a regular, i.e.

periodic, firing activity. However, at the network level, a self-sustained oscillation emerges, see

[49] for another approach on neural syncronization. The oscillation properties can be charac-

terized by the PRC. Such a measure relies on the assumption that additional perturbations are

weak enough.

Phase resetting curve and adjoint method

When a brief depolarizing current is applied to the oscillatory network, the global firing activ-

ity shifts in time (see Fig 3A–3C). Having the network in an oscillatory regime, that is, having

a periodic solution ð�q;�I sÞ of (2), we find (see Method for details) the mPRC as the solution of

the mean-field adjoint equation:

�
@

@t
Zqðt; rÞ �

@

@r
Zqðt; rÞ ¼ � Sð�hðtÞ; rÞ Zqðt; rÞ � Zqðt; 0Þ �

Js

ts
ZIs
ðtÞ

� �

; ð5Þ

and

�
d
dt

ZIs
ðtÞ ¼ �

ZIs
ðtÞ
ts
�

Z 1

0

Zqðt; rÞ � Zqðt; 0Þ �
Js
ts

ZIs
ðtÞ

� �
@S
@h
ð�hðtÞ; rÞ�qðt; rÞ dr; ð6Þ

Fig 2. Emergent oscillations. A) Illustration of the escape rate S(h, r) for different values of the parameter τ, (h = 2 mV). B)

Comparison between the steady state firing activities with Js = 1 mV.ms, blue dots for the full network, and the black line for the

theoretical prediction given by (4). C) Bifurcation line in the parameter space (blue curve). The grey shaded region corresponds to

an oscillatory regime of the neural network, the white region corresponds to a stable asynchronous mode of the network. D) and

E) Raster plots of the spiking activity of 100 neurons. Panel D corresponds to the black asterisk lying in the asynchronous (white)

region of panel C, whereas panel E depicts the activity that corresponds to the black asterisk lying in the oscillatory (grey) region of

panel C. parameters: S(h, r) = exp(h)H(r − Tref) (1 − exp(−(r − Tref) /τ)), Tref = 8 ms, τs = 10 ms, τ = 0 ms, N = 5000 and Δt = 0.1 ms.

https://doi.org/10.1371/journal.pcbi.1010363.g002
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Fig 3. Macroscopic phase-resetting curve. A-B) Raster plot of 100 neurons from a simulation of a non-perturbed/perturbed network.

C) Resulting firing activity of the networks obtained from Eq (1), the dashed line in black for the non-perturbed network and full line in

blue for the perturbed one. D) Illustration of the stimulus. E) The panel gives the periodic solution of the synaptic current Is(t) extracted

from the mean-field Eq (2). F) Illustration of the periodic solution of the density function q(t, r) obtained by solving the mean-field Eq

(2). G) The panel gives the periodic solution of the first component of the adjoint system (5). H) The panel illustrates the periodic

solution of the adjoint density function Zq(t, r) obtained via (5). I) Illustration of normalizing condition (7). J) The network PRC, the

black line illustrates the solution of Eq (5), while blue dots indicate the PRC obtained via direct perturbations. K) Solution of the mPRC

(6) for different values of the parameter τ. Parameters: S(h, r) = exp(h)H(r − Tref) (1 − exp(−(r − Tref) /τ)), Iext = 2 mV, Tref = 10 ms, τs =

10 ms, τ = 5 ms, Js = 15 mV.ms, N = 5000 and Δt = 0.05 ms. Direct perturbations in panel D were made with a square wave current pulse

(amplitude 3 mV, duration 5 ms) on the full network, and in panel J with a square wave (amplitude 8 ms, duration 0.8 mV) on the mean-

field system (2).

https://doi.org/10.1371/journal.pcbi.1010363.g003
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satisfying the normalisation condition

Z þ1

0

Zqðt; rÞ
@

@t
�qðt; rÞ dr þ ZIs

ðtÞ
d
dt

�I sðtÞ ¼
2p

T
; ð7Þ

where T is the oscillation period. Note that we made used of the following notation:

�hðtÞ ¼ Iext þ
�I sðtÞ:

Although we obtain two functions from the adjoint method, Zq and ZIs
, since incoming per-

turbations come through the synapses, ZIs
should be interpreted as the mPRC of the macro-

scopic oscillation. In Fig 3E–3H, we show an example of a periodic solution and its associated

periodic adjoint. The adjoint solution is normalized according to (7), see Fig 3I. We note that

the analytically determined mPRC agrees with a PRC obtained from direct perturbations of

the spiking network (see in Fig 3J); both are type I. Note that the PRC depends on cell proper-

ties, for instance, changing parameters of S, e.g. the strength of intrinsic noise (“softness” τ of

threshold), gives a higher mPRC amplitude as illustrated in Fig 3K, which in turn can impact

the locking behavior of multi-network rhythms [5].

Note that, as stated in the introduction, the PRC is a general measure that can be applied to

any oscillating dynamical system. For instance, it has been defined for regular spiking cells

producing periodic fining and has been argued to reflect the single neurons’ intrinsic excitabil-

ity properties [50]. In this contribution we computed a macroscopic PRC for the oscillations

emerging at the network level. In this setting, individual cells within the network do not have

to be all oscillators (with a significant proportion being excitable), and so, the PRC of an indi-

vidual neuron may not be defined. Indeed, in our networks we have considered stochastic cells

forced to fire by random noise which do not have a periodic firing. However, at the network

scale, an oscillation emerges from the interaction of irregular spiking activity. We term the

PRC computed for the network as the macroscopic PRC (mPRC).

ISI density and hazard rate

In this section, we briefly recall how to construct the hazard rate function S(h, r) for neurons

modeled as time-dependent renewal processes. The class of renewal processes is a wide class of

neuron models. Interestingly, it can also be constructed using the interspike interval (ISI) den-

sity. We also show how the hazard rate function can be related to the PRC and define its

characteristics.

The estimation of the ISI density from experimental data is indeed very common. The

interval distribution can be interpreted as a conditional probability density. It is the probability

that the next spike occurs in the interval (t, t + dt) given that the last spike occurred at time

zero. The hazard rate, also called age-dependent death rate or hazard has the following inter-

pretation that, in order to emit a spike at time r, the neuron has to “survive” without firing dur-

ing the time interval (0, r) and then fire at a time r. The hazard rate can be determined from

the ISI density and its expression is known for decades, see for instance [39]:

Sðh; rÞ ¼
ISIðh; rÞ

1 �

Z r

0

ISIðh; sÞds
;

which can also be written as:

ISIðh; rÞ ¼ Sðh; rÞe�
R r

0
Sðh;sÞds

:
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Given the interdependence of the hazard rate and the ISI density, one of these functions suf-

fices to apply our theoretical finding exposed in the previous sections and fully determine the

PRC. It only requires to have the numerical solutions of q(t, r) and Is(t) along the oscillatory

cycle, and the expression of the derivative of the hazard rate:

@

@h
Sðh; rÞ ¼

@

@h
ISIðh; rÞ 1 �

Z r

0

ISIðh; sÞds
� �

þ ISIðh; rÞ
Z r

0

@

@h
ISIðh; sÞds

1 �

Z r

0

ISIðh; sÞds
� �2

:

The only assumption underlying our methodology to compute the phase-resetting curve for

collective rhythms is to have renewal-type spiking neurons.

The difficulty resides in the expression of S and its derivative which are written as quotient.

In practice, it can be hard to express numerically the values of the hazard rate and its deriva-

tive. It is for instance the case for a popular model widely used in theoretical neuroscience—

the leaky integrate-and-fire (LIF) neuron model. Although the ISI density function of the

noisy LIF is known, it can be written as a Volterra integral or as an inverse Laplace transform

of hypergeometric functions. In practice, it becomes difficult to implement numerically an

expression of S and its derivative. Note that the difficulty is numerical and not theoretical.

Another difficult example to deal with is the gamma function. Often used in the literature,

the gamma function is known to provide a good fit to the ISI distribution of actual data. It is

given by:

ISIgðh; rÞ ¼
eha

ða � 1Þ!
ra� 1e� reh :

Once again, having the expression of the ISI distribution is sufficient to determine the hazard

rate function and from there apply our finding to extract the PRC. However, numerical simu-

lations become tricky and the computation of the derivative of the hazard rate is very unstable.

Once again, the difficulty is numerical and not theoretical.

In Fig 4 we present several examples used in textbooks to model ISIs or hazard rates of

actual neurons [39]. The hazard rate is shown together with the mPRC extracted from our

adjoint theory. To compare with results obtained in the previous section, the network is

chosen to be purely excitatory. As we can see from the extracted mPRC, the hazard rate func-

tion—or the ISI distribution—of the neuron shapes the mPRC differently. This allows to link

dynamics of individual neurons, cell type, and the network connectivity to the properties of

emerging oscillations at the network scale. Indeed, single cell dynamics clearly have an impact

on the macroscopic synchronization properties of the networks. This has been shown in

numerous studies. For example, seminal results in [51] showed, using weakly coupled oscilla-

tor analysis, how the intrinsic properties of the neurons impact their synchronization proper-

ties. It was also shown that the macroscopic oscillation can be shaped by the ISI distribution of

single cells [32]. These single cell properties are well documented to be reflected in the hazard

function or the ISI distribution [34, 46] and hence a link can be drawn between these and

global synchronization of such diverse neurons, see for instance [35] for the role of adaptation.

The phase equation and emerging locking modes

We now illustrate how the PRC can be used to investigate the dynamical emergence of phase

locking states between oscillatory spiking circuits. Such an analysis relies on the assumption

that synaptic interactions across networks remain sufficiently weak and that the connection

between circuits is fully symmetric. Such an assumption, which guarantees that the perturbed
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macroscopic oscillations remain close to the unperturbed oscillation, allows us to place our

study within the framework of weakly coupled oscillators [2, 3]. We emphasize that within

each circuit, neurons are not weakly coupled. The assumption of weak coupling is only made

upon the projection across circuits. Within the weakly coupled framework, see [2, 3] for

instance, the bidirectionally delayed-coupled neural circuits reduce to a single phase equation

(see Method for details):

d
dt
yðtÞ ¼ GðyðtÞÞ;

where θ(t) is the phase lag—or the phase difference—between circuits and the G-function the

odd part of the shifted interaction function (see [2, 3]):

GðyÞ ¼ Hðy � dÞ � Hð� y � dÞ:

Here d is the conduction delay between circuits and the interaction function H is given by:

HðyÞ ¼
εGs

T

Z T

0

ZIðsÞAðs � yÞ ds

where T is the oscillation period, εGs denotes the connectivity strength between circuits, see

Fig 5, and the activity A(t) in the equation is defined as the activity of one isolated circuit along

the oscillatory cycle. Note that the coefficient ε is here to emphasize the weak coupling across

circuits.

Studying the emergence of a particular locking mode can be done by looking at the zeros of

the G-function. Each zero of the G-function corresponds to a steady state phase lag and its sta-

bility can be assessed by looking at the sign of the derivative: zero crossings with a negative

slope give stable phase-lags.

In Fig 5A, we display the two quantities of importance to compute the interaction function:

one period of the activity and the mPRC obtained via the adjoint method. In Fig 5B we plot

Fig 4. Macroscopic phase-resetting curve and hazard rate. The figure gives the hazard rate function (top panels) together with the resulting mPRC for

an excitatory network (bottom panels). A-C) Hazard rate functions. D-F) ISI densities. G-I) Solution of the mPRC (6). Parameters: A-D-G) S(h, r) =

exp(h)H(r − Tref)ε(r − Tref)), Iext = 2.5 mV, Tref = 6 ms, τs = 10 ms, Js = 4 mV.ms, ε = 3 and Δt = 0.05 ms. B-E-H) S(h, r) = exp(h)H(r − Tref) tanh(exp(h)(r
− Tref)), Iext = 2.5 mV, Tref = 5 ms, τs = 10 ms, Js = 3 mV.ms and Δt = 0.05 ms. C-F-I) S(h, r) = exp(h)H(r − Tref) tanh(exp(h)(r − Tref)) (1 + ε cos(ωr)), Iext
= 2.5 mV, Tref = 10 ms, τs = 3 ms, τ = 5 ms, Js = 15 mV.ms,ε = 3,ω = 1 and Δt = 0.05 ms. On panels A-B-C) and D-E-F) the hazard rate function and

corresponding ISI densities are plotted for h = Iext.

https://doi.org/10.1371/journal.pcbi.1010363.g004
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Fig 5. Locking modes of interacting circuits. Top panel: illustration of the two circuits in interaction, εGs represents the coupling

strength across networks, Js represents the internal coupling strength, d represents the delay across circuits. A) The panel displays one

period of the activity as well as the mPRC. B) The G-function for different parameter values of the delay, dark/light colors correspond to

small/large delay. C) Zeros of the G-function for different parameter values of the delays. The circles are filled for stable fixed point and

empty for the unstable points. D-E-F) Raster plot of the spiking activity of the two neural networks, black dots indicate the spike timing

of the first network, coloured dots indicate the spike timing of the second network. Parameters: S(h, r) = exp(h)H(r − Tref) (1 − exp(−(r −
Tref) /τ)), Iext = 2 mV, Tref = 10 ms, τs = 10 ms, τ = 5 ms, Js = 15 mV.ms, N = 5000 Gs = 0.2 mV.ms, Δt = 0.005 ms for all the panels and D)

d = 0.5 ms, E) d = 2.5 ms, F) d = 4.5 ms.

https://doi.org/10.1371/journal.pcbi.1010363.g005
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the resulting G-functions for different values of delay. To get a better understanding, we con-

struct the corresponding bifurcation diagram (Fig 5C) which shows the phase mode positions

with respect to delay across circuits. While the stability of the in-phase mode is kept for small

delays, for larger transmission delays, a switch of stability takes place allowing the emergence

of a whole possibility of phase lags, eventually for large enough delay anti-phase solutions

become stable. In Fig 5D–5F we validate this theoretical prediction by showing rasters of the

spiking circuits that reflects the modulation of the emerging phase lag by the delay.

In Fig 6, we illustrate how the phase transition is modulated when changing the ISI density

of single cells, that is, the individual dynamical feature. It shows how single neuron dynamics

(hazard rate/ISI densities) influence macroscopic synchronization properties of connected

networks.

Complementary approach for conductance-based models

In this section, we remind the reader of another use of the renewal framework in Computa-

tional Neuroscience. In the seminal work [44], the authors have constructed a particularly rele-

vant mapping between voltage-based models and the renewal equation at the core of this

paper, see also [48] for a recent review. For instance, starting with the leaky integrate-and-fire

model, see [52]:

C
dv
dt
¼ � Gðv � VLÞ þ hðtÞ þ sZðtÞ;

together with a threshold VT and a reset Vr to account for the emission of an action potential.

Here h(t) is the total stimulus, C is the capacitance, G, the conductance, VL, the reversal poten-

tial, and σ the scaling of the white noise η. The authors have shown that this is equivalent to the

Fig 6. Locking modes of interacting circuits for different ISI densities. A-C) The G-function for different parameter values of the delay. D-E) Zeros of the G-

function for different parameter values of the delays. The circles are filled for stable fixed point and empty for the unstable points. Parameters: A-D) S(h, r) = exp

(h)H(r − Tref)ε(r − Tref)), Iext = 2.5 mV, Tref = 6 ms, τs = 10 ms, Js = 4 mV.ms, ε = 3 and Δt = 0.05 ms. B-E) S(h, r) = exp(h)H(r − Tref) tanh(exp(h)(r − Tref)), Iext = 2.5

mV, Tref = 5 ms, τs = 10 ms, Js = 3 mV.ms and Δt = 0.05 ms. C-F) S(h, r) = exp(h)H(r − Tref) tanh(exp(h)(r − Tref)) (1 + ε cos(ωr)), Iext = 2.5 mV, Tref = 10 ms, τs = 3

ms, τ = 5 ms, Js = 15 mV.ms,ε = 3,ω = 1 and Δt = 0.05 ms.

https://doi.org/10.1371/journal.pcbi.1010363.g006
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formulation (see [52]):

@

@t
qðt; rÞ þ

@

@r
qðt; rÞ ¼ � Sðuðt; rÞ; _uðt; rÞÞqðt; rÞ;

where u(t, r) is given by

C
@

@t
uðt; rÞ þ

@

@r
uðt; rÞ

� �

¼ � Gðuðt; rÞ � VLÞ þ hðtÞ:

The boundary conditions of the two partial differential equations are given by

qðt; 0Þ ¼
Z þ1

0

Sðuðt; rÞ; _uðt; rÞÞqðt; rÞ dr;

and for u, it is given by

uðt; 0Þ ¼ Vr:

The hazard rate function S has been computed for different models, see [48] for a review. It

would therefore be extremely interesting to see how to extract the mPRC, that is, to compute

the adjoint equation. Of course, simulations would have to be performed to see how the theo-

retical result compares with simulations. While a full treatment for two coupled partial differ-

ential equations is beyond the scope of this paper, our initial computations seem to carry out

smoothly: in the appendix we lay out a pathway to compute the adjoint for this description.

Discussion

Rhythms are ubiquitous in the nervous system e.g., across the cortex as well as within the spi-

nal cord [10]. They reflect synchronized spiking activity of neurons and are classified in fre-

quency bands: delta (0.5–4 Hz), theta (4–10 Hz), alpha (8–12 Hz), beta (10–30 Hz) and

gamma (30–100 Hz). Brain oscillations are known to be involved in numerous functions such

as perception, motor coordination and cognition. Excess or deficit in oscillations or synchrony

may lead to neurological disorders. To better understand the informational properties of neu-

ral oscillations, recent experimental studies have made use of numerically compiled neural

population PRCs [53] to show how the brain rhythms react to inputs.

Previous efforts to go beyond these numerical compilations to population PRCs required

restrictions on the neuronal models used [13]. Notably, in our previous work we computed

macroscopic PRCs for exact reduced networks [5, 13] semi-analytically, but this required the

single cells to be modelled by the quadratic-integrate-and-fire neurons with Lorentzian hetero-

geneity. Adjoint methods for wider classes of networks has been an outstanding question to be

resolved.

Another recently developed approach deals also with computing phase response curves for

infinite dimensional equations, in particular, for drift diffusion systems [12], see also [3] for a

review on the subject of drift diffusion and reaction diffusion. However, in neural context, this

method is limited in application to diffusion systems with periodic boundary conditions, and

therefore allows, once again, to treat only the quadratic integrate-and-fire neuron model with

threshold and reset at infinity. Our approach has the advantage to be more general and allows

to treat in theory any neuron model belonging to the class of renewal processes.

In this computational methods paper, we develop a theoretical framework to compute the

PRC of emergent macroscopic network-wide oscillations in population models described by

refractory density equations. Our methodology, here applied to spiking networks of excitatory
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cells, provides a path to study the links between microscopic cellular excitability properties, the

network coupling and the informational properties of the emerging brain rhythms.

Interestingly, recent studies have shown that the refractory framework, known as the von

Foerster framework in Mathematical Biology [25], is powerful enough to entail many cell type

dynamics. Such a generality of the refractory density approach relies on the quasi-renewal

approximation [47]. This approximation was first introduced to include adaptation due to cal-

cium entry after spikes and neurotransmitter release acting over larger time scales. A recent

study has shown that quasi-renewal approximation permits the transition from General Linear

Model (GLM) to the escape rate function [54]. GLM point-processes being able to encapsulate

the dynamical aspects of most single cell types [46], the refractory density equation can serve

as paradigmatic model to describe general network activity. Therefore, the methodology pre-

sented here can be applied to a wide variety of network models and architectures (see Methods

for the generalization of our results to excitatory-inhibitory networks).

Importantly, as we just mentioned, our method is general enough to entail many cell types.

Indeed, having the expression of the ISI distribution is sufficient to determine the hazard rate

function and from there apply our theoretical finding to extract the mPRC. However, numeri-

cal simulations can be tricky and unstable. Let us emphasize that the difficulty is numerical

and not theoretical, and therefore our approach is currently limited to neural dynamics having

a closed form expression of the hazard rate function. Another current limitation is the simple

architecture of the network. Although it is possible to compute the mPRC for an E-I network

(see Method), it results in a system of two coupled partial differential equations which might

be hard to solve numerically.

To illustrate our theoretical finding, we have studied the macroscopic phase-locking

behaviour between two oscillatory circuits. Within the weakly coupled oscillator framework

[3], we have illustrated how the mPRC allows us to construct a bifurcation diagram predicting

locking modes between circuits depending on relevant parameters such as synaptic delay,

connectivity, etc. Further applications could initiate further studies and benefit our under-

standing of brain oscillations. For instance, PRC can serve the study of entertainment to peri-

odic inputs, coding and information transfer [6, 55, 56]; or, expanding on our previous work

[5], to study the impact of cellular properties on the different phase-locking patterns underly-

ing directed signaling and functional connectivity in single and intercoupled oscillatory net-

works [57–61].

We believe that our approach can be applied widely to intercoupled networks with individ-

ual elements whose complexity can be incorporated into the mean-field continuity equations

(e.g. cell proliferation [20–22], population dynamics [23, 24], epidemiological models [17–

19]). The von-Foerster equation at the core of this paper is indeed a paradigmatic approach

employed to study the population dynamics in many different contexts in Computational and

Mathematical Biology [26–28].

Methods

In the subsequent sections, we present the extended details yielding to the derivations of the

framework introduced in the main text. The Method section is structured as follows: we

remind the refractory density equation. Then give the expression the steady states and its sta-

bility properties are discussed. Next, we derive the main result: the adjoint equation giving

access to the infinitesimal phase resetting curve of the network. The normalisation condition is

presented. Numerical details about the procedure of to solve the adjoint equations are given.

We finish describing the extension of our results to excitatory-inhibitory networks.
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Mean-field description

Denoting q(t, r) the probability density for a neuron to have at time t an age r, the refractory

density profile evolves according to the continuity equation:

@

@t
qðt; rÞ þ

@

@r
qðt; rÞ ¼ � SðhðtÞ; rÞqðt; rÞ: ð8Þ

The function S(h(t), r) is the escape rate which reflects the individual properties of neurons.

The total input current h(t) is given by

hðtÞ ¼ IextðtÞ þ IsðtÞ;

where Iext is the external current and Is the synaptic current:

IsðtÞ ¼ Jsk � AðtÞ:

Here Js is the synaptic efficiency, A(t) the firing activity defined as

AðtÞ ¼
Z þ1

0

SðhðtÞ; rÞqðt; rÞ dr;

and κ the normalized synaptic filter

kðtÞ ¼
e� t=ts

ts
;

with τs the synaptic decay.

The mean-field Eq (8) is endowed with a boundary condition:

qðt; 0Þ ¼ AðtÞ:

Steady state

The asynchronous state can be computed as the time independent solution of the refractory

density equation. Let us denote q1(r) the steady state, and A1 the mean firing rate. We have

the following equation

d
dr

q1ðrÞ ¼ � Sðh1; rÞq1ðrÞ;

where we have noted

h1 ¼ Iext þ JsA1:

The equation can be integrated and gives us

q1ðrÞ ¼ A1e�
R r

0
Sðh1 ;sÞ ds

;

where we have used the natural boundary condition

q1ð0Þ ¼ A1:

Finally, the asynchronous mean firing rate can be computed using the conservation property

of the neural network

Z 1

0

q1ðrÞ dr ¼ 1;

PLOS COMPUTATIONAL BIOLOGY Macroscopic Phase-Resetting Curves

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010363 August 1, 2022 15 / 31

https://doi.org/10.1371/journal.pcbi.1010363


and we get

A� 1
1
¼

Z 1

0

e�
R r

0
Sðh1 ;sÞ ds dr;

Note that the mean firing rate is only implicitly given since h1 does depends on A1.

With our choices of functions

Sðh1; rÞ ¼ eh1Hðr � Tref Þ;

we can push further the computation, and after algebraic manipulations, we find that the

mean firing activity A1 is solution of the nonlinear equation

A1 ¼ ðTref þ e� Iext � JsA1Þ
� 1
; ð9Þ

which can be solved numerically.

Stability analysis

To study the stability of the asynchronous state, one needs the eigenvalues of the differential

operator once a linearization around the steady state has been performed. We therefore con-

sider a small perturbation and write the solution in the form

qðt; rÞ ¼ q1ðrÞ þ εq1ðt; rÞ þOðε2Þ; AðtÞ ¼ A1 þ εA1ðtÞ þOðε2Þ:

Plugging these expressions into Eq (8)—keeping the first order terms only—yields the partial

differential equation

@

@t
q1ðt; rÞ þ

@

@r
q1ðt; rÞ ¼ � Sðh1; rÞq1ðt; rÞ � Js

@S
@h
ðh1; rÞq1ðrÞk � A1ðtÞ;

and for the activity

A1ðtÞ ¼
Z þ1

0

Sðh1; rÞq1ðt; rÞ dr þ Jsk � A1ðtÞ
Z þ1

0

@S
@h
ðh1; rÞq1ðrÞ dr:

Since we are interested in the long term behavior of the perturbation we express the perturba-

tion in eigenvalue mode

q1ðt; rÞ ¼ eltq1ðrÞ; A1ðtÞ ¼ eltA1:

After algebraic manipulations, we get that the perturbation obeys to

lq1ðrÞ þ
d
dr

q1ðrÞ ¼ � S h1; rð Þ þ lð Þq1ðrÞ � JsA1

@S
@h
ðh1; rÞq1ðrÞk̂ðlÞ;

where we have introduced k̂ the Laplace transform κ:

k̂ðlÞ ¼

Z 1

0

kðsÞexpð� lsÞ ds;

and for the activity

A1 1 � Jsk̂ðlÞ
Z þ1

0

@S
@h
ðh1; rÞq1ðrÞ dr

� �

¼

Z þ1

0

Sðh1; rÞq1ðrÞ dr:
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Integrating this solution with the variation of constants method, we get

q1ðrÞ ¼ A1e
�

R r

0
Sðh1 ;sÞþl ds

� JsA1k̂ðlÞ

Z r

0

@S
@h
ðh1; xÞq1ðxÞe

�

R r

x
Sðh1 ;sÞþl ds dx;

which implies

Z þ1

0

Sðh1; rÞq1ðrÞ dr

¼ � JsA1k̂ðlÞ

Z þ1

0

Sðh1; xÞ
Z r

0

@S
@h
ðh1; xÞq1ðxÞe

�

R r

x
Sðh1 ;sÞþl ds dx dr

þA1

Z þ1

0

Sðh1; rÞe
�

R r

0
Sðh1 ;sÞþl ds dr;

and we finally arrive on the equation

1 � Jsk̂ðlÞ

Z þ1

0

@S
@h
ðh1; rÞq1ðrÞ dr

þJs k̂ðlÞ

Z þ1

0

Sðh1; rÞ
Z r

0

@S
@h
ðh1; xÞq1ðxÞe

�

R r

x
Sðh1 ;sÞþl ds dx dr

�

Z þ1

0

Sðh1; rÞe
�

R r

0
Sðh1 ;sÞþl ds dr ¼ 0:

We therefore write down the characteristic equation of the eigenvalues as

CðlÞ ¼ 1 � Jsk̂ðlÞ

Z þ1

0

@S
@h
ðh1; rÞq1ðrÞ dr �

Z þ1

0

Sðh1; rÞe
�

R r

0
Sðh1 ;sÞþl ds dr

þJsk̂ðlÞ

Z þ1

0

Sðh1; rÞ
Z r

0

@S
@h
ðh1; xÞq1ðxÞe

�

R r

x
Sðh1 ;sÞþl ds dx dr :

With the special choice

Sðh1; rÞ ¼ eh1Hðr � Tref Þ;

we can push further the computation, and after algebraic manipulations, we find:

CðlÞ ¼ l � Jslk̂ðlÞA1 þ eh1 � eh1� lTref :

The bifurcation line, which separates an oscillatory dynamic from an asynchronous regime,

can be obtained numerically by solving

CðioÞ ¼ 0:

The adjoint equation

To compute the PRC, we first rewrite the synaptic filtering as a differential equation. Having

IsðtÞ ¼ Jsk � AðtÞ; kðtÞ ¼
e� t=ts

ts
;
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is equivalent as having:

ts
d
dt

IsðtÞ ¼ � IsðtÞ þ JsAðtÞ:

We then assume that there is a stable oscillatory solution ðqo; Iso
Þ of period T for the mean-

field equation. Considering a small perturbation around the stable solution, we write

qðt; rÞ ¼ qoðt; rÞ þ εqpðt; rÞ þOðε2Þ; IsðtÞ ¼ Iso
ðtÞ þ εIsp

ðtÞ þOðε2Þ:

Plugging these expressions and only keeping the first order term, we get that the perturbation

obeys to the following set of equations

@

@t
qpðt; rÞ þ

@

@r
qpðt; rÞ ¼ � SðhoðtÞ; rÞqpðt; rÞ �

@S
@h
ðhoðtÞ; rÞqoðt; rÞIsp

ðtÞ;

where

hoðtÞ ¼ Iext þ Iso
ðtÞ;

and for the activity

ApðtÞ ¼
Z þ1

0

SðhoðtÞ; rÞqpðt; rÞ dr þ Isp
ðtÞ
Z þ1

0

@S
@h
ðhoðtÞ; rÞqoðt; rÞ dr;

the boundary condition follows as

qpðt; 0Þ ¼ ApðtÞ;

with

ts
d
dt

Isp
ðtÞ ¼ � Isp

ðtÞ þ JsApðtÞ:

Now, we can define a bilinear form as

q1

I1

 !

;
q2

I2

 !

; t

* +

¼

Z þ1

0

q1ðt; rÞq2ðt; rÞ dr þ I1ðtÞI2ðtÞ:

Different approaches exist to compute the PRC. These have been previously reviewed and

the interested reader can look at the textbook [56] as well as at the review on experimental

approaches to PRC measurement [62]. The PRC can be computed using a singular perturba-

tion approach or a more geometrical approach relying on isochrons, see [56]. Whereas each

approach has its own advantage, both of them are difficult to generalize when it comes to par-

tial differential equations. Interestingly, a very simple method has been proposed relying only

on dot products and algebraic computations [9], see also [56] for a review regarding the three

different approaches. Namely, we use the fact that the asymptotic phase to an infinitesimal per-

turbation

Zq

ZIs

 !

;
qp

Ip

 !* +

is independent of time for small perturbation qp, Ip. We recommend the reader to look at [9,

56] for a mathematical justification. Therefore the PRC (Zq, ZI) would be given by the
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following property

d
dt

Zq

ZIs

0

@

1

A;

qp

Ip

0

@

1

A; t

* +

¼ 0:

Developing the first term we get that

d
dt

Z þ1

0

Zqðt; rÞqpðt; rÞ dr ¼
Z þ1

0

qpðt; rÞ
@

@t
Zqðt; rÞ þ Zqðt; rÞ

@

@t
qpðt; rÞ dr;

and plugging the expression of @

@t qpðt; rÞ inside the equation, we obtain

d
dt

Z þ1

0

Zqðt; rÞqpðt; rÞ dr

¼

Z þ1

0

Zqðt; rÞ �
@

@r
qpðt; rÞ � SðhoðtÞ; rÞqpðt; rÞ �

@S
@h
ðhoðtÞ; rÞqoðt; rÞIsp

ðtÞ
� �

dr

þ

Z þ1

0

qpðt; rÞ
@

@t
Zqðt; rÞ dr;

developing the terms lead to

d
dt

Z þ1

0

Zqðt; rÞqpðt; rÞ dr

¼ �

Z þ1

0

Zqðt; rÞ
@

@r
qpðt; rÞ dr �

Z þ1

0

Zqðt; rÞSðhoðtÞ; rÞqpðt; rÞ dr

� Isp
ðtÞ
Z þ1

0

Zqðt; rÞ
@S
@h
ðhoðtÞ; rÞqoðt; rÞ dr þ

Z þ1

0

qpðt; rÞ
@

@t
Zqðt; rÞ dr:

Applying an integration by parts we get

Z þ1

0

Zqðt; rÞ
@

@r
qpðt; rÞ dr ¼ ½Zqðt; rÞqpðt; rÞ�

þ1

0
�

Z þ1

0

@

@r
Zqðt; rÞqpðt; rÞ dr

¼ � Zqðt; 0Þqpðt; 0Þ �
Z þ1

0

@

@r
Zqðt; rÞqpðt; rÞ dr

¼ � Zqðt; 0ÞApðtÞ �
Z þ1

0

@

@r
Zqðt; rÞqpðt; rÞ dr:

Therefore we have

d
dt

Z þ1

0

Zqðt; rÞqpðt; rÞ dr ¼ Zqðt; 0ÞApðtÞ þ
Z þ1

0

@

@r
Zqðt; rÞqpðt; rÞ dr

�

Z þ1

0

Zqðt; rÞSðhoðtÞ; rÞqpðt; rÞ dr

� Isp
ðtÞ
Z þ1

0

Zqðt; rÞ
@S
@h
ðhoðtÞ; rÞqoðt; rÞ dr þ

Z þ1

0

qpðt; rÞ
@

@t
Zqðt; rÞ dr;
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which is equivalent to

d
dt

Z þ1

0

Zqðt; rÞqpðt; rÞ dr ¼
Z þ1

0

@

@t
Zqðt; rÞ þ

@

@r
Zqðt; rÞ � SðhoðtÞ; rÞZqðt; rÞ

� �

qpðt; rÞ dr

þZqðt; 0ÞApðtÞ � Isp
ðtÞ
Z þ1

0

Zqðt; rÞ
@S
@h
ðhoðtÞ; rÞqoðt; rÞ dr;

We now develop the second term

d
dt

ZIs
ðtÞIsp
ðtÞ

h i
¼ Isp
ðtÞ

d
dt

ZIs
ðtÞ þ ZIs

ðtÞ
d
dt

Isp
ðtÞ;

and recalling the fact that

ts
d
dt

Isp
ðtÞ ¼ � Isp

ðtÞ þ JsApðtÞ;

we obtain

d
dt

ZIs
ðtÞIsp
ðtÞ

h i
¼ Isp
ðtÞ

d
dt

ZIs
ðtÞ �

1

ts
ZIs
ðtÞIsp
ðtÞ þ

Js

ts
ZIs
ðtÞApðtÞ:

Now, putting everything together

d
dt

Zq

ZIs

0

@

1

A;

qp

Isp

0

B
@

1

C
A; t

* +

¼
d
dt

Z þ1

0

Zqðt; rÞqpðt; rÞ dr þ
d
dt

ZIs
ðtÞIsp
ðtÞ

h i
;

which gives

d
dt

Zq

ZIs

0

@

1

A;

qp

Isp

0

B
@

1

C
A; t

* +

¼

Z þ1

0

@

@t
Zqðt; rÞ þ

@

@r
Zqðt; rÞ � SðhoðtÞ; rÞZqðt; rÞ

� �

qpðt; rÞ dr

þZqðt; 0ÞApðtÞ � Isp
ðtÞ
Z þ1

0

Zqðt; rÞ
@S
@h
ðhoðtÞ; rÞqoðt; rÞdr

þIsp
ðtÞ

d
dt

ZIs
ðtÞ �

1

ts
ZIs
ðtÞIsp
ðtÞ þ

Js
ts

ZIs
ðtÞApðtÞ:

We now use the fact that

ApðtÞ ¼
Z þ1

0

SðhoðtÞ; rÞqpðt; rÞ dr þ Isp
ðtÞ
Z þ1

0

@S
@h
ðIoðtÞ; rÞqoðt; rÞ dr;

we obtain

Z þ1

0

@

@t
Zqðt; rÞ þ

@

@r
Zqðt; rÞ � SðhoðtÞ; rÞ Zqðt; rÞ � Zqðt; 0Þ �

Js
ts

ZIs
ðtÞ

� �� �

qpðt; rÞ dr

þIps
ðtÞ

d
dt

ZIs
ðtÞ �

1

ts
ZIs
ðtÞ �

Z þ1

0

Zqðt; rÞ � Zqðt; 0Þ �
Js

ts
ZIs
ðtÞ

� �
@S
@h
ðhoðtÞ; rÞqoðt; rÞ dr

� �

¼ 0:

PLOS COMPUTATIONAL BIOLOGY Macroscopic Phase-Resetting Curves

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010363 August 1, 2022 20 / 31

https://doi.org/10.1371/journal.pcbi.1010363


Since this is true for every perturbation, the PRC must solve

�
@

@t
Zqðt; rÞ �

@

@r
Zqðt; rÞ ¼ � SðhoðtÞ; rÞ Zqðt; rÞ � Zqðt; 0Þ �

Js

ts
ZIs
ðtÞ

� �

; ð10Þ

and

�
d
dt

ZIs
ðtÞ ¼ �

1

ts
ZIs
ðtÞ �

Z þ1

0

Zqðt; rÞ � Zqðt; 0Þ �
Js
ts

ZIs
ðtÞ

� �
@S
@h
ðhoðtÞ; rÞqoðt; rÞ dr: ð11Þ

Normalization condition

The adjoint equation being linear, its solution is unique under a normalization condition. In

what follows we check that

d
dt

Zq

ZIs

0

@

1

A;

@

@t
qo

d
dt

Iso

0

B
B
B
B
@

1

C
C
C
C
A

; t

* +

¼ 0:

The computations that follow give rise to long mathematical expressions. We thus drop the

function variables. After algebraic manipulations, we find that the above condition is equiva-

lent to

Z þ1

0

@

@t
Zq
@

@t
qo dr þ

d
dt

ZIs

d
dt

Iso
þ

Z þ1

0

@

@t
Zq
@

@t
�
@

@r
qo � Soqo

� �

dr

þ
d
dt

ZIs

@

@t
�

1

ts
Iso
þ

Js

ts
Ao

� �

¼ 0:

where we have introduced the new notations:

Ao ≔
Z þ1

0

Soqo dr So ≔ SðhoðtÞ; rÞ:

Now developing, we get

Z þ1

0

@

@t
Zq
@

@t
�
@

@r
qo � Soqo

� �

dr

¼

Z þ1

0

@

@t
Zq �

@

@r
@

@t
qo � So

@

@t
qo �

@So

@h
qo

d
dt

Iso

� �

dr

¼

Z þ1

0

@

@t
@

@r
Zq
@

@t
qo � ZqSo

@

@t
qo � Zq

@So

@h
qo

d
dt

Iso
dr � Zq

@

@t
qo

� �þ1

0

¼

Z þ1

0

@

@t
@

@r
Zq
@

@t
qo � ZqSo

@

@t
qo � Zq

@So

@h
qo

d
dt

Iso
dr þ Zqðt; 0Þ

d
dt

Ao:

We now use the fact that

d
dt

Ao ¼

Z þ1

0

So
@

@t
qo dr þ

Z þ1

0

@So

@h
qo

d
dt

Iso
dr:
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Using this expression, we get that

Z þ1

0

@

@t
Zq
@

@t
�
@

@r
qo � Soqo

� �

dr þ
d
dt

ZIs

d
dt
�

1

ts
Iso
þ

Js
ts

Ao

� �

¼
R þ1

0

@

@t
qo

@

@r
Zq � SoZq þ Zqðt; 0ÞSo þ

Js
ts

SoZIs

� �

dr

þ
d
dt

Io ZIs
=ts �

Z þ1

0

@So

@h
qo Zq � Zqðt; 0Þ �

Js
ts

ZIs

� �

dr
� �

:

Putting everything together, we arrive to

d
dt

Z þ1

0

Zq
@

@t
qo dr þ ZIs

d
dt

Iso

� �

¼

Z þ1

0

@

@t
qo

@

@t
Zq þ

@

@r
Zq � SoZq þ Zqðt; 0ÞSo þ

Js

ts
SoZIs

� �

dr

þ
d
dt

Iso

d
dt

ZIs
� ZIs

=ts �

Z þ1

0

@So

@h
qo Zq � Zqðt; 0Þ �

Js

ts
ZIs

� �

dr
� �

:

We now remind that the adjoint system is given by

�
@

@t
Zq �

@

@r
Zq ¼ � SoZq þ Zqðt; 0ÞSo þ

Js

ts
SoZIs

;

and

�
d
dt

ZIs
� ZIs

=ts �

Z þ1

0

@So

@h
qo Zq � Zqðt; 0Þ �

Js

ts
ZIs

� �

dr;

we therefore arrive to

d
dt

Z þ1

0

Zq
@

@t
qo dr þ ZIs

d
dt

Iso

� �

¼ 0:

The mPRC will be the unique solution satisfying the normalization condition:

Z þ1

0

Zq
@

@t
qo dr þ ZIs

d
dt

Iso
¼

2p

T
;

where T is nothing but the period of the oscillation.

Numerical procedure

The mean-field Eq (8) can be readily integrated. We denote

rj ¼ jDt; 8j > 0; tn ¼ nDt; 8n > 0;

the discretization space/time variables, and

qn
j ≔ qðtn; rjÞ; Sn

j ≔ Sðhn; rjÞ;

hn ≔ hðtnÞ; In
ext ≔ IextðtnÞ In

s ≔ IsðtnÞ;

the corresponding solution at the discretized points. Although theoretically r 2 [0,1), for

numerical purposes we need to truncate r. We have observed that the numerical methodology
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works as long as we truncate r at a value rmax large enough such that the whole population has

produced a spike so q(t, r)! 0 for r> rmax. We have observed rmax� 1.25Tref to be a good

estimate.

Considering the initial state to be given, the mean-field Eq (8) can be numerically solved

along the characteristic curves. On the characteristics, the dynamics reduce to a nonlinear dif-

ferential equation that can be integrated with the following first order numerical scheme:

qnþ1
jþ1
¼ qn

j � DtSn
j q

n
j

Inþ1
s ¼ In

s þ Dtð� In
s =ts þ JsAn=tsÞ

qnþ1
1
¼ Anþ1

Anþ1 ¼ Dt
X

k�1

Snþ1

j qnþ1

j

hnþ1 ¼ Inþ1
ext þ Inþ1

s :

8
>>>>>>>><

>>>>>>>>:

ð12Þ

The proposed numerical scheme (12) is thus well defined and produces results in excellent

agreement with simulations of the full network.

Using procedure (12) we find solutions of period T = MΔt for the mean mean-field Eq (8)

which we denote as �qðt; rÞ and �I sðt; rÞ. Next, we use the solutions �qðt; rÞ and �I sðt; rÞ for solving

the adjoint system (10) and (11).

Since the solution of the adjoint equation has an opposite stability with respect to the

mean-field, we must integrate it backwards in time. We denote

Zn
qj
≔Zqðtn; rjÞ; Zn

Is
≔ZIs

ðtnÞ; �Sn
j ≔ Sð�hn; rjÞ

@�Sn
j ≔

@S
@h

�hn; rj

� �
; �hn ¼ In

ext þ
�In

s :

Considering the end state to be given, the adjoint system (10) and (11) can be once again

numerically solved along the characteristic curves. On the characteristics, the dynamics of the

adjoint system (10) and (11) reduce to a linear differential equation that can be integrated with

the following backward first order numerical scheme:

Zn� 1
qj� 1
¼ Zn

qj
� Dt�Sn

j ½Z
n
qj
� Zn

q1
� JsZn

Is
=ts�

Zn� 1
ql
¼ Zn� 1

ql� 1
for l ¼ maxðjÞ

Zn� 1
Is
¼ Zn

Is
� DtðZn

Is
=ts þ

X

k�1

@�Sn
k ½Z

n
qk
� Zn

q1
� JsZ

n
Is
=ts��q

n
kDtÞ:

8
>>><

>>>:

ð13Þ

The proposed numerical scheme (13) is once again well defined and produces T periodic

solutions �Zqðt; rÞ and �ZIs
ðtÞmatching the PRC obtained by the direct perturbation method

(see the main text). Next, we remark some numerical recipes which enhance the stability (and

thus the convergence) of the procedure in (13). First, we iterate the scheme (13) over the peri-

odic solutions �qðt; rÞ and �I sðt; rÞ (recall �qnþM
k ¼ �qn

k). We also recommend computing the inte-

gral in (11) (that is, the sum for Zn� 1
Is

in (13)) by using precise integration routines such as the

trapezoidal rule or the Simpson’s method. Finally, since the procedure in (13) is based on back-

wards integration, it does not provide the value of Zq(tn, rj) at r = max(rj). This value can be

obtained by simple extrapolation (as we propose in (13)) or by using accurate extrapolation

routines taking into account a larger set of values of Zq(tn, rj). We remark that, although the

smaller the Δt value the higher the accuracy of solutions, the usage of the above mentioned rec-

ipes generates very precise results for time steps Δt� 0.005. We also remark that the procedure

on (13) relies on the periodic solutions gðt; rÞ ¼ f�qðt; rÞ;�I sðtÞg obtained from (12). To ensure

PLOS COMPUTATIONAL BIOLOGY Macroscopic Phase-Resetting Curves

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010363 August 1, 2022 23 / 31

https://doi.org/10.1371/journal.pcbi.1010363


stability of (13), it is necessary to consider integration times large enough so the periodic solu-

tions γ(t, r) are accurate enough (that is, kγ(t, r) − γ(t + T, r)k � 0, with k�k the Euclidian

norm).

Coupled networks and the phase equation

Considering two bidirectionally delayed coupled networks where the coupling is made via

long projections from one network to another, the whole system reduces to a set of coupled

partial differential equation. For the first network, we have

@

@t
q1 þ

@

@r
q1 ¼ � Sðh1ðtÞ; rÞq1;

and

@

@t
q2 þ

@

@r
q2 ¼ � Sðh2ðtÞ; rÞq2:

The boundary conditions are given by

q1ðt; 0Þ ¼ A1ðtÞ ¼
R þ1

0
Sðh1ðtÞ; rÞq1ðt; rÞ dr;

and

q2ðt; 0Þ ¼ A2ðtÞ ¼
R þ1

0
Sðh2ðtÞ; rÞq2ðt; rÞ dr:

The total input current is still given by

h1 ¼ Iext þ Is1
; h2 ¼ Iext þ Is2

;

the synaptic current Is(t) is computed as

ts
d
dt

Is1
ðtÞ ¼ � Is1

ðtÞ þ JsA1ðtÞ þ εGsA2ðt � dÞ;

and

ts
d
dt

Is2
ðtÞ ¼ � Is2

ðtÞ þ JsA2ðtÞ þ εGsA1ðt � dÞ:

Here Gs denotes the connectivity strength across circuits, the parameter ε emphasises the weak

coupling assumption, and the parameter d is the conduction delay between the two networks.

Assuming that the two networks are oscillating and placing our study within the framework of

weakly coupled oscillators, that is, if we assume that

ε << 1;

we can reduce the bidirectionally delayed-coupled neural circuits description to a single phase

equation:

d
dt
yðtÞ ¼ GðyðtÞÞ:

Here θ(t) is the phase difference (or phase lag) between the circuits and the G-function is the

odd part of the shifted interaction function (the H-function), see [56] for instance:

GðyÞ ¼ Hðy � dÞ � Hð� y � dÞ;

with d, the time delay between the two circuits. In our case, the interaction function is
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mathematically described as

HðyÞ ¼
εGs

T

Z T

0

ZIðsÞAðs � yÞ ds

where T is the oscillation period.

Excitatory-inhibitory network

In the thermodynamic limit the network description of a pair of excitatory-inhibitory popula-

tions reduces to a set of coupled partial differential equations. Denoting qe(t, r) the probability

density for a excitatory neuron to have at time t an age r, and qi(t, r) for the inhibitory popula-

tion, the evolution of the density profiles evolve according to the continuity equations:

@

@t
qe þ

@

@r
qe ¼ � SeðheðtÞ; rÞqe;

and

@

@t
qi þ

@

@r
qi ¼ � SiðhiðtÞ; rÞqi:

The boundary conditions are given by

qeðt; 0Þ ¼ AeðtÞ ¼
Z þ1

0

SeðheðtÞ; rÞqeðt; rÞ dr;

and

qiðt; 0Þ ¼ AiðtÞ ¼
Z þ1

0

SiðhiðtÞ; rÞqiðt; rÞ dr:

The total input current is still given by

he ¼ Ie
ext þ Ise

; hi ¼ Ii
ext þ Isi

;

the synaptic current Is(t) is computed as

Ise
¼ Jeek � Ae � Jeik � Ai; Isi

¼ Jiek � Ae � Jiik � Ai:

We can now define the corresponding bi-linear form:

qe1

Ie1

qi1

Ii1

0

B
B
B
B
@

1

C
C
C
C
A
;

qe2

Ie2

qi2

Ii2

0

B
B
B
B
@

1

C
C
C
C
A

; t

* +

¼

Z þ1

0

qe1
qe2

dr þ Ie1
Ie2
þ

Z þ1

0

qi1
qi2

dr þ Ii1
Ii2
:

Assuming to be known the periodic solution, ðqeo
; Iseo
Þ and ðqio

; Isio
Þ, computations similar to

what is presented within the adjoint section, we find that the PRC must solves:

�
@

@t
Zqe
�
@

@r
Zqe
¼ � Seðheo

ðtÞ; rÞ Zqe
� Zqe

ðt; 0Þ �
Jee

ts
ZIse
þ

Jei

ts
ZIsi

� �

;
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and

�
d
dt

ZIse
¼ �

1

ts
ZIse

�

Z þ1

0

Zqe
� Zqe

ðt; 0Þ �
Jee

ts
ZIse

� �
@Se

@he
ðheo
ðtÞ; rÞqeo

dr

�

Z þ1

0

Zqi
� Zqi

ðt; 0Þ þ
Jei

ts
ZIsi

� �
@Si

@hi
ðhio
ðtÞ; rÞqio

dr:

similarly

�
@

@t
Zqi
�
@

@r
Zqi
¼ � Siðhio

ðtÞ; rÞ Zqi
� Zqi

ðt; 0Þ �
Jie
ts

ZIse
þ

Jii

ts
ZIsi

� �

;

and

�
d
dt

ZIsi
¼ �

1

ts
ZIsi

�

Z þ1

0

Zqe
� Zqe

ðt; 0Þ �
Jie
ts

ZIse

� �
@Se

@he
ðheo
ðtÞ; rÞqeo

dr

�

Z þ1

0

Zqi
� Zqi

ðt; 0Þ þ
Jii

ts
ZIsi

� �
@Si

@hi
ðhio
ðtÞ; rÞqio

dr:

Incoming perturbation should get through the synapse, ZIs
should be interpreted as the mPRC

of the macroscopic oscillation. Two PRCs can therefore be defined ZIse
and ZIsi

at the same

time. The PRC defined by ZIse
corresponds to excitatory input arriving upon the E-cells, while

ZIsi
corresponds to excitatory input arriving upon the I-cells.

The normalisation condition is now given by:

Z þ1

0

Zqe

@

@t
qoe

dr þ ZIse

d
dt

Isoe
þ

Z þ1

0

Zqi

@

@t
qoi

dr þ ZIsi

d
dt

Isoi
¼

2p

T
;

with again T the oscillation period.

Complementary approach for conductance-based models

In this section, we recall another framework in use in Computational Neuroscience. In [44],

the authors have constructed a mapping between voltage-based models and the von Foerster

equation. For instance, starting withe the integrate-and-fire model, see [52]:

C
dv
dt
¼ � Gðv � VLÞ þ hðtÞ þ sZðtÞ;

together with a threshold VT and a reset Vr to account for an action potential. Here h(t) is the

stimulus, C, the capacitance, G, the conductance, VL, the reversal potential, and σ, the scaling

of the white noise η. It has been shown that this is equivalent to the following equations [52]:

@

@t
qðt; rÞ þ

@

@r
qðt; rÞ ¼ � Sðuðt; rÞ; _uðt; rÞÞqðt; rÞ;

where u(t, r) is given by

C
@

@t
uðt; rÞ þ

@

@r
uðt; rÞ

� �

¼ � Gðuðt; rÞ � VLÞ þ hðtÞ:

The boundary conditions of the two partial differential equations are given by

qðt; 0Þ ¼
R þ1

0
Sðuðt; rÞ; _uðt; rÞÞqðt; rÞ dr;
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and for u, it is given by

uðt; 0Þ ¼ Vr:

Defining the corresponding bi-linear form:

q

I

u

0

B
B
B
@

1

C
C
C
A
;

Zq

ZI

Zu

0

B
B
B
@

1

C
C
C
A

; t

* +

¼

Z þ1

0

qZq dr þ IZI þ

Z þ1

0

uZu dr;

and assuming to be known the periodic solution, ðqo; Iso
; uoÞ, computations similar to what is

presented within the adjoint section, we find that the mPRC must solves:

�
@

@t
Zq �

@

@r
Zq ¼ � So Zq � Zqðt; 0Þ �

J
ts

ZIs

� �

;

and

�
@

@t
Zu �

@

@r
Zu ¼ �

G
C

Zu þ
G
C
@So

@u
qo �

@So

@ _u
qo

� �

Zq � Zqðt; 0Þ �
J
ts

ZIs

� �

;

and

�
d
dt

ZIs
¼ �

1

ts
ZIs

�

Z þ1

0

1

C
Zq �

1

C
Zqðt; 0Þ �

J
ts

ZIs

� �
@So

@ _u
qo �

1

C
Zu dr;

where we have used the notation:

So ≔ Sðuoðt; rÞ; _uoðt; rÞÞ:

Incoming perturbation should get through the synapse, ZIs
should be interpreted as the mPRC

of the macroscopic oscillation. The normalisation condition is now given by:

Z þ1

0

Zq
@

@t
qo dr þ ZIs

d
dt

Iso
þ

Z þ1

0

Zu
@

@t
uo dr ¼

2p

T
;

with again T the oscillation period.

Supporting information

S1 Python script. Python script to compute the solution of the mean-field equation and its

associated adjoint.
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Visualization: Grégory Dumont, Alberto Pérez-Cervera.
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