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Abstract

Mitochondria are dynamic membrane-bound organelles in eukaryotic cells. These are important 

for the generation of chemical energy needed to power various cellular functions and also 

support metabolic, energetic, and epigenetic regulation in various cells. These organelles are 

also important for communication with the nucleus and other cellular structures, to maintain 

developmental sequences and somatic homeostasis, and for cellular adaptation to stress. Increasing 

information shows mitochondrial defects as an important cause of inherited disorders in different 

organ systems. In this article, we provide an extensive review of ontogeny, ultrastructural 

morphology, biogenesis, functional dynamics, important clinical manifestations of mitochondrial 

dysfunction, and possibilities for clinical intervention. We present information from our own 

clinical and laboratory research in conjunction with information collected from an extensive search 

in the databases PubMed, EMBASE, and Scopus.
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INTRODUCTION

Mitochondria are membrane-bound organelles that orchestrate cellular energy production 

in almost all eukaryotic cells.1,2 These organelles generate adenosine triphosphate (ATP) 

through oxidative phosphorylation, the components of which are partially encoded in 

their own genome.3 Mitochondria are not only the cellular ‘powerhouses’, but also play 
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critical roles in supplying intermediary metabolites, temperature maintenance, regulation of 

Ca2+ homeostasis, determination of cellular life-span, and integration of various signaling 

pathways.4–11 The physiological importance of mitochondria becomes evident early, and can 

be seen in the developing oocyte and the embryo, in the fetus, and throughout infancy.12–15 

After birth, the increased energy requirements are associated with a significant increase in 

the mitochondrial number and function.16–19

In this review, we have summarized recent advances in our understanding of mitochondrial 

dynamics, the importance of the cytoskeleton, cellular signaling, cellular and organ 

differentiation, regulation of the function of other organelles, and cellular lifespan. The 

importance of mitochondria as mediators of epigenetic regulation and metabolic processes 

during development has been explored. The critical role of mitochondria in cellular 

homeostasis is evidenced by the wide range of clinical manifestations involving multiple 

organ systems seen in mitochondrial diseases. We present our own clinical and laboratory 

research, combined with an extensive search in the databases PubMed, EMBASE, and 

Scopus. To avoid bias, keywords were identified from discussions in our own group and 

from PubMed’s Medical Subject Heading (MeSH) thesaurus.20

Mitochondrial Ultrastructure

Mitochondria are dynamic intracellular organelles seen in all eukaryotic organisms; 

one exception might be the oxymonad monocercomonoides, which are obligate animal 

symbionts that live in the intestinal tracts of vertebrates.21 Human tissues contain 

mitochondria with a high degree of numerical heterogeneity; erythrocytes do not contain 

any, whereas hepatocytes and muscle cells may contain hundreds to thousands per cell.5,22,23 

These numbers vary not only across various tissues, but also during development, cell cycle, 

and stress.24

Mitochondria have been traditionally viewed as 0.5–1 μm ovoids, where the number per 

unit volume seems to be inversely related to size.1,25–27 However, the mitochondrial 

morphology varies between different cell types; cultured endothelial cells contain a 

mitochondrial reticulum around the nucleus (Fig. 1A). Similar to prokaryotes, mitochondria 

are uniquely covered in bilayered membranes. These organelles multiply by binary fission 

and consistently, electron micrographs show many mitochondria as a dumbbell or racket-

shaped: Two larger halves with a narrow bridging tube prior to the separation of the 

daughter organelles.28–31 Electron micrographs show the mitochondrial membranes, cristae, 

and matrix (Fig. 1B).

Advanced cellular imaging shows foci where mitochondria appear tubular and as forming 

a network (Fig. 1C) with active division and fusion.32,33 The mitochondrial content and 

morphology are altered by cellular stress. In living cells, the net mitochondrial content 

or the mitochondrial mass depends on the balance between mitochondrial biogenesis and 

degradation. Changes in spatiotemporal positioning, which have been described as the 

mitochondrial dynamics, and mitochondrial morphology are governed by mitochondrial 

fusion, fission, and motility.34–36 The dynamics can be seen in sub-nanometer resolution 

with cryo-electron tomography.32,33 There may be unique orientations and distribution in 

different types of cells, and a close association with microtubules in some regions.37,38 In 
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sites where the energy requirements are relatively high, mitochondria may appear more 

static and provide ATP directly on-site.39 However, in other regions, there may be prominent 

motility either in surveillance for foci with high energy needs or in actual energy production 

once those are found.36 Fluorescence microscopy combined with quantitative image analysis 

is a useful method to study the amount and morphology of mitochondrial organelles within 

cells (Fig. 1D).40 Dynamin-related guanosine triphosphate hydrolases (GTPases) may play 

an important role in mitochondrial motility.41 Even if the mitochondrial network gets 

damaged during isolation from cells, some fragments may continue to show respiration and 

ATP synthesis.3 The mitochondrial membrane protects the structure and electrical potential 

of these organelles.42

Structural Models

The following section summarizes current information on various compartments in 

mitochondria. The location of these key elements is shown in Figure 2:

• An outer mitochondrial membrane (OMM) that is freely traversed by ions and 

small molecules.3 It is highly porous, and hence no electrical potential difference 

is detectible across this membrane layer.3 There are nearly 200 proteins, but the 

following are some of the best characterized:43

– Translocase of the outer mitochondrial membrane (TOM):44 The TOM 

complex is comprised of a large number of subunits, and it recognizes, 

segregates, and translocates precursor proteins to different sites within 

the mitochondria (Fig. 3);

– Topogenesis of mitochondrial outer membrane β-barrel proteins/sorting 

and assembly machinery (TOB/SAM): proteins such as Tom40, Tob55/

Sam50; and mitochondrial distribution and morphology protein 10 

(Mdm10) form channels in OMM;45,46

– Mitochondrial import complex (MIM): it inserts α-helical proteins in 

the OMM independently of the TOM complex;47 and

– Endoplasmic reticulum-mitochondria encounter structure (ERMES).48

– Adenine nucleotide translocator (ANT), has been referred to by various 

other terms such as the ADP/ATP translocase, ADP/ATP carrier 

protein, or mitochondrial ADP/ATP carrier. It exchanges free ATP with 

free ADP across the inner mitochondrial membrane (IMM). Adenine 

nucleotide translocator is the most abundant carrier protein in the IMM;

– Mitochondrial porins, which are also referred to as the voltage-

dependent anion channels (VDACs)–1, –2, and –3, are located on the 

OMMs and a class of porin ion channels;49,50 and

– Apoptosis regulators bax and bak. These play an important role in 

maintaining the cell cycle and in the formation of mitochondrial 

pores.51 Many other enzymatic systems are being identified.52
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• An inter membrane space (IMS) between the inner and outer membranes 

contains about 5% of the mitochondrial proteins in an aqueous medium (3.8 

μL/mg protein).3,53,54 The large physical size of the OMM pores makes the 

IMS largely continuous with the cytosol;55,56 Proteins synthesized on cytosolic 

ribosomes traverse these pores and bind carriers.57–61

The IMS may contain many pro-apoptotic factors such as the cytochrome c.62 

Other proteins may display CX3C or CX9C motifs.63 The machinery for import 

and assembly of IMS proteins mitochondrial intermembrane space assembly 

(MIA) can bring in large proteins that may be up to 11 kDa in size.59,64

• An IMM separates the IMS from the mitochondrial matrix. It is very 

selectively permeable to most molecules, and therefore, carries many specialized 

transporters.3,65,66 Anelectrochemical membrane potential of about 180 mV has 

been documented across the inner membrane.67 The membrane is also a site for 

oxidative phosphorylation, which is used to create electrochemical gradients for 

ATP synthesis.68 The IMM is extensively folded, where numerous invaginations 

called cristae increase its total surface area.3 These cristae are separated from 

inner boundary membranes by junctions, and the ends are partially closed by 

transmembrane proteins that bind opposing membranes.3,69–71 Cristae also affect 

the overall chemiosmotic function of mitochondria.65

• The major role of the IMM is to facilitate molecular transport and signaling 

for oxidative phosphorylation and ATP synthesis.69,71 A junctional protein, the 

inner mitochondrial membrane translocase protein (IMMT), is expressed in the 

nucleus and is transported to the IMM, where it maintains the electrical potential 

and the structural invaginations seen in the inner membrane.72–74 On the matrix 

side, the crystal membranes are studded with small proteinaceous F1 particles, 

which promote proton-gradient-driven ATP synthesis.3 The electron transport 

chain on the cristae includes 5 complexes: complex I nicotinamide adenine 

dinucleotide, hydrogenated (NADH) (NADH: coenzyme Q oxidoreductase), 

complex II (succinate: coenzyme Q oxidoreductase), complex III (coenzyme 

Q: cytochrome c oxidoreductase), complex IV (cytochrome c oxidase) and ATP 

synthase.62,75,76 Overall, the cristae membranes are dynamic and can reshape in 

seconds. Cristae membrane remodeling is regulated by the mitochondrial contact 

site and cristae organizing system (MICOS) complex, optic atrophy-1 (OPA1), 

F1F0 ATP synthase, and the lipid microenvironment.77–81

• The matrix in the core of these organelles is enclosed within the IMM. This 

gel-like material contains DNA, ribosomes, soluble enzymes, small organic 

molecules, nucleotide cofactors, and inorganic ions.3 The pH of 7.8 in the 

matrix is higher than the 7–7.4 seen in the IMS.82,83 The water content, 

about 0.8 μL/mg protein, is lower than that in the IMS.84 The restricted 

permeability of the IMM may regulate the osmotic balance.85 The aquaporin 

conduits in the membrane may also play a role.86 The matrix is the site for 

the tricarboxylic acid (TCA) cycle (citric acid cycle, Krebs cycle) metabolism 

for ATP production (Fig. 4).87 It contains the key regulators, including citrate 
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synthase, isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, fumarase, 

and malate dehydrogenase; succinate dehydrogenase, located on the IMM, is an 

exception.88,89

• Mitochondrial DNA (mtDNA) is comprised of one or more double-stranded, 

mainly circular DNA in the matrix. Mitochondrial DNA (mtDNA) encodes for 

2 ribosomal ribonucleic acids (rRNAs), 22 transfer RNAs (tRNAs), and 13 

proteins involved in the mitochondrial respiratory chain.90 It is rich in guanine 

and cytosine and contains 37 genes with about 17,000 base pairs.91

The mtDNA accounts for about 1% of the total DNA in a cell. In humans, only 13 

proteins are encoded in mtDNA; all are central, hydrophobic subunits of the respiratory 

chain complexes/ATP synthase.92 In total, there are 1,500 estimated different mitochondrial 

proteins; >99% of these proteins are likely encoded in the nucleus, synthesized in the 

cytosol, and imported into the mitochondria.93,94

Human mitochondria contain a unique protein translation machinery with ribosomes, 

transfer-RNAs (tRNAs), and associated protein factors that resemble those seen in 

bacteria.95,96 However, mitochondria make surprisingly little use of their specialized protein 

production machinery. Most of the mitochondrial proteins are synthesized in the cytoplasm 

and then imported into the organelle by protein translocases.57 Most of the mitochondrial 

proteins are transcribed in the nucleus, synthesized in the cytosol, and then imported 

back into the organelle.94 More than 3,000 mitochondrial proteins have been estimated in 

vertebrate animals.97 During evolution mitochondrial genes have relocated to the nucleus, 

whereas the translated proteins are imported back into the mitochondria to perform their 

function.97–99

Evolutionary Perspective

There are three models for mitochondrial development, where an existing cellular organism 

accepted proto-mitochondria.100 There are two endosymbiotic models, and a third where 

mitochondria could have evolved from related predecessor organelles (Fig. 5):

• Archezoan scenario: A hypothetical primitive a mitochondrial eukaryote, termed 

archezoan, accepted a proto-mitochondrial endosymbiont.97,101,102 Rigorous 

studies have detected artifacts and raised doubts about the validity of these 

hypotheses.103

• Symbiogenesis scenario: An archaeal cell underwent a single endosymbiotic 

event with an α-proteobacterium, which generated mitochondria.104 This event 

was followed by the evolution of the nucleus and compartmentalization of the 

eukaryotic cell.102

• Evolution from mitochondrion-related organelles (MROs).105 These models 

envisage three possible double-membrane mitochondrial precursors, which 

contained minimal or no DNA:

– Hydrogenosomes: These lack a genome but may have a few incomplete 

elements of the TCA cycle and the electron transport chain.106 The 

anaerobic metabolism seen in hydrogenosomes suggests that these 
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might have originated through endosymbiosis with an anaerobic 

bacteria such as Clostridium.107 However, later studies showed that the 

hydrogenosomes in Trichomonas vaginalis may also contain several 

proteins resembling those in mitochondria, including chaperonins, 

the NADH dehydrogenase module of electron transport complex I, 

and components of the mitochondrial machinery for synthesis of iron-

sulfur (Fe-S) clusters.108,109 Hydrogenosomes could very well be relict 

mitochondria;110

– Mitosomes: These have been seen in anaerobic, parasitic protists 

such as the amoebozoons Entamoeba histolytica and Mastigamoeba 
balamuthi. These organisms were initially considered to be 

amitochondriate and unable to generate ATP.105,111 However, these 

contain several proteins similar to those seen in mitochondria and hence 

could be evolutionarily related to conventional mitochondria.97,109 

Compared to mitochondria, the metabolic capacity of mitosomes is 

relatively limited;112

– Transitional MROs: These are seen in anaerobic ciliates Nyctotherus 
ovalis, and Blastocystis spp., which are related to the brown 

algae, diatoms.97 There is a possibility of a shared origin between 

mitochondria, hydrogenosomes, and mitosomes.113 These MROs can 

generate H2 via an ATP-producing, hydrogenase-mediated pathway.114 

The genome is relatively limited, and there are not many mtDNA-

encoded genes similar to those seen in the respiratory complexes III, IV, 

and V.115 These MROs also lack the ability to generate ATP via coupled 

electron transport and oxidative phosphorylation.116 The MRO genome 

can contain organellar translation systems (rRNAs, tRNAs, ribosomal 

proteins) and a partial electron transport chain with subunits of electron 

transport complexes I and II.111

Evolutionary Precursors of Mitochondria

Mitochondria are generally believed to have evolved about 1.6–2 billion years ago from 

α-proteobacteria, a subgroup of the purple non-sulfur bacteria (Fig. 6).81–83 These bacteria 

were internalization into host cells and then differentiated through several transitional 

forms of proto-mitochondria.117–119 Increasing information places mitochondrial precursors 

in the order Rickettsiales, which is a subgroup of α-proteobacteria that include 

obligate intracellular bacterial parasites such as Rickettsia, Ehrlichia, and Anaplasma.120 

Phylogenomic analysis based on the 32 genes shared by mitochondria and these bacteria 

show similarities with the order Rickettsiales.121 These similarities identify mitochondria to 

possibly be a sister clade of the Rickettsiaceae/Anaplasmataceae families, subtended by the 

free-living α-proteobacterium HIMB59 and the Holosporaceae family.122

Mitochondria also seem to show a sister-clade relationship with a group of free-living 

bacteria known as the Stramenopila, Alveolata, and Rhizaria (SAR)-11 group.121 These are 

ubiquitous, free-living, small carbon-oxidizing bacteria with an estimated global population 
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of 2.4 × 1028 cells, present in nearly 25% of all oceanic plankton.123,124 If confirmed, this 

relationship would suggest an alternative source of mitochondria in addition to those from 

Rickettsiales.125 However, these findings need confirmation through accurate reconstruction 

of genome trees and evolutionary models, better statistical support without stochastic noise, 

identification of composition biases in the sequence data, or systematic errors such as 

long-branch attraction.126–131

Unfortunately, the identification of these relationships has been difficult.130,132,133 There 

are many restrictions such as (a) weakness of the phylogenetic signal: Signals from small 

subunit rRNAs have weakened with time due to saturated mutations;134 (b) long-branch 

attraction: Mitochondria and the obligate intracellular α-proteobacteria have more rapid 

rates of evolution than the free-living bacteria, and therefore, there are more artifacts;135 

and (c) sequence composition bias: AT-rich genome sequences in mitochondria can result in 

errors in phylogenetic reconstruction.136

Evolution of Prokaryotic Host Cells into Eukaryotic Ancestors

The evolutionary sequence in which the proto-mitochondrial bacteria entered an 

endosymbiotic relationship with prokaryotes is still uncertain. To place cellular evolution 

in perspective, prokaryotes are known to have acquired eukaryotic characteristics with 

differentiation.117 The first eukaryotic common ancestor (FECA) matured through several 

stages to be identified as the last eukaryotic common ancestor (LECA) about 1–1.9 million 

years ago (Fig. 7).113,137–139 These ancestor cells showed many features similar to modern 

eukaryotes.

Cells in the superphylum Asgard, which were the immediate descendants of the FECA, 

are considered to be the most likely hosts of the proto-mitochondria.113,140 Some 

alternative host lineages have also been considered in the superphylum Planctomycetes, 

Verrucomicrobia, or Chlamydiae.103,141 However, if the host cells were indeed proven to 

be Asgardian, these cells most likely evolved first to the domain archaea, and then to 

phyla such as Crenarchaeota, Thaumarchaeota, and Korarchaeota.142 With some capability 

of metabolizing oxygen, these cells have been viewed as evolutionarily closer to eukaryotes 

and termed eocytes.143–145

The eukaryotic ancestors continued to differentiate during this process. The LECA 

possessed most of the eponymous components of eukaryotic cells, including the nucleus 

with nuclear pores, associated complexes, and nuclear lamina.146 This nucleus is believed to 

have contained linear chromosomes with telomeres, encoding about 4,000 genes containing 

spliceosomal introns.147 It likely possessed complex gene regulatory mechanisms, including 

RNA interference systems and small non-coding RNAs, and histone packaging that affected 

the accessibility to chromatin.148 Transcription was uncoupled from translation and involved 

extensive RNA processing (including intron splicing, capping, and polyadenylation).149 This 

ancestor also had an elaborate protein regulation and recycling system composed of a 

proteasome and a ubiquitin signaling system.150

The cellular environment of the LECA was compartmentalized with endomembrane 

systems such as the endoplasmic reticulum, the golgi apparatus, endosomes, lysosomes, 
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and peroxisomes.137 It displayed exocytic and various endocytic pathways such as 

phagocytosis.151 There was an actin-tubulin cytoskeleton that enabled intracellular 

trafficking, cell motility, and a complex cell cycle.152 The last eukaryotic common ancestor 

was likely able to synthesize phospholipids composed of glycerol 3-phosphate and fatty 

acids, as well as sterols and sphingolipids.153 These cells also show many genes of bacterial 

origin that were likely acquired when the mitochondrial ancestor was engulfed.154

The host cells are covered in a bilayered lipid membrane, a simple cell wall (S-layer) rich 

in N-glycosylated proteins, and a relatively well-developed cytoskeleton with homologs of 

actin and tubulin.155 During evolution into eukaryotes, the three most important changes 

were the acquisition of the nucleus, the endomembrane system, and the mitochondria.154 

However, the sequence of these events remains unclear. There are at two possibilities:

• Syntrophic consortium model: Simultaneous fusion of a symbiotic community 

that included the cytoplasm, nucleus, and mitochondria.156

• Endospore model: The nucleus evolved when a cell engulfed a sister following 

cell division. This model resembled endospore development in Gram-positive 

bacteria. Mitochondria were acquired later.103 This model is so not well-

supported by evidence.62

The nucleus was most likely not acquired from the internalization of another organism; 

phylogenomic analyses of the eukaryotic genome support the presence of an archaeal 

and a proteobacterial genome, but not the other genome donor(s) expected in nuclear 

endosymbiotic models (Fig. 8).155 Such endosymbiotic models would also require 

supplemental theories to explain the origin of the endomembrane system, the physical 

continuity of inner and outer nuclear membranes, and the formation of nuclear pores.62,104 

Hence, the most compelling models suggest an autogenous origin of the nucleus. Infoldings/

pinched-off sections of the plasma membrane formed the endoplasmic reticulum (ER) like 

internal compartments that later became organized around the chromatin to form the inner 

and outer nuclear envelope and enclosed a proto-nucleus.155

Acquisition of Mitochondrial Precursors into Host Cells

Mechanistic Perspective—Phylogenetic data suggest that the proto-mitochondria were 

likely acquired through an intimate mutualistic association between the archaeal host cells 

with bacterial ancestors of mitochondria that lived on the surface of these cells.103 During 

evolution, these bacteria have exchanged genes to achieve lower GC contents.157 The 

strongest evidence of this evolutionary process is the close homology between bacterial 

and mitochondrial respiratory chain complexes.158,159 The mitochondrial endosymbiont 

gradually became less complex in its genome and proteome.97,113 It also adapted gradually 

to anaerobiosis.103 There are two possible mechanisms:

• Outside-in models: The symbionts living on the host surface might have been 

internalized in cell membrane vesicles (Fig. 9A). The inner and outer nuclear 

membrane was formed by the ER lamellae and the perinuclear space by the 

ER cisternae.160 There is also a possibility that these bacteria could have been 

phagocytosed into food vacuoles, and then entered the cytoplasm by lysing the 
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vacuolar membrane.161 The cell membrane covering these symbionts contributed 

to the formation of the nuclear membrane;155

• Inside-out model: The host cells generated extracellular protrusions (blebs) to 

increase the total surface area155 (Fig. 9B). The ancestral prokaryotic cell body 

remained intact as the eventual nuclear compartment during this evolution into 

eukaryotes.155 The protrusions then fused and contained the cytoplasm and an 

endomembrane system, which evolved to make the outer nuclear and plasma 

membranes.155 The mitochondrial precursors were initially trapped within the 

ER but then penetrated the ER membrane to move into the cytoplasm.155 

Finally, the formation of a continuous cell membrane closed off the ER from 

the exterior.162

The base of the cytoplasmic protrusions might have been stabilized by proteins homologous 

to the highly conserved coat protein II (COPII) in the outer ring of the nuclear pore.163 

Exchange of materials such as hydrogen, sulfur, hydrogen sulfide, organic acids, and 

ATP may have expanded these protrusions.155 The blebs likely stabilized an outer ring 

of nucleoporins in the cell wall.155 Proteins such as the linker of nucleoskeleton and 

cytoskeleton (LINC), which physically connect the cytoskeleton with the nucleoskeleton, 

might have stabilized the nuclear envelope and promoted nuclear bleb formation.164

Most structural lipids in eukaryotic cell membranes resemble bacterial, not archaeal 

lipids. Bacterial and eukaryotic membrane lipids carry glycerol-3-phosphate lipids with 

ester-linked, straight-chain fatty acids, whereas archaea contain a glycerol-1-phosphate 

backbone and ether-linked fatty acids (Fig. 10).154,165 Additionally, eukaryotes and some 

bacteria, but not archaea, produce triterpenoids (for example, hopanoids and sterols) that 

modulate membrane fluidity.166 Eukaryotes may have acquired bacterium-like lipids from 

mitochondria.154 The genes for lipid biosynthesis from proto-mitochondria may have been 

transferred prior to the development of vesicle trafficking systems and phagocytosis.155

The analysis of archaeal lipids has provided some support to the possibility that 

phagocytosis evolved after the acquisition of mitochondria. Archaeal membranes typically 

retain their physical properties across a wide range of temperatures, whereas bacterial 

and eukaryotic membranes retain structures best at a narrow range of physiological 

temperatures.167 These properties might be important for optimizing phagocytosis.

Phylogenetic Perspective—Mitochondria are seen in most eukaryotic host cells as the 

two may have evolved together.97 Consequent improvements in efficiency in metabolic 

processes and the encoding of interacting gene products have created an obligate 

codependence. However, the number of mitochondria per cell has changed through evolution 

and differs across phyla.168 Many unicellular eukaryotes contain only a few mitochondria, 

whereas others can contain up to 105.169 The number of mitochondria can vary in 

multicellular eukaryotes from 80 to 2,000 per cell.168

In proto-mitochondria, the electron transport chain and pathways for β-oxidation of fatty 

acids were likely present, indicating that the mitochondrial endosymbiont had an aerobic 

metabolism.170 The pathways for the synthesis of lipids, biotin, heme, and Fe-S clusters 
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were also present.113 This proto-mitochondria might have been capable of facultative 

aerobic respiration.113

Unlike the mitochondrial genome, the proteome shows only limited similarity with that in 

α-proteobacteria.98 The mitochondrial ribosome also shows a high degree of evolutionary 

retailoring.171,172 In many eukaryotes, the mitochondrial large- and small subunits have 

become smaller than their bacterial counterparts, and many new ribosomal proteins have 

been added.97 The structure that was originally an RNA-rich complex has now become 

enriched in proteins.171

Mitochondrial Biogenesis—This process includes the growth and division of pre-

existing mitochondria. Mitochondria are believed to have evolved from an α-protobacteria 

endosymbiont that became incorporated in a host cell.173 Due to this bacterial 

origin, mitochondria contain a characteristic genome and also show auto replication.174 

Mitochondrial proteins are encoded by the mtDNA and specifically-encoded structures in 

the nuclear genome (described above).94

Major Molecular Components—A large number of mitochondrial proteins, nearly 

1,000–1,500 are encoded in the nucleus.175 The mRNAs are transcribed in the nucleus 

and translated into the cytosol. Most precursor proteins, whether folded or not, pass through 

the mitochondrial membranes assisted by protein translocases.57 Many of these folded 

proteins are tagged with an N-terminal, positively-charged presequence.176,177 Once this 

presequence is cleaved off by a matrix protease, these proteins may get folded with the 

aid of molecular chaperones.176 Proteins moving to the other mitochondrial compartments 

may be transported by different protein-import pathways.178 Many precursor proteins that 

do not contain the N-terminal signals may carry the targeting information within the actual 

protein sequence.179 The mitochondrial membrane potential and the action of matrix Hsp70 

(heat-shock protein 70) regulate this translocation.180

As mentioned above, the translocase of the outer membrane (TOM) protein is a universal 

entrygate for all proteins entering the mitochondria.44 Many different pathways diverge at 

this point:

• translocase of the inner membrane (TIM), which sorts matrix-targeted 

precursors;181

• presequence translocase-associated motor (PAM) regulates matrix Hsp70 action 

to drive precursors into the matrix;182

• sorting and assembly machinery (SAM) on the outer membrane inserts β-barrel 

proteins into the outer membrane.183

These processes are an integral part of mitochondrial biogenesis, which may involve 

not only increased number but the size and mass. Mitochondrial biogenesis can also be 

altered by environmental stress as malnutrition, low temperature, oxidative stress, and cell 

division.184
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An important regulator of mitochondrial biogenesis is peroxisome proliferator-activated 

receptor-gamma coactivator ([PGC]-1alpha) [PPAR (peroxisome proliferator-activated 

receptor)-γ coactivator-1α].185,186 Peroxisome proliferator-activated receptor-gamma 

coactivator (PGC)-1alpha stimulates the formation of new mitochondria by inducing 

UCP (uncoupling protein) 2, nuclear respiratory factor (NRF)-1, and NRF-2.175 Nuclear 

respiratory factor (NRF)-1 and NRF-2 then induce key mitochondrial enzymes.187 These 

also interact with Tfam, which drives transcription and replication of mtDNA and many 

nuclear-encoded mitochondrial components.184 Nuclear respiratory factor (NRF)-1 activates 

the transcription of δ-ALAS (δ-aminolevulinate synthase), and NRF-2 that of cyclo-

oxygenase (COX) IV.188,189 Peroxisome proliferator-activated receptor-gamma coactivator 

(PGC)-1alpha also interacts with other modulators of transcription such as PPARs, 

thyroid hormones, glucocorticoids, estrogen and ERRs (estrogen-related receptors)-α and 

-γ.190,191 The ERRs are orphan nuclear receptors that target the gene networks involved in 

energy homoeostasis, and in mitochondrial biogenesis and function.192–194 Mitochondrial 

subdivision also involves the dynamin-like and the fis-type proteins.41 Regulation of the 

numerical density of mitochondria in various cells: Metabolic needs may regulate the 

mitochondrial mass via-a-vis the cellular size across the cell cycle and the total body weight 

according to a power law.168,195 In some tissues, the organelles appear as discrete units 

and the number and size may be related to the cell size. The cells resemble single-celled 

eukaryotes and may follow linear or sublinear scaling for mitochondria, not Kleiber’s power 

law (an animal’s metabolic rate scales to the 3/4 power of the animal’s mass).196,197 Some 

cells show context-dependent mitochondrial morphology, and sometimes a large filamentous 

organelle reticulum.34 The size of these organelles may not consistently scale strongly 

with cell size in single-celled eukaryotes, suggesting that the number of mitochondria per 

cell may be more important than the size of these organelles as a means of modulating 

cellular energetic requirements.168 There might be a possibility of having an optimal per-cell 

mitochondrial mass given the cell size and the nature of mitochondrial biogenesis.

In humans, the mitochondrial count varies across different tissues and organs.10,168 Mature 

erythrocytes do not contain any, whereas metabolically-active organs such as the liver, 

kidney, heart, and brain tissues contain large numbers.198 Mitochondria are important for 

metabolic functions and also for cellular maintenance.199,200 Many mitochondrial genes 

have been transferred to the nuclear genome during evolution. These relocations might have 

improved the numerical efficiency, proximity to up- and/or downstream genetic systems, or 

improved utilization of cytoskeletal space by preventing redundancy in transcription sites.201

Even though there might be some variance in the expression of a subset of genes expressed 

in the mitochondria, most of these genes are transcribed at a specific, constitutive level.91 

One reason might be that the entire circular mitochondrial genome involves one strand at a 

time.202 The number of mitochondria may also be important because of the variations in the 

lability of these organelles and that of energetic constraints across tissue types.203

Intercellular transfer of mitochondria: Mitochondria and mtDNA can be transferred between 

cells.204 Transient focal cerebral ischemia can release mitochondria from astrocytes, which 

enter adjacent neurons via a calcium-dependent mechanism involving CD38 and cyclic ADP 

ribose signaling. This can amplify the survival signals.205,206 Horizontal transfers of mtDNA 
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have also been noted in cancer cells; extracellular vesicles containing mtDNA can pass 

through tunneling nanotubes and connexin 43 gap junctions between cells.207,208

Epigenetic Changes Involved in Mitochondrial Biogenesis—The epigenetic 

landscape is extensively reprogrammed during embryonic and fetal development.209 Paternal 

genome also shows considerable DNA demethylation after fertilization.210 Depletion of 

mtDNA leads to alteration in the metabolism of amino acids including methionine, 

leading to increased DNA methylation.211 S-adenosylmethionine (SAM) acts as a co-

factor in these methylation reactions; SAM is produced from methionine by methionine-

adenosyl transferases (MATs).212,213 Interestingly, the development of the embryo prior to 

implantation requires appropriate histone demethylation mediated by the JMJ (jumonji, 
or the Jarid2) deamylase, which removes the methyl group from lysine residues. The 

JMJ demethylases catalyze the histone demethylation in an α-ketoglutarate-dependent 

manner.214,215 Thus, mitochondria regulate demethylation via α-ketoglutarate through the 

oxidation of glucose and glutamine in the mitochondrial citric acid cycle.216

Chromatin remodeling is also important in embryonic epigenetic programming.216 Histone 

acetylation relaxes the condensed chromatin and promotes gene transcription.217 Contrarily, 

deacetylation of histone condenses the chromatin and suppresses transcription.217 Histone 

acetylation by specific histone acyltransferases requires acetyl-CoA, which is the product 

of oxidative decarboxylation of pyruvate produced by glycolysis, β-oxidation of fatty acids, 

and amino acid metabolism, and then shuttled out of mitochondria in the form of citrate, 

acetyl-CoA precursor.218 In human embryonic stem cells, increasing acetylation suppresses 

differentiation, while inhibition of acetyl-CoA production from glucose results in the loss 

of pluripotency. The availability of nicotinamide adenine dinucleotide (NAD+) controls the 

activity of the conserved NAD+-dependent histone deacetylases, the sirtuins (SIRTs).219 

SIRTs are involved in blastocyst development as the inhibition of SIRT activity decelerates 

blastocyst development. NAD+ can be synthesized de novo from the amino acid tryptophan 

or through the NAD+ salvage pathway from nicotinamide.220 However, cytoplasmic NAD+ 

levels are normally very low, and blastocyst development and placental and fetal growth 

can be maintained only when NAD+/NADH-reducing equivalents shuttle into mitochondria 

through either malate-aspartate or mitochondria glycerol 3-phosphate dehydrogenase.221 

Histone acetylation during development deserves further study.

Mitochondrial Function—The following section summarizes currently available 

information on various aspects of mitochondrial function(s) (Table 1):

Energy production: Mitochondria play an important role in energy production and its 

storage as ATP.3 Glucose is broken down during glycolysis in the cytoplasm into two 

molecules of pyruvate, which are then translocated to the mitochondria by membrane-bound 

permeases.222 There, pyruvate dehydrogenase processes these molecules via oxidative 

decarboxylation to produce acetyl coenzyme A (acetyl-CoA), which triggers the TCA 

as described above.216 Metabolites enter the TCA cycle as acetyl-CoA, α-ketoglutarate, 

succinyl-CoA, fumarate, and oxaloacetate. Nicotinamide adenine dinucleotide (NAD), a 

coenzyme central to metabolism, is reduced to form hydrogenated NAD (NADH).223
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The mitochondrial respiratory chain has been conserved through evolution (as shown in 

Table 1 and details depicted in Fig. 11). Complex I and II oxidize NADH and Flavin 

adenine dinucleotide (FADH2), respectively, and transfer the resulting electrons to ubiquinol, 

which carries electrons to Complex III (Fig. 12).224 Complex III shunts the electrons across 

the intermembrane space to reduce cytochrome c (ubiquinone), which brings electrons to 

complex IV.225 Complex IV or cytochrome c oxidase (COX) is the last electron acceptor 

of the respiratory chain, involved in the reduction of O2 to H2O. This multimeric complex 

includes multiple structural subunits encoded in two different genomes, several heme groups 

(heme a and heme a3), and coordinated copper ions (CuA and CuB). About four electrons 

are removed from four molecules of cytochrome c and transferred to molecular oxygen 

(O2) and four protons, producing two molecules of water. About eight protons are removed 

from the mitochondrial matrix (although only four are translocated across the membrane), 

contributing to the proton gradient.226 Finally, mitochondrial ATP production is the main 

energy source for intracellular metabolic pathways. Complex V is a multi-subunit oxidative 

phosphorylation complex.227 There are two functional domains, including (a) F1, in the 

mitochondrial matrix; and (b) the F0, located in the IMM.228 This energy created in the 

proton electrochemical gradient is utilized to phosphorylate ADP to ATP.227

Reduced NAD+ (NADH) is used by enzymes embedded in the mitochondrial cristae to 

produce ATP.229 Beta-oxidation of fatty acids also produces acetyl-CoA, NADH, and 

reduced flavin adenine dinucleotide (FADH2; FAD is a redox-active coenzyme involved 

in several metabolic pathways).230 Oxidative degradation of certain amino acids can also 

contribute to this process; the mitochondria are also the key regulators of the biosynthesis of 

amino acids, lipids, and gluconeogenesis.231 Under normal conditions, over 90% of ATP is 

made in mitochondria232 but most of the genetic machinery needed to produce ATP has been 

translocated to the nucleus during evolution.233 Only about 3% of the mitochondrial proteins 

are needed to synthesize ATP.229

Flavin adenine dinucleotide (FADH2) is another energy carrier that is produced in the 

mitochondrial matrix and is processed by oxidative phosphorylation in the electron transport 

chain to regenerate FAD.234 Protons are pulled into the intermembrane space by the energy 

of the electrons going through the electron transport chain. In the electron transport chain, 

4 electrons are accepted by oxygen and the protons return to the mitochondrial matrix 

through the protein ATP synthase.224 The energy is used to activate ATP synthase, which 

then facilitates the passage of a proton to produce ATP.234 The difference in pH between the 

matrix and intermembrane space creates an electrochemical gradient by which ATP synthase 

can facilitate the passage of protons into the matrix.3 The oxidation of NADH and FADH2 

also produces GTP from succinyl-CoA synthetase-mediated signaling.216

In oogonia, mitochondria are the prime source of energy.235 These mitochondria have a 

dense matrix and a few arch-like or transverse cristae, and are usually seen in the central 

cytoplasm.236 Mitochondria in metaphase I and II of oocytes still resemble those in the 

germinal vesicle, with an even distribution in the cytoplasm and aggregation around the 

smooth ER.236 At the pronuclear stage, mitochondria conglomerate around the pronuclei, 

and this persists up to syngamy.237 In the 8-cell embryo, the morula, and the blastocyst, 

mitochondria are relatively less electron-dense and show clear areas in the matrices. In 
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expanding blastocysts, trophoblast, embryoblast, and endodermal cells, mitochondria look 

elongated with the IMM arranged into transverse cristae.3,236

Growing oocytes preferentially utilize pyruvate to make ATP, and early embryos also use 

pyruvate, lactate, and amino acids to support development. 238–240 Mature oocytes contain 

the highest mitochondrial DNA copy number and mass of any cell.241 Fertilized oocytes 

have even higher mtDNA copy numbers, Inhibition of mitochondrial metabolic activity 

blocks the maturation of oocytes and the subsequent embryonic development. 136,242–247 In 

humans, embryo development and implantation rates are closely correlated with ATP levels, 

and inhibiting mitochondrial activity suppresses embryonic stem cell differentiation. 247,248 

After birth, there is a rapid increase in the density and activity of mitochondria in the heart 

and other metabolically active organs.249 The expression of mitochondrial respiratory chain 

genes is also increased.17

The density of mitochondria in cells does seem to be important. Fibroblasts and other cells 

from obese mothers have been shown to carry fewer mitochondria, which relates to higher 

levels of triglycerides, free fatty acids, and more lipids.250 The paucity of mitochondria 

alters the placental lipid metabolism and transfer of the lipids to the fetus, causing 

lipid-related diseases such as newborn adiposity.251 Likewise, the reduced mitochondrial 

function has been noted in brain injury in newborns. 252 Decreased mitochondrial proteins 

may lower neonatal pyruvate dehydrogenase and oxidative phosphorylation activity, and 

increase the risk of morbidity.253 Metabolic shifts are also important for the function of 

cardiomyocytes. Mutations in mtDNA and mitochondrial dysfunction were associated with 

dilated cardiomyopathy via transcription factor A, mitochondrial (TFAM).254

Changes in mitochondrial function based on maternal age: Mitochondria have important 

roles in oocyte maturation, fertilization, and early embryo development.255 In women of 

advanced reproductive age, aging oocytes often show less ATP and mtDNA copy number, 

mutations in mtDNA, and ultrastructural abnormalities.256

Urea Cycle—The initial steps of the urea cycle take place in the mitochondrial matrix, 

particularly in hepatocyte and renal epithelium (Fig. 13).257 In the first step, the carbamoyl 

phosphate synthetase I enzyme utilizes two ATP molecules to convert ammonia into 

carbamoyl phosphate.258 In the second, ornithine transcarbamylase converts carbamoyl 

phosphate and ornithine into citrulline.259 Subsequent steps continue in the cytoplasm until 

ornithine is re-transported into the matrix.257

Transamination—Oxaloacetate can be transaminated to produce aspartate and asparagine 

in the matrix.260 Similarly, transamination of α-ketoglutarate produces glutamate, proline, 

and arginine.261

Metabolic Regulation—The concentrations of ions, various metabolites, and energy 

charge in mitochondria are closely regulated. Ca2+ ions regulate the TCA cycle (as shown in 

Fig. 4) by activating pyruvate dehydrogenase, isocitrate dehydrogenase, and α-ketoglutarate 

dehydrogenase.262 The concentration of intermediates and coenzymes in the matrix also 

influences the rate of ATP production.263 NADH can inhibit TCA enzymes α-ketoglutarate 
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dehydrogenase, isocitrate dehydrogenase, citrate synthase, and pyruvate dehydrogenase.264 

Adenosine triphosphate inhibits isocitrate dehydrogenase, pyruvate dehydrogenase, the 

electron transport chain, and ATP synthase.265 In contrast, ADP acts as an activator.266

Apoptosis—Mitochondrial apoptosis is the most common form of programmed cell 

death.267 It is mediated through proteins of the B-cell lymphoma-2 (bcl-2) family.268 There 

are two sub-classes of bcl-2 proteins: (a) the pro-apoptotic bcl-2 associated X-protein 

(bax) and bcl-2 antagonist/killer 1 (bak) proteins, which oligomerize to create “pores” 

on the OMM in response to apoptotic stimuli.269 Through these pores, proteins from the 

mitochondrial intermembrane space (IMS) reach the cytoplasm and activate the caspase 

cascade;51,270,271 (b) anti-apoptotic bcl-2 proteins such as bcl-2, bcl-xL or myeloid cell 

leukemia (MCL)-1, which inhibit bax and bak signaling.272

Apoptosis is induced when various conformations of activated bax accumulate on the 

mitochondrial surface.267 The ratio of mitochondrial/cytosolic levels of bak and bax 

determine the cellular response to apoptosis stimulation.273 Increasing information suggests 

that bax, either alone or complexed with other proteins such as cytochrome c, Smac/direct 

IAP binding protein with low pI (Diablo), HtrA Serine Peptidase 2 (HtrA2)/Omi, and 

apoptosis-inducing factor (AIF), forms pores in the OMM to release IMS proteins.274 

Bcl-2 associated X-protein (Bax) can also modulate the function of permeability transition 

pore complexes formed with other mediators such as the voltage-dependent anion channels 

(VDAC–1, −2, −3; mitochondrial porin), the adenine nucleotide transporter cyclophilin 

D, and the F1Fo ATP synthase.275 These complexes promote the transport of nucleotides, 

phosphocreatine, Ca2+, and other small ions across the OMM.276 Some investigators have 

noted the resemblance between active bax/bak and the holin proteins that are involved in 

host cell membrane lysis by bacteriophages.277,278 The bax/bak oligomers form membrane 

lesions, which release endolysin, a muralytic enzyme, through these lesions to attack the cell 

wall.278,279

Ionic Content of Various Tissues—Mitochondria can absorb calcium ions and play 

an important role in the regulation of calcium content in various cells.11,280 Increased 

intracellular calcium can regulate many cellular processes. In neurons, these levels can alter 

neurotransmitter release.281 It can also alter other processes such as endocrine changes. 

muscle function, and coagulation.282 In infants, mitochondria can alter non-shivering 

thermogenesis in brown fat through proton leaks.283

Mitochondrial Genetic Defects in Neonates

Epidemiology and Clinical Features—Mitochondrial dysfunction affects one in 6, 000 

– 8, 000 newborns.284–286 The diseases may occur in patterns consistent with autosomal 

recessive, autosomal dominant, mitochondrial, and random mutations.287,288 Young infants 

require mitochondrial energetic metabolism to support rapid growth. Key organs such as the 

muscle, heart, and brain require mitochondrial function/aerobic metabolism for adaption to 

extra-uterine life.289 Disorders of mitochondrial metabolism caused by defects in fatty acid 

oxidation; pyruvate metabolism; and those in the respiratory chain, including mitochondrial 

complex I, II, III, IV, and ATP synthase, can become symptomatic in the neonatal period.230 
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Mutations of both nuclear genes and mtDNA can cause mitochondrial dysfunction with 

adverse, outcomes in neonates.224–228,290

Neonatal-onset mitochondrial disease is associated with considerable, early mortality.291 In 

a recent study, Ebihara et al.285 reviewed the records of 281 patients with mitochondrial 

disease. The multisystem disease was noted in 194, Leigh syndrome in 26, cardiomyopathy 

in 38, and hepatopathy in 23 patients. Of the 321 with initial symptoms, 236 were 

recognized to have illness within two days of birth. The disorders were recognized by 

altered mitochondrial respiratory chain enzyme activity rate in 182, and abnormal oxygen 

consumption rate in 89. The remaining 10 patients were diagnosed using a genetic approach. 

Genetic analysis showed 69 to have nuclear DNA variants in 36 genes; 11 of 15 had mtDNA 

variants in 5 genes, and 4 had a single large deletion. Cyclo-oxygenase (Cox) proportional 

hazards regression showed significant differences in survival in those with Leigh syndrome 

[hazard ratio (HR) = 0.15, 95% confidence interval (CI) 0.04 to 0.63, p = 0.010] and in 

others with a molecular diagnosis (HR = 1.87, 95% CI 1.18 to 2.96, p = 0.008).

In the outpatient setting, mutations of mitochondrial complex I mutations can be seen with 

Leigh Syndrome, lethal infantile mitochondrial disease, lactic acidosis, MELAS syndrome, 

and Leber’s Hereditary Optic Neuropathy.292,293 Mutations in succinate dehydrogenase 

(SDH)-A, -B, and -AF1 genes in Complex II can cause mitochondrial leukoencephalopathy, 

cardiomyopathy, infantile leukodystrophy, and Kearns-Sayre syndrome.294 Mutations in 

Complex III can cause severe lactic acidosis with hypotonia, irritability, and muscle 

wasting.295 Complex III deficiency is mainly caused by mutations in maternally-transmitted 

mitochondrial chaperone BCS1 (BCS1L), Ubiquinol-Cytochrome C Reductase-Binding 

Protein (UQCRB), Ubiquinol-Cytochrome C Reductase Complex III Subunit VII (UQCRQ) 

and mitochondrially-encoded Cytochrome B (MTCYB) genes.296,297 Mutations in Complex 

IV are associated with neonatal hypertrophic cardiomyopathy, liver dysfunction, myopathy, 

hypotonia, developmental delay, and encephalopathy.294 The biogenesis and assembly of 

cyclooxygenase (COX) in Complex IV depends on numerous ancillary factors, including 

copper chaperones, all nuclear-encoded.298,299 Specifically, disease-causing mutations were 

found in the gene encoding the Surfeit locus protein 1 (SURF1), which is essential for 

the formation of early assembly intermediates.300,301 Mutations in Complex IV have been 

associated with neonatal encephalopathy, respiratory distress, pulmonary hypertension, 

lactic acidosis, peripheral neuropathy, dysmorphism, and cataracts.302 Defects in ATP 

synthase can also cause fatal encephalopathy in neonates.303,304

Pyruvate dehydrogenase complex (PDHc) catalyzes the oxidative decarboxylation of 

pyruvate to produce acetyl-CoA and initiates the TCA cycle.305 Pyruvate dehydrogenase 

complex (PDHc) deficiency is most often due to mutations in the first component 

of the enzyme complex, pyruvate dehydrogenase E1α (responsible for 70% of PDH 

deficiencies).306 There is a spectrum of clinical presentations in E1α mutations;307 

the most severe mutations can manifest with lactic acidosis within a few hours of 

birth.308 Other infants may show hypotonia, lethargy, feeding, respiratory difficulties, and 

encephalopathy.309,310
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Mitochondrial Disorders

• Infections: The sepsis syndrome is a systemic host inflammatory response 

accompanied by organ dysfunction in response to invading microbial 

pathogens.311 The host recognizes both danger and pathogens through its 

pattern recognition receptors on immune cells.312 These receptors bind to 

pathogen associated molecular patterns (PAMP) and danger (DAMP) associated 

molecular patterns derived from microbes and host tissues, respectively.313 

These DAMPs and PAMPs activate the formation of inflammasomes, which 

bind to the apoptosis-associated speck-like protein (ASC) containing a caspase 

recruitment domain (CARD).314–316 This forms a platform for the activation 

of caspase-1 and induction of interleukin (IL)-1β and IL-18.317,318 Caspase-1 

triggers mitochondrial damage.319 It also inhibits mitophagy, a process that 

clears damaged mitochondria, leading to accumulation of defective mitochondria 

and damaged cells.319 Mitochondrial DNA (mtDNA) has also been detected in 

the extracellular traps formed by innate immune leukocytes in these infected 

lesions.320,321

• Oxidative phosphorylation: Mitochondria are the site of oxidative 

phosphorylation in eukaryotes; the energy is produced by means of electron 

flow between four enzymes, of which three are proton pumps, in the inner 

mitochondrial membrane.322 NADH generated in the TCA cycle is oxidized and 

activates the electron transport chain, which is comprised of complexes I–IV, 

and ATP synthase.158,216 Acute inflammation may curtail these pathways. 323 

Tumor necrosis factor (TNF) induces microRNAs that damage the mitochondrial 

complex-I, inhibit oxidative phosphorylation, and reduce ATP levels.324,325

• Inflammation: Inflammatory stimuli can promote mitochondrial fragmentation 

by increased protein unfolding, ER stress, phosphorylation of pro-fission 

proteins, and decreased respiratory capacity.326–330 There is also increased 

oxidative stress; mitochondrial complex III generates superoxide during the 

ubiquinone (Q)-cycle.331 Some lesions may show mitochondrial fission, 

mitophagy, and decreased fusion.330,332,333 The intrinsic dynamicity of 

mitochondria also plays a role in proinflammatory signaling, identifying these 

organelles as a central platform for the control of innate immunity and the 

inflammatory response.334

During inflammation, cytokines such as TNF, interleukin (IL)-1, and IL-18 can promote 

necroptosis, a form of programmed necrosis mediated by various cytokines and pattern 

recognition receptors (PRRs).335–338 Cells dying by necroptosis show necrotic phenotypes, 

including swelling and membrane rupture, and release damage-associated molecular 

patterns (DAMPs), inflammatory cytokines, and chemokines, thereby mediating extreme 

inflammatory responses.339 Mitochondrial proteins such as the phosphoglycerate mutase 

(PGAM)-5 and dynamin-related protein (Drp)-1 have been identified as important activators 

of the receptor-interacting serine-threonine kinase (RIPK)-3 and consequent mitochondrial 

fission and necroptosis.340–342 Mitochondrial reactive oxygen species (ROS) may regulate 

TNF-mediated cell death in other diseases.343–345
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Mitochondrial mediators such as the DNA polymerase γ (POLG) and the protein growth 

factor erv1-like can alter physiological mediators for cellular self-renewal and suppress 

signaling mediators such as the octamer-binding protein 4 (OCT4), nanog homeobox 

(NANOG), and the putative thiosulfate sulfurtransferase (SSEA).346–350

• Mitophagy in birth asphyxia and neurological disorders: In asphyxiated 

infants with hypoxic-ischemic encephalopathy, neural energy failure is being 

increasingly documented.351 Currently, the options for timely diagnosis and 

treatment are limited. Mitochondrial dysfunction with increased permeability, 

altered dynamics with changes in fission and fusion, mitophagy, and biogenesis 

have been observed in many studies.352–355 Mitoprotective therapies may help 

prevent/treat brain injury and reduce the incidence of lifelong disabilities.355,356

In other neurological disorders, mitochondrial transmembrane potential loss with the 

involvement of PTEN (phosphatase and tensin homolog)-induced putative kinase 1 (PINK1), 

which then recruits Parkin, the E3 ubiquitin ligase, to the damaged mitochondria.357–360 The 

BCL2 (B-cell lymphoma 2 genes)-interacting protein 3-like (BNIP3L), a mitophagy receptor 

that recruits LC3 family proteins to the damaged mitochondria, can be altered. 361,362 The 

FUN14 domain-containing 1 (FUNDC1) is another mitophagy receptor located on the outer 

mitochondrial membrane.363,364

• Mutations in mitochondrial genes: Many deletions and duplications in the 

mitochondrial genome can be seen sporadically. These may develop de novo 
or during early development (Table 1):365–367

Leber’s hereditary optic neuropathy (LHON) is the most common, maternally-inherited 

mitochondrial disorder in the respiratory chain, which causes degeneration of retinal 

ganglion cells, associated axons, and optic atrophy within a year of disease onset.368,369,319 

An intriguing feature of LHON is that only 50% of males and 10% of the females with the 

mtDNA mutations actually become symptomatic.370 This incomplete penetrance and gender 

bias imply that additional mitochondrial and/or nuclear genetic factors must be modulating 

the phenotypic expression of LHON.371 It typically begins as a unilateral progressive optic 

neuropathy with the central visual loss with sequential involvement of the fellow eye 

months to years later.220 In about 90% of clinical cases, the disease is associated with 

three mutations in mtDNA complex I subunit genes, namely the G3460A, G11778A, and 

T14484C. These mutations are absent or very rare among normal controls.371–374

Pearson syndrome is a rare fatal mitochondrial disorder caused by single large-scale 

mitochondrial DNA deletions. Most patients present with sideroblastic anemia during 

infancy, followed by multi-organ dysfunction including lactic acidosis, pancreatic 

insufficiency, renal tubulopathy, failure to thrive, muscle hypotonia, and endocrine 

disorders.375,376 Bone marrow cytology shows vacuolization in erythroid and myeloid 

precursors and ring-sideroblasts; the diagnosis is established by the detection of 

mitochondrial DNA deletions.375,377,378 Most cases have a lethal outcome. Some survivors 

go on to develop Kearns-Sayre syndrome, a progressive cardio-encephalo-myopathy caused 

by a large deletion or rearrangement of mtDNA.379–382
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Leigh syndrome, also termed subacute necrotizing encephalomyelopathy, is a rare, 

inherited progressive neurodegenerative disorder that usually manifests in infancy or 

early childhood.383,384 Many cases can be diagnosed in early infancy and present 

with developmental delay, pyramidal and extrapyramidal symptoms, leukodystrophy, and 

brainstem dysfunction.385,386 Neuroimaging shows focal, symmetrical, necrotic lesions in 

the thalamus, the brainstem, and the posterior columns of the spinal cord. Histopathology 

shows symmetric spongiform lesions with degeneration of basal ganglia, particularly 

in the corpus striatum; and demyelination, vascular proliferation, and astrocytosis in 

the brainstem.387–389 The lesions typically appear hyperintense on T2-weighted MRI.390 

Pathogenic mutations are often seen in flavoprotein of complex II.391

Alpers-Huttenlocher syndrome manifests with seizures, developmental delay, hypotonia, and 

liver disease.326,327 It is a maternally-inherited disease with variable penetrance. It is usually 

caused by mutations in polymerase gamma (POLG).392,393 Mutations in mitochondrial 

tRNA synthetase genes, including the phenylalanyl-tRNA synthetase 2, mitochondrial 

(FARS2), asparaginyl-tRNA synthetase 2, mitochondrial (NARS2), and the prolyl-tRNA 

synthetase 2, mitochondrial (PARS2) have also been linked.394,395

A syndrome associated with MELAS syndrome is caused by mutations in mitochondrial 

transfer genes such as the mitochondrially-encoded tRNA leucine 1 (MT-TL1).396,397 It is 

characterized by mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like 

episodes.398,399

OUR CURRENT UNDERSTANDING

Mitochondria provide energy and regulate key cellular events not only during the embryonic, 

fetal and neonatal period, but and throughout life.4 After birth, the newborn infant’s organs 

may show major changes in the number and function of mitochondria.400 There is some 

evidence that epigenetic changes in mitochondrial DNA during the perinatal period may 

be protective.401,402 These changes are most noticeable in the muscles, heart and brain.403 

Disorders of mitochondrial metabolism related to nuclear/mtDNA defects in mitochondrial 

complexes I, II, III, IV, and ATP synthase may present in the neonatal period.404,405

There is a need for focused studies of mitochondrial function and its modulators in the 

fetal/neonatal period to ascertain the need for interventions.406 We still have major gaps in 

our understanding of the long-term effects of mitochondrial dysfunction in neonatal period 

and infancy.353 A framework is needed to focus future research on altered mitochondrial 

function as a mechanism of perinatal adaptation.
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KEY POINTS

• Mitochondria are highly-dynamic, membrane-bound organelles that generate 

most of the chemical energy in eukaryotic cells.

• These organelles most likely evolved about 2 billion years ago from α-

proteobacteria, a subgroup of the purple non-sulfur bacteria. These precursors 

of mitochondria likely belong to the order Rickettsiales.

• Besides the primary role in energy generation, mitochondria also perform 

numerous other cellular functions to support metabolism, epigenetic 

regulation, and cell cycle.

• In this article, we have summarized the ontogeny, ultrastructure, structure-

function correlation, biogenesis, and clinical manifestations of mitochondrial 

dysfunction.
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Figs 1A to D: 
Panoramic view of mitochondria. (A) Mitochondria in a cultured dividing endothelial 

cell. The image shows a cultured mitotic human vascular endothelial cell (HUVEC) 

expressing mitochondrial green fluorescent protein (GFP). Nuclei (blue/purple) were stained 

with DAPI. Mitochondrial morphology varies between different cell types; this dividing 

endothelial cell displays a mitochondrial reticulum around recently-duplicated nucleus; (B) 

Transmission electron microscopy of mouse liver cells show mitochondria (indicated with 

red arrow). Mitochondrial membranes, 1; cristae, 2; and the matrix, 3 can be seen; (C) 

Mouse primary hepatocytes stained with MitoTracker Red, a red-fluorescent dye that stains 

mitochondria in live cells and its accumulation is dependent upon membrane potential. The 

dye is well-retained after aldehyde fixation; (D) Quantitative image analysis of mitochondria 

in a human vascular endothelial cell. VOI, Volume-of-interest; MIC, 3-dimensional light 

microscopic image (described in Nikolaisen et al, DOI: 10.1371/journal.pone.0101365)
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Fig. 2: 
Graphical depiction of mitochondrial infrastructure showing the location of the most 

important/better-known elements

He et al. Page 43

Newborn (Clarksville). Author manuscript; available in PMC 2023 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3: 
Translocases of the outer mitochondrial membrane (TOM): The TOM complex is comprised 

of many subunits; It recognizes, segregates, and translocates precursor proteins to various 

sites within the mitochondria
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Fig. 4: 
Graphical depiction of the TCA cycle. Metabolites enter the TCA cycle as acetyl-CoA, and 

progress to form α-ketoglutarate, succinyl-CoA, fumarate, and oxaloacetate. Nicotinamide 

adenine dinucleotide (NAD), a coenzyme central to metabolism is hydrogenated to form 

NADH; KG = ketoglutarate. Enzymes are depicted in blue font
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Fig. 5: 
Existing models for mitochondrial development. Two endosymbiotic models suggest 

that proto-mitochondria entered an existing cellular organism. The third suggests that 

mitochondria evolved from related organelles that already existed in host cells
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Fig. 6: 
Proteo-bacteria evolved into mitochondria following internalization into host cells
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Fig. 7: 
Evolution of an endosymbiotic relationship between eukaryotic ancestors and proto-

mitochondrial bacteria. The first eukaryotic common ancestors (FECAs) likely matured into 

the superphylum Asgard and internalized proto-mitochondrial bacterial ancestors. However, 

there is a possibility that the FECAs could have originated in other super-phyla. These 

cells matured over time, and the last eukaryotic common ancestors (LECAs) seen about 

1–1.9 million years showed a nucleus, mitochondria, flagella, complex endomembrane, and 

cytoskeletal systems
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Fig. 8: 
Differentiating host cells internalized proto-mitochondrial bacterial ancestors. There have 

been considerations that the nucleus could also have originated in a phagocytosed archaeon, 

spirochete, or a membrane-bound virus. However, increasing information has refuted these 

possibilities and favor an endogenous origin of the nucleus
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Figs 9A and B: 
Evolution of mitochondria. (A) Outside-in model: Symbionts could have been internalized 

in cellular vesicles. The inner and outer nuclear membrane may have originated in the 

endoplasmic reticulum lamellae, and the perinuclear space in the ER cisternae. There is also 

a possibility that these bacteria could have been phagocytosed into food vacuoles, and then 

entered the cytoplasm by lysing the vacuolar membrane; (B) Inside-out model: host cells 

generated extracellular protrusions (blebs). The ancestral prokaryotic cell body remained 

intact as the eventual nuclear compartment during this evolution into eukaryotes. The 
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protrusions fused and formed the cytoplasm and an endomembrane system, which evolved 

to make the outer nuclear and the plasma membranes. The mitochondrial precursors moved 

from the ER into the cytoplasm. Finally, the formation of a continuous cell membrane closed 

off the ER from the exterior
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Fig. 10: 
Bacterial and eukaryotic membranes carry glycerol-3-phosphate lipids with ester-linked, 

straight-chain fatty acids, unlike the glycerol-1-phosphate backbone seen in archaea; SN, 

Stereospecific numbering
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Figs 11A to F: 
Mitochondrial genes. (A) Overall pattern of organization in the 5 mitochondrial gene 

complexes; (B) Complex I is comprised of 38 subunits that are encoded in the nuclear 

DNA, 7 in mitochondrial DNA, and several assembly units. This complex oxidizes NADH 

by transferring electrons to ubiquinol. NADH stands for “nicotinamide adenine dinucleotide 

(NAD) + hydrogen (H); (C) Complex II converts succinate to fumarate and reduces FAD 

to FADH2 during this process. The released electrons are transferred to ubiquinol. SDH = 

succinate dehydrogenase. The figure shows four components of the SDH complex, A-D; (D) 

Complex III (coenzyme Q: cytochrome c – oxidoreductase, or the cytochrome bc1 complex), 

contains 11 subunits: 3 respiratory subunits, 2 core proteins and 6 low-molecular-weight 

proteins; (E) Complex IV (cytochrome c oxidase or cytochrome AA3), contains two hemes, 

a cytochrome a and cytochrome a3, and two copper centers, the CuA and CuB centers; and 

(F) Complex V (mitochondrial ATP synthase) is a multisubunit oxidative phosphorylation 

complex. Complex V is composed of two functional domains: F1, which is situated in the 

mitochondrial matrix, and Fo, located in the inner mitochondrial membrane. Complex V 

uses the energy created by the proton electrochemical gradient to phosphorylate ADP to 

ATP. ADP, Adenosine diphosphate; ATP, Adenosine triphosphate; Pi, inorganic phosphate

He et al. Page 53

Newborn (Clarksville). Author manuscript; available in PMC 2023 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 12: 
Ubiquinol is an electron-rich (reduced) form of coenzyme Q (ubiquinone). The term most 

often refers to ubiquinol-10 that has a 10-unit tail; it exists in three redox states, the fully 

reduced (ubiquinol), partially reduced (semiquinone or ubisemiquinone), and fully oxidized 

(ubiquinone) forms. Ubiquinol can serve a redox function in cellular energy production and 

in antioxidant protection based on the ability to exchange two electrons in redox cycles. 

Complex I (NADH-Coenzyme Q oxidoreductase, or NADH dehydrogenase) can accept high 

energy electrons from NADH, and complex II interacts with FADH2.
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Fig. 13: 
The initial steps of the urea cycle take place in the mitochondrial matrix. Carbamoyl 

phosphate synthetase I (CPS I) combines ammonia with carbon dioxide to from carbamoyl 

phosphate and ornithine transcarbamylase promotes citrulline synthesis. N-acetyl glutamate 

(NAG) synthase increases the formation of NAG, which activates CPS I.
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