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Cell line authentication is critical for preventing the use of mixed or misidentified cell
lines in research. Current efforts include short tandem repeat (STR) analysis and PCR-
based assays to detect mixed species cultures. Using PCR analysis with mouse-specific
primers, we identified contaminating mouse DNA in growth factor conditioned medium
(CM) derived from the L-WRN cell line (L-WRN CM), as well as in human organoid
cultures maintained in the L-WRN CM. DNA isolated from L-WRN CM matched the
L-WRN cell signature by STR analysis. Organoid lines that were positive for murine DNA
by PCR were further analyzed via bulk RNA-sequencing and transcripts were aligned
to the human and mouse genomes. RNA analysis failed to detect mouse-specific gene
expression above background levels, suggesting no viable murine cells were present in
the organoid cultures. We interpret our data to show conclusive evidence that mouse
cell-derived CM can be a source of contaminating murine DNA detected in human
organoid cultures, even though live, transcriptionally-active murine cells are not present.
Together, our findings suggest that multiple methods may be required to authenticate
human organoid or cell lines and urges cautious interpretation of DNA-based PCR cell
line authentication results.

Keywords: cell-free DNA, cfDNA, colonoid, conditioned medium, enteroid, murine contamination, organoid, cell
line authentication

INTRODUCTION

As the use of primary human 3-dimensional (3D) organoids in research increases, so does
the need for stringent cell line authentication measures for these cultures. The use of
misidentified or contaminated cell lines has been a concern for more than 70 years and
has called into question experimental conclusions, lead to poor reproducibility, wasted
research dollars, and led to manuscript retractions (American Type Culture Collection
Standards Development Organization Workgroup ASN-0002, 2010). To address these
issues, guidelines have been submitted by many organizations to ensure proper cell
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identification (Geraghty et al., 2014). However, despite the
development of guidelines that suggest regular testing (Barallon
et al., 2010), many contaminated lines continue to be used for
in vitro research. Nardone (2007) proposed that publishers and
grant agencies effect change through publishing and funding
policy, and gradually this has taken hold (NIH, 2015). Testing for
cell line contamination has become a priority for researchers, and
efforts have centered around detecting mixed or misidentified cell
lines (Babic et al., 2019).

The current principle method of cell line authentication is
routine short tandem repeat (STR) analysis of nuclear DNA,
which is a vital tool for tracing the origins of a cell line back to
a single source. Previous reports of cellular contamination have
overwhelmingly been the result of intra-species contamination,
such as interloping HeLa cells, which are easily recognized by
STR analysis (Capes-Davis et al., 2010). However, STR analysis
relies on the comparison of the test culture profile to a known
profile of the source culture. If there is no source profile, STR
analysis can only identify contamination of other known cell line
profiles such as HeLa cells (Schweppe et al., 2008). Also, STR
profiling fails to detect cellular contamination from other species
(American Type Culture Collection Standards Development
Organization Workgroup ASN-0002, 2010) or clonal drift from
cultures contaminated many years prior (Schweppe et al., 2008).
To address the limitations of STR analysis in detecting mixed
species cultures, PCR-based assays can be a tool used to amplify
species-specific genes.

Cell line authenticity is a significant concern in research
utilizing human-derived, 3D epithelium-only organoids which
can be derived from many organ systems. These lines, established
from surgically resected tissue or biopsies, require highly
specialized medium and other culture components for in vitro
self-renewal. The requisite growth factors can be cost-prohibitive
when purchased commercially, and this has driven the use
of media conditioned with growth factors by feeder cells.
For example, ligands from the WNT family of proteins are
required to support the stem cell niche of gastrointestinal
epithelial cells (Kaushik et al., 2018), but these ligands lose
activity when introduced as purified recombinant proteins
(Mihara et al., 2016). Therefore, WNT-conditioned medium is a
common way to provide these vital growth factors. Conditioned
medium (CM) is produced by recombinant murine cell lines
(Jung et al., 2011; Miyoshi et al., 2012; Tsai et al., 2018),
which increases chances for cell contamination. Numerous
other culture components also have the potential to introduce
contamination, such as the use of murine 3T3-J2 fibroblast
feeder layers [breast, prostate, lung, cervix, oral, ovary, skin,
salivary gland, kidney, thyroid (Liu et al., 2017), and Barrett’s
esophagus (Yamamoto et al., 2016)] and MatrigelTM extracellular
matrix (Sato and Clevers, 2015). Widely used in gastrointestinal
organoid research, mouse L-cells (Willert et al., 2003) have
been modified into “L-WRN” cells, producing high levels of
WNT3A, R-SPONDIN3, and NOGGIN (Miyoshi et al., 2012).
Here, we demonstrate that low-level cell-free DNA (cfDNA)
found in murine-produced CM from L-WRN cells can give
false-positive contamination results in PCR-based analysis of
organoid cultures.

METHODS

Establishment and Maintenance of
Human Enteroid Cultures
Enteroid cultures were established and maintained as previously
described (Jung et al., 2011; Dame et al., 2018). Briefly,
normal gastrointestinal tissues were collected from deceased
donors through the Gift of Life, Michigan with institutional
IRB approval, and the mucosa was separated from resected
surgical tissue and incubated with 10 mM dithiothreitol for
15 min (Sigma-Aldrich) prior to cold incubation with 8 mM
ethylenediaminetetraacetic acid (Sigma-Aldrich) for 75 min. Pure
crypts were detached from the lamina propria by snap-shaking,
washed three times in cold DPBS and cryopreserved in growth
medium containing 10% FBS and 10% DMSO. Cryopreserved
crypts were later seeded into 8 mg/mL Matrigel (Corning) and
expanded as described previously (Tsai et al., 2018).

L-WRN conditioned medium was produced as previously
described in detail (Tsai et al., 2018). Enteroid cultures were
established and maintained in 50% L-WRN conditioned
medium [produced by L-WRN cells to contain WNT3A,
RSPONDIN3, and NOGGIN and including 20% FBS (final
10%) as described in Miyoshi and Stappenbeck (2013)]
and 50% basal medium composed of advanced Dulbecco’s
modified Eagle Medium/F12, with final concentrations of
2 mM GlutaMAX (Invitrogen), 10 mM HEPES (Invitrogen),
1x N2 supplement (Invitrogen), 1x B27 supplement without
retinyl acetate (Invitrogen), 100 ng/mL EGF (R&D), 1 mM
N-Acetyl-L-Cysteine, 50 units/mL penicillin/streptomycin
(Invitrogen), 100 µg/mL Primocin (InvivoGen), the rho
kinase inhibitor Y27632, 10 µM (Tocris), the TGF-β inhibitor
A83-01, 500 nM (Tocris), and the p38 inhibitor SB202190,
10 µM (Tocris). Cultures were supplemented with the GSK-3
inhibitor CHIR99021, 2.5 µM (Tocris) for the first 10 days of
establishment. Nicotinamide, 10 mM, was used at the initial
establishment of the specimens and then removed for continued
expansion of the lines (Bartfeld et al., 2015). Medium changes
occurred daily. Cultures were split every 5–7 days using cold
mechanical dissociation from previous Matrigel by a 1 mL
pipet, followed by re-plating in fresh Matrigel in 10 µL droplets.
CHIR99021, 2.5 µM, was included for 24 h following each
passage. All lines were confirmed to be negative for mycoplasma
and were tested for the presence of viruses (CLEAR with
Infectious Disease PCR Panel, Charles River Laboratories).

DNA Isolation and RNA Sequencing
DNA isolation was conducted using Wizard Genomic DNA
Purification kit (A1120, Promega) following mechanical
dissociation of enteroids from Matrigel via trituration. RNA
isolation was conducted using the RNeasy Micro Kit (84004,
Qiagen) with on-column DNase digestion after mechanical
dissociation of enteroids from Matrigel via trituration and a
15 min 4◦C incubation in 2 mM EDTA with three subsequent
washes in cold DPBS. RNA concentration and quality were
determined using a Nanodrop (Thermo Fisher Scientific) and
Bioanalyzer (Agilent), and prepared for library generation with
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Takara SMARTer Stranded Total RNA Sample Prep Kit (634876,
Takara Bio USA). RNA sequences were generated for 50-bp
single-end reads across 10 lanes on an Illumina HiSeq 2500 by
the University of Michigan DNA Sequencing Core. Proportion
of transcripts derived from mouse samples were analyzed based
on the method developed by Callari et al. (2018). Sequencing
reads were aligned to a combined mouse mm10 and human hg19
reference genome (Macosko et al., 2015) using STAR (Dobin
et al., 2013). Aligned reads were simultaneously assigned to
the human or mouse transcriptome using featureCounts (Liao
et al., 2014), and the proportion of reads aligning uniquely
to human or mouse genes were calculated for each sample.
Control samples of uncultured human mammary gland and
conditionally reprogrammed human mammary cells grown on
a mouse 3T3-J2 feeder layer were established and processed
as described in Thong et al. (2020). The raw sequence data
is publicly available at ArrayExpress archive under accession
number E-MTAB-9339.1

STR Analysis and PCR Detection of
Mouse Genes
Mouse STR analysis was completed by ATCC according to
their Mouse Cell Authentication Service (137-XV, ATCC).
Human STR analysis was carried out at the University
of Michigan DNA Sequencing Core with the AMPFLSTR
Identifier Plus Assay (Applied Biosystems) to identify
human genomic DNA for 15 tetranucleotide repeat loci
and the amelogenin gender determination marker run
on the 3730XL Genetic Analyzer (Applied Biosystems).
Commercial PCR analysis was performed by Charles River
Laboratories according to their Cell Line Examination
and Report with Infectious Disease PCR Panel (CLEAR
PCR Panel, Charles River Laboratories). PCR analysis of
conditioned medium for mouse-specific V1rh10 was conducted
utilizing primers specified by Holder and Cooper (2011)
(Forward: TTCAGGGTGCTATGGGAGGGGC Reverse:
GCCCATCCCTGTGAATCAGCACA, 300 bp product).
Primers were produced by IDT technologies, and 32 cycles
of 10 ng DNA reactions were completed at 60◦C annealing
temperature on C1000 Touch Thermal Cycler (M0488S, Bio-
Rad) using OneTaq Hot Start Quick-Load PCR kit (New England
BioLabs). Results were analyzed by gel electrophoresis on a 1.5%
agarose gel that was visualized on Alphaimager 2200 (Alpha
Innotech). Validation of conditioned medium analysis and
investigation of commercial murine-derived culture components
(MatrigelTM, IntestiCult-humanTM) was conducted via PCR
amplification of the mouse-specific Ptger2 gene (Alcoser et al.,
2011) (Forward: CCTGCTGCTTATCGTGGCTG, Reverse:
GCCAGGAGAATGAGGTGGTC, 189 bp product). Ptger2
primers were produced by Sigma-Aldrich, and 40 cycles
were completed at 60◦C annealing temperature on MyCycler
Thermal Cycler (Bio-Rad) using Q5 DNA Polymerase PCR
kit (New England BioLabs). Gel electrophoresis was carried
out on a 1% agarose gel that was visualized on ChemiDoc MP
imager (Bio-Rad).

1https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-9339/

RESULTS

We conducted STR and PCR analyses during routine
authentication of samples from a human organoid biobank
in accordance with accepted cell line authentication practices
(Geraghty et al., 2014; Dame et al., 2018). STR profiles indicated
that each of the lines matched their source tissue, maintaining
their unique identities with no cross-contamination detected
between lines (Supplementary Table S1). However, in a
commercially available PCR-based assay, murine DNA was
amplified by species-specific primers and demonstrated that all
human organoid lines analyzed (n = 14) were positive for mouse
contamination (Table 1). This same assay did not detect mouse
contamination in a primary human colon tissue sample that was
not cultured, confirming the species-specificity of the PCR-based
test (Table 1).

To identify potential sources of mouse contamination, we
tested an aliquot of CM for the presence of cfDNA by PCR
and STR profiling. To carry out this analysis, we utilized a fresh
aliquot of CM that had never been used to culture enteroids.
Following DNA isolation from the medium, we carried out PCR
using mouse-specific primers for the V1rh10 gene as previously
described by others (Holder and Cooper, 2011) and detected
murine DNA in the CM (Figure 1). To confirm the finding
that murine DNA was detected in L-WRN-cultured organoids
only, we identified V1rh10 amplification in samples of cultured
colonoids and enteroids; the matched primary tissue samples did
not amplify this marker (Figure 1). We then generated a mouse
STR profile from the CM to determine the source of this cfDNA
(Table 2). We compared this profile to the STR profiles of the
L-WRN cells used to make the CM and to the parent L-cells
(made available by ATCC). The L-WRN cells themselves matched
the profile for L-cells with greater than 80% similarity between
identified alleles (Reid et al., 2004). The STR profile of the cfDNA
from the L-WRN CM contained 8 loci with intact alleles out of
18 potential loci, of which 100% of the alleles identified in the
CM matched the L-cell and L-WRN cell profiles.

We interrogated the same human enteroid cultures for active
murine RNA transcription using bulk RNA sequencing (RNA-
seq). Sequenced reads were aligned to both the human and
mouse genomes to determine the percentage of mouse transcripts
relative to human (Table 1). Included in our analysis was a
positive control sample of human mammary tissue co-cultured
with mouse 3T3-J2 feeder cells. We observed that 8.38% of
transcripts aligned to the mouse genome in the co-cultures,
which is above the 1.2% threshold suggested as an indicator
of actively transcribing cells (Callari et al., 2018). Conversely, a
0.012% mouse genome alignment was found in an uncultured
sample of the same mammary tissue, setting the threshold level of
background for reads that will errantly map to the mouse genome
in a purely human sample. Organoid cultures showed aligned
mouse reads similar to the background level found in controls
(0.0086–0.028%, Table 1, n = 14). Human genome alignments
for those same samples ranged from 99.97–99.99%. Collectively,
these data show that active transcription in human organoid
cultures comes from human but not mouse cells, providing
strong evidence that murine cells are not present in these cultures
whereas murine cfDNA from LWRN CM is present.
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TABLE 1 | Genetic analysis of human organoid lines for evidence of active murine contamination; DNA analysis [Charles River Laboratories (CRL) CLEAR panel] has a
limit of detection of 0.5% contamination while mRNA analysis has a contamination threshold of 1.2% mouse genes.

Patient Age (years) Sex Tissue Passage number Sample conditions Mouse contamination results

DNA analysis
(PCR by CRL)

mRNA analysis
(sequencing alignment)

Percent mouse
genes

Percent human
genes

Negative 39 F Breast Tissue Original tissue Not Analyzed 0.0122% 99.9878%

Positive 39 F Breast Co-cultured with 3T3-J2 cells Not Analyzed 8.3794% 91.6206%

14-881 46 M Colon adenoma P10 Cultured in L-WRN media + 0.0086% 99.9914%

80 29 F Colon P5 Cultured in L-WRN media + 0.0252% 99.9748%

81 49 F Colon P3 Cultured in L-WRN media + 0.0258% 99.9742%

83 45 F Colon P5 Cultured in L-WRN media + 0.0269% 99.9731%

Duodenum P5 Cultured in L-WRN media + 0.0248% 99.9752%

84 56 F Colon P3 Cultured in L-WRN media + 0.0279% 99.9721%

Duodenum P5 Cultured in L-WRN media + 0.0257% 99.9743%

85 62 F Colon P3 Cultured in L-WRN media + 0.0260% 99.9740%

Duodenum P5 Cultured in L-WRN media + 0.0247% 99.9753%

87 21 M Colon Tissue Original tissue − 0.0260% 99.9740%

P5 Cultured in L-WRN media + 0.0260% 99.9740%

Duodenum P4 Cultured in L-WRN media + 0.0268% 99.9732%

88 33 F Colon P3 Cultured in L-WRN media + 0.0250% 99.9750%

Duodenum P4 Cultured in L-WRN media + 0.0246% 99.9754%

89 55 M Colon P8 Cultured in L-WRN media + 0.0248% 99.9752%

Duodenum P8 Cultured in L-WRN media + 0.0260% 99.9740%

Negative Positive

DISCUSSION

Following the detection of murine DNA in a series of human
organoid lines (Table 1), we examined the components used
to maintain our cultures to identify potential contamination
sources. Since L-WRN CM is derived from mouse cells, we
reasoned that the murine contamination may result from release
of cellular contents during the conditioning process. This
supposition was supported by the detection of murine DNA in
a fresh aliquot of L-WRN CM (Figure 1) and further confirmed
by STR profiling (Table 2). There were fewer intact alleles in
the CM STR profile than the L-WRN cell profile, likely because
cfDNA has shorter intact DNA fragments than nuclear DNA
due to vulnerability to degrative enzymes (Diaz et al., 2016).
However, 100% of the alleles identified in the CM matched both
the L-cell and L-WRN cell profiles, strongly suggesting that the
cfDNA in the CM originated from the L-WRN cells utilized in
production. This finding suggested that the murine DNA found
in our organoid cultures originated from cfDNA in the CM.

To rule out the possibility that live mouse cells exist in the
enteroid cultures, we analyzed RNA sequencing data from each
of the cell lines that had been positive for murine contamination.
Following determination of the percentage of murine mRNA
present in each culture, every culture was definitively negative for
murine mRNA (Table 1). This data supports the conclusion there
is no active murine mRNA transcription in organoid cultures.
Coupled with the identification of free mouse DNA present

in CM, our data suggests that the CM used to culture our
organoid lines contained enough murine cfDNA to generate a
false positive cross-species contamination result on our PCR-
based assays. Multiple experimental assays, in this case PCR
analysis, STR profiling, and bulk RNA-sequencing analysis, need
to be performed in concert to delineate cell contamination from
this cfDNA contamination.

Since murine L-WRN cells are used for CM production,
it is not surprising that cellular material, including cfDNA, is
found in the L-WRN CM itself. During preparation of CM,
basal medium is added to confluent monolayers of murine
cells, harvested, and refreshed daily for up to 12 days. In the
standard course of L-WRN culture, murine cells continuously
slough off into the medium. Any intact cells are discarded
through sedimentation and filtration prior to medium storage,
but low levels of intracellular contents released from fragmented
cells can remain suspended in the medium. DNA in particular
is stable at the temperatures achieved during CM storage
(−80◦C) and culture use (37◦C), allowing fragments to remain
intact for identification by PCR-based assays, as shown above.
Murine DNA was also identified in commercially available
organoid culture components via PCR analysis (Supplementary
Figure S1). We interpret our data to show conclusive evidence
that mouse cell-derived CM can contribute murine DNA at high
enough concentrations that it is detectable in human organoid
cultures. We have also shown that transcriptionally active murine
cells are not present in those same organoid cultures. As a result,
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FIGURE 1 | PCR product analysis by agarose gel electrophoresis of L-WRN
conditioned medium as a potential mouse contamination source. Murine DNA
is identified with the mouse-specific marker V1rh10 in the L-WRN conditioned
medium and in the L-WRN CM-cultured organoid lines, Colon 89 and
Duodenum 89. The patient tissue samples for both Colon and Duodenum 89
were negative for the marker. Patient 89 served as a representative sample of
all lines analyzed via PCR for murine contamination, and the mouse L-WRN
cells serve as a positive control for this analysis (samples were run on the
same gel).

we determine that the murine contamination detected by DNA-
based cross-species contamination testing is cfDNA introduced
by the CM used to maintain the lines. Organoid culture of many
different organs utilize murine-derived components and could
be vulnerable to the same cfDNA contamination that we found
in the L-WRN CM. Our findings suggest that multiple methods
should be utilized to authenticate cell lines.
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The Supplementary Material for this article can be found
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587107/full#supplementary-material

Supplementary Figure 1 | PCR analysis of murine-derived commercial culture
components for evidence of murine DNA. PCR analysis illustrated that murine
DNA, indicated by the mouse-specific marker Ptger2, was present in both
MatrigelTM (Corning) and the organoid growth medium IntestiCult-humanTM

(StemCell Technologies). Ptger2 also confirmed the detectable presence of murine
DNA in L-WRN conditioned medium by a second primer set.
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