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Oral squamous cell carcinoma (OSCC) is affected by the interaction between oral
pathogen and holobionts, or the combination of the host and its microbial communities.
Studies have indicated the structure and feature of the microbiome in OSCC tissue and
saliva, the relationships between microbiota and OSCC sites, stages remain unclear.
In the present study, OSCC tissue (T), saliva (S) and mouthwash (W) samples were
collected from the same subjects and carried out the microbiome study by 16S
sequencing. The results showed the T group was significantly different from the S and
W groups with the character of lower richness and diversity. Proteobacteria were most
enriched in the T group at the phylum level, while Firmicutes were predominant in groups
S and W. At the genus level, the predominant taxa of group T were Acinetobacter and
Fusobacterium, and for group S and W, the predominant taxa were Streptococcus
and Prevotella. The genera related to late stage tumors were Acinetobacter and
Fusobacterium, suggesting microbiota may be implicated in OSCC developing. Both
compositional and functional analyses indicated that microbes in tumor tissue were
potential indicator for the initiation and development of OSCC.

Keywords: 16S rRNA gene, microbiota, OSCC, cross-sectional study, salivary and OSCC bacteriome

INTRODUCTION

As one of the largest habitats of microorganisms in human body, the oral cavity contains more
than 1000 different kinds of microbes (Lamont et al., 2018). Within the oral cavity, the distinct
habitats of hard and soft tissues contributed to the heterogeneous microbial communities which
are formed depending on the oral anatomic location (Dewhirst et al., 2010). The dysbiosis of
oral microenvironment was proved to be the cause of or closely related with a number of oral

Frontiers in Microbiology | www.frontiersin.org 1 June 2019 | Volume 10 | Article 1439

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2019.01439
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2019.01439
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2019.01439&domain=pdf&date_stamp=2019-06-26
https://www.frontiersin.org/articles/10.3389/fmicb.2019.01439/full
http://loop.frontiersin.org/people/678686/overview
http://loop.frontiersin.org/people/596658/overview
http://loop.frontiersin.org/people/748423/overview
http://loop.frontiersin.org/people/596635/overview
http://loop.frontiersin.org/people/614221/overview
http://loop.frontiersin.org/people/181706/overview
http://loop.frontiersin.org/people/519966/overview
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-01439 June 26, 2019 Time: 16:40 # 2

Zhang et al. OSCC Tissue and Saliva Microbial Profiles

diseases (Dewhirst et al., 2010; Ahn et al., 2012; Han and
Wang, 2013; He et al., 2015),such as dental caries, periodontal
disease, periapical and pulp diseases, and oral cancer (Takahashi
and Nyvad, 2008; Zaura et al., 2009; Chen et al., 2010; Yost
et al., 2015). Oral microorganisms and their metabolites also
influence remote tissues and organs through the digestive tract
and periodontal pocket ulceration (Pizzo et al., 2010), which
were reported to associate with digestive system diseases (Warren
et al., 2013), nervous system diseases (Riviere et al., 2002),
cardiovascular diseases (Fåk et al., 2015), diabetes (Fardini et al.,
2010), rheumatoid arthritis (Zhang et al., 2015), premature birth
(Mendz et al., 2013) and were discovered in some malignant
tumors (Meurman, 2010; Farrell et al., 2012). Therefore, the
oral microecology is an important contributor of human
health or diseases.

Oral cancer is one of the most prevalent cancers globally. More
than 90% of oral cancer is squamous cell carcinoma (OSCC),
which developed from the oral mucosa (Kademani, 2007). With
surgery-based treatment, the 5-year survival rates of OSCC are
only approximately 60.0%, which is greatly impact the patients’
quality of life (Jemal et al., 2010). OSCCs could be induced
by alcohol and tobacco consumption, residual root and rough
artificial tooth stimulation, poor oral hygiene etc., which has
become a clinical challenge due to the high prevalence, recurrent
relapse, unpredictable metastasis, oral and maxillofacial damage
(Hooper et al., 2007; Crozier and Sumer, 2010). During the
process of oral carcinogenesis, the local microenvironment is
altered and in the meantime the microbiota composition were
changed (Rivera and Venegas, 2014). The oral pathogens and
the metabolites induced including nitrosamine and acetaldehyde
were reported to stimulate inflammation, promote the cellular
proliferation and inhibit the cellular apoptosis (Hooper et al.,
2009). The composition analysis of oral microbiota between
OSCC patients and healthy volunteers showed the anaerobic
bacteria and acid-resistant bacteria including Porphyromonas
gingivalis, Streptococcus mitis and Fusobacterium were increased
in OSCC tissues, while Firmicutes (mainly Streptococcus) and
Actinobacteria (mainly Rothia) were significantly decreased
(Hooper et al., 2006, 2007). In a comparison of healthy
subjects, Capnocytophaga gingivalis, Prevotella melaninogenica,
and Streptococcus mitis were increased in the saliva of OSCC
patients (Smruti et al., 2012).

Oral microbiota are potential biomarkers for the development
and prognosis of OSCC. The oral pathogens, P. gingivalis and
F. nucleatum, are reported to facilitate cancer progression by
establishing chronic inflammation and disrupt the local immune
response by secreting virulence factors such as FimA and
FadA adhesins (Whitmore and Lamont, 2014). The detection
of P. gingivalis or F. nucleatum are promising indicators of
a poor prognosis. Besides, the divergence and richness of
saliva microbiota increase significantly in oral leukoplakia and
OSCC (Hu et al., 2016). The overall shift of oral microbiota is
another promising diagnostic index for OSCC. Bacteria related
to resistance to chemotherapy or radiotherapy are therapeutic
targets in the treatment of OSCC (Sonis, 2017). However, studies
on the taxonomic characteristic of OSCC tissues and saliva
samples are still inadequate.

To investigate the character of microbiota in different stages
of OSCC and the relationship between OSCC tissue and saliva,
we carried out the oral microbiome study on the resected tumor
tissue, saliva samples. In the present study, 30 subjects were
analyzed and compared based on 16S rRNA gene sequencing.
Phylogenetic Investigation of Communities by Reconstruction of
Unobserved States (PICRUSt) was applied to infer and compare
the potential role of microbiota from different samples of OSCC.

MATERIALS AND METHODS

Ethics Statement
This study was approved by the Institutional Review Board of
Ninth People’s Hospital, Shanghai Jiao Tong University School
of Medicine (ethical approval number: 2016144). All methods
were performed according to relevant guidelines and protocols,
including any relevant details. Written informed consent was
obtained for each participant.

Sample Collection
Samples in this study were obtained from the sharing platform
for the tissue sample and bioinformatics database of oral
maxillofacial tumors1. 30 patients with different stages of cancer
were enrolled without chemotherapy or radiotherapy. Oral
cancer tissue samples were dissected from the site of the tumor
during surgery, and the diameter of each sample was larger
than 3 mm. Saliva and mouthwash liquid were collected pre
surgery and before breakfast, a mouth rinse was performed
twice with 20 ml of 0.9% saline to avoid contamination by cell
debris, and the liquid from the second wash was collected into
a 50 ml test tube. Saliva was collected into a 50 ml test tube
after mouthwash (Corrêa et al., 2017). All samples were stored
at−80◦C within 20 min.

DNA Extraction
DNA extraction was performed with a TIANamp Micro DNA
Kit (TIANGEN BIOTECH CO., LTD.), following the protocol
from a previous study (Guan et al., 2016). A total of 10 ml
saliva, 10 ml mouthwash, and 5 mg OSCC tissues were used
for the bacterial DNA extraction. For saliva and mouthwash
samples, the pallet was transferred to a 1.5 ml Eppendorf tube
after centrifugation. Then, the tube was incubated at 56◦C for
60 min with Buffer GA and proteinase K. The tube was incubated
for another 10 min at 70◦C with Buffer GB and carrier RNA stock
solution. The entire lysate was transferred into Spin Column CR2
(with a 2 ml collection tube) after adding 200 µl of ethanol,
and the contaminants were removed by centrifugation with
500 µl Buffer GD and 600 µl Buffer PW. The pure DNA was
eluted with 50 µl Buffer TB and collected into a new 1.5 ml
Eppendorf tube. The sample was stored at −20◦C before 16S
rRNA gene amplification. For tissue samples, all the specimens
were treated at same time, they were incubated with Buffer
GA and proteinase K for 60 min until fully resolved. The

1http://mdl.shsmu.edu.cn/OMNDB/page/home/home_en.jsp
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following steps were the same as saliva and mouthwash DNA
extraction procedures.

PCR and 16S rRNA Gene Sequencing
The amplification of a V1-V2 hypervariable region of the
16S rRNA gene was performed with universal primers
27F: 5′-AGAGTTTGATCMTGGCTCAG-3′ and 338R: 5′-
GCTGCCTCCCGTAGGAGT-3′ which also contained Illumina
adapter sequences. Barcodes were attached to the 5′ terminus of
the forward primers to multiplex the samples during sequencing.
The PCR was performed in a total volume of 25 µL with 20 ng
of DNA sample and 25 pmol of each primer with 2 × Taq
PCR MasterMix (Tiangen, Beijing, China). The reactions were
initially denatured at 95◦C for 10 min, 6 cycles of denaturation
for 45 s at 92◦C, 50◦C annealing for 30 sec and 72◦C extension
for 1 min, followed by 20 cycles of denaturation for 45 s at 92◦C,
annealing for 30 s at 68◦C and extension 30 s at 72◦C, with
a final elongation for 9 min at 72◦C. The concentration and
purity of PCR products were examined with a NanoDrop2000
spectrophotometer (Thermo Fisher Scientific Inc., Wilmington,
MA, United States). Purification of PCR products was performed
with VAHTSTM DNA Clean Beads (Vazyme Biotech) according
to the manufacturer’s instructions, and the purified PCR products
were pooled afterward with equal nano mole. Sequencing of the
16S V1-V2 region of PCR products was performed by Illumina
MiSeq platform (Illumina Incorporate, CA, United States).

Sequencing and Statistical Analysis
FLASH (Fast Length Adjustment of SHort reads) method
described by Magoč and Salzberg is a software tool to find
the correct overlap between paired-end reads and extend the
reads by stitching them together (Magoč and Salzberg, 2011),
it was adopted for the joining and quality filtering of 16S
rRNA gene paired-end sequencing data set. The Quantitative
Insights Into Microbial Ecology (QIIME, version 1.9.1) software
suite was used for sequence analysis, following the QIIME
tutorial2. The split_libraries_fastq.py command was then applied
demultiplexing of Fastq sequence data. De novo models of
Usearch61 were applied for the removal of chimeric sequences.
Clusters of filtered sequences were referenced to the 2013 Green
genes (13_5 release) ribosomal database’s 97% reference dataset3

with pick_open_reference_otus.py command. UCLUST was used
to cluster unmatched sequences into de novo OTUs at 97%
similarity. Taxonomic annotation of all OTUs was achieved by the
RDP classifier from the reference data set of Green Genes. OTUs
with relative abundance lower than 0.02% or present in less than
20% of samples were excluded. With the alpha diversity and rank
abundance function from the QIIME pipeline, rarefaction curves
and rank abundance curves were calculated from OTU tables
using the alpha_rarefaction.py command. UPGMA clustering
(Unweighted Pair Group Method with Arithmetic mean, also
known as average linkage) was used to calculate the hierarchical
clustering from population profiles with the prevalence and
abundance of taxa based on the distance matrix of OTU

2http://qiime.org
3http://greengenes.secondgenome.com/

abundance. By using the QIIME package, we obtained the results
in a Newick formatted tree. Reads did not match with the
amplicon sequence amplification were discarded to remove the
contamination by host genomic DNA.

Statistical Analysis
The OTU table of raw counts was normalized to an OTU
table of relative abundance values. Same types of taxa were
agglomerated at the phylum, class, order, family and genus
level. Non-parametric Wilcoxon test was used to compare the
biodiversity between classified groups. The test about the alpha
diversity of each groups adopt Kendall’s Tau and Spearman’s
rank correlation coefficients. We used unweighted and weighted
Unifrac distance of even OTU samples to perform Principal
Coordinate Analyses (PCoA) and ANOSIM was used to analyze
the difference among groups. LDA Effect Size (LEfSe) was
performed to find out the differentially enriched taxa between
groups. The functional prediction of microbiota was done with
PICRUSt (Langille, Zaneveld et al., 2013). Only reads identified
in closed reference picking (Greengenes 13_5 database) were
used for the PICRUSt analysis, OTUs were picked at a 97%
percent identity. The reference genome coverage of samples was
also calculated using weighted Nearest Sequenced Taxon Index
(NSTI) score with the -a option in the predict metagenomes.py
script. The graphical representation of the results was performed
by STAMP (Parks and Beiko, 2010).

RESULTS

A total of 4,606,312 raw reads were generated from OSCC
tissue (T), saliva (S) and mouthwash (W) groups as shown in
Table 1, data of four samples from the T group were excluded

TABLE 1 | Patient demographic data.

Variable Total (N = 30) Tissue (n = 26) Saliva (n = 30)

Age, years

Average (range) 58 (33–80) 60 (45–80) 58 (33–80)

Tumor stage

I-II 25 22 25

III-IV 5 4 5

Tumor site

Cheek 6 6 6

Gingiva 4 4 4

Oropharynx 7 6 7

Tongue 10 7 10

Others 3 3 3

Tlcohol

Yes 7 6 7

No 23 20 23

Tobacco

Yes 8 7 8

No 22 19 22

Age, tobacco and alcohol consumption, and tumor information were provided in
the form. The others option of tumor site included temple, mouth floor and maxillary.
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due to insufficient reads. 2,507,184 clean reads were generated
with an average of 29153.302 (std.dev. 932.637) for each subject,
which covered 97.6% across samples on average. The percent of
chimeras was 11.3%. As a result, 12 phyla, 40 families, 63 genera
and 533 OTUs were annotated among the whole samples (also see
Supplementary Figures S1A,B for information about class and
order level).

As shown in Figure 1, the microecological composition of
group S was similar to group W, but different from group T.
T group enriched more Proteobacteria, which contributed to
52% of the taxonomic units, followed by Bacteroidetes (16%),
Fusobacteria (12%), Firmicutes (12%) and Actinobacteria (2%)
on phylum level (Figure 1A). However, Firmicutes was the most
predominant phylum for groups S and W which accounting for
40% and 37% respectively, followed by Bacteroidetes (S: 27%,
W: 26%), Proteobacteria (S: 15%, W: 21%), Fusobacteria (S:
10%, W: 7%) and Actinobacteria (S: 5%, W: 4%) (Figure 1A).
At family level (Supplementary Figure S1C), Enterobacteriaceae
(14%) and Moraxellaceae (12%) were higher abundant in group T,
followed by Fusobacteriaceae (9%) and Campylobacteraceae (6%).
For S and W groups, the top ranked taxa were Prevotellaceae (S:
18%, W: 14%), Streptococcaceae (S: 16%, W: 17%), Veillonellaceae
(S: 9%, W:6%) and Neisseriaceae (S: 8%, W: 9%). At the genus
level (Figure 1B), the most predominant taxa in group T
were Acinetobacter (12%) and Fusobacterium (9%), followed by
Campylobacter (6%) and Prevotella (6%). For groups S and W,
genera Streptococcus (S: 16%, W:17%) and Prevotella (S:18%,
W:14%) accounted for the majority of bacteria, which were only
accounted for 2% and 6%, in group T.

Alpha and Beta Diversity Analysis on
OSCC Tissue, Saliva and Mouthwash
Groups
The alpha diversity of OSCC tissue, saliva and mouthwash groups
was calculated at a maximum depth of 26,605 sequences per
sample based on the Observed Species (Figure 2A), Chao1 index
(Figure 2B), Shannon’s index (Figure 2C) and Simpson index
(Figure 2D). Results showed the alpha diversity in OSCC tissue
was significantly lower than that in saliva and mouthwash while
the taxonomic richness within-samples was more similar between
groups S and W (Figures 2A–D). The beta diversity analysis by
principal coordinates analysis (PCoA) was shown in Figure 3.
The results showed that the phylogenetic distance significantly
separated group T from group W and S in both the weighted
(Figure 3A) and unweighted Unifrac (Figure 3B), the difference
between the group W and S was not statistically significant.
ANOSIM analysis showed that R equalled to 0.75 for weighted
Unicfrac (p = 0.0001) when we compared T group with S and
W groups. The above results showed group T was significantly
different from group W and group S in terms of diversity within
samples and similarity between samples.

A Venn diagram was used to identify the unique and
common genera among all three groups (Supplementary
Figure S1D). The results showed that at the genus level, taxa
of group S were fully covered by group W, and 35 genera
were shared by all three groups in total. There were 13 unique

genera from group T, namely, Deinococcus, Rubrobacter,
Parabacteroides, Chryseobacterium, Sphingobacterium,
Staphylococcus, Lachnospira, Faecalibacterium, Megamonas,
Phascolarctobacterium, Burkholderia, Comamonas, and Serratia.
There were two unique genera in group W, Schwartzia and TG5
from Dethiosulfovibrionaceae.

Taxonomic Level Comparison of OSCC
Tissue, Saliva and Mouthwash Groups
LDA Effect Size (LEfSe) is an algorithm to identify high-
dimensional biomarkers from multiple groups. In this study,
LEfSe analysis was used to identify the different composition of
microbiota and to trace significant biomarkers (LDA > 2). As
shown in Figure 4, the significant taxa at different levels were
exhibited. The enriched taxa in OSCC tissue were aggregated
under Proteobacteria, mainly in family Campylobacteraceae,
Enterobacteriaceae and Moraxellaceae. At the genera level, the
most enriched genus in OSCC was Acinetobacter followed by
Campylobacter. The enriched taxa in saliva and mouthwash
samples were from Firmicutes and Bacteroidetes, expect
members of Neisseriales. Prevotellaceae, Streptococcaceae,
Veillonellaceae were more abundant at family level. The genera
Prevotella and Streptococcus were most enriched in saliva and
mouthwash (Supplementary Figure S2).

Functional Prediction of Predominant
Taxa of OSCC
We used Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States (PICRUSt) to infer the
KEGG pathways between the microbiota of group T and groups
S and W. A significant difference was found in the following
KEGG pathways: the OSCC microbiome had a higher abundance
in the p53 signaling pathway (Figure 5A, p = 4.31E-05) and LPS
biosynthesis proteins (Figure 5B, p = 3.09E-09); the S and W
groups were more enriched in the bacterial invasion of epithelial
cells (Figure 5C, p = 4.89E-08) and bacterial toxins (Figure 5D,
p < 1E-10).

Microbial Characteristics Analysis
Among OSCC Stage and Location
In order to verify the relationship between microbial composition
and OSCC in different parts, we first carried out microecological
composition analysis. At the phylum level, the high abundance of
Bacteroidetes and Fusobacteria was detected in tongue tumors,
Firmicutes was enriched in gingiva sites and Proteobacteria
was enriched in oropharynges (Figure 6A, correlation >0.6,
p < 0.05). At the genus level, the most abundant taxa of each
tumor site were Prevotella (tongue), Acinetobacter (oropharynx),
Pseudomonas (gingiva) and Fusobacterium (cheek) (Figure 7A,
correlation >0.8, p < 0.05). The results indicate that the
bacteria associated with tumorigenesis may be different in
different parts of OSCC.

We further analyzed the relationship between microbiota
composition and different stages of OSCC. In the early
tumor stage, the relative abundance of Bacteroidetes and
Fusobacteria were significantly higher, while in the late tumor
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FIGURE 1 | Bacterial composition on phylum (A) and genus (B) levels by OTU analysis. S, saliva group; W, oral wash group; T, tumor tissue group. The leading phyla
were Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria, and Actinobacteria. On the genus level, the predominant genera were Prevotella, Streptococcus,
Veillonella, Leptotrichia, Fusobacterium, etc.
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FIGURE 2 | Alpha diversity analysis against all three groups. Box plots of Observed OTUs (A), Simpson index (B), Shannon’s index (C) and Chao 1 index (D) are
shown. The indexes of groups S and W were higher than group T from the four plots, indicating that the S group and W group had higher alpha diversity than the T
group.

FIGURE 3 | Beta diversity analysis among groups. Weighted (A) and unweighted (B) PCoA plot with respect to the bacterial abundance and composition. In the
weighted PCoA, PC1 explained 34.05% of the variation, and PC2 explained 12.85% of the variation. In the unweighted PCoA, PC1 accounted for 10.09% of the
variation, and PC2 accounted for 4.81% of the variation.

stage, the significant enriched taxa were Firmicutes and
Proteobacteria (Figure 6B, correlation >0.6, p < 0.05). At
the genus level, the most enriched genera in the early OSCC
stage were Campylobacter and Prevotella, while Acinetobacter
and Fusobacterium were more enriched in the late OSCC
stage (Figure 7B, correlation >0.8, p < 0.05). The shared

taxa of different tumor sites (Supplementary Figures S3A,B)
and tumor stages (Supplementary Figures S3C,D) were
analysed, and no significantly enriched taxa were found. We
performed the relative analysis of taxa against alcohol and
smoking, but the relativeness of the taxa was all below 0.4
(Supplementary Figure S4).
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FIGURE 4 | Biomarker analysis. LEfSe analysis between OSCC tissue and saliva, biomarkers from the phylum level to genus level are indicated on the right.

FIGURE 5 | Box plot showing the significantly different KEGG items between group T and groups S and W. Group T had a higher proportion of sequences in TP53
pathways (A) and lipopolysaccharide biosynthesis proteins (B); Groups S and W had a higher proportion of sequences in bacterial invasion of epithelial cells (C) and
bacterial toxins (D).
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FIGURE 6 | Relative analysis of taxa against OSCC tumor sites. The correlations between the microbial profile and tumor sites were performed at the phylum level
(A) and genus level (B), respectively.

FIGURE 7 | Relative analysis of taxa against OSCC tumor stages. The correlations between the microbial profile and tumor stages were showed on phylum (A) and
genus (B) levels.

DISCUSSION

Our study is a pilot report on the microbiota consistency and
diversity in tumor tissues, saliva and oral wash samples from
the same patient with OSCCs. In previous studies, some models
of microbe infection and oral tumourigenesis have already
been established. For instance, HPV is a cause of oral cancer
through the Rb pathway (Hu et al., 2016). Candida albicans
has been reported to have a higher prevalence in patients
with OSCCs and leukoplakia. Infections by P. gingivalis and
F. nucleatum have been proven to cause cancer through pathways
of MMP9 and upregulation of cytokines such as TNF-α, IL-1β,
and IL-6 (Herrero et al., 2003; Whitmore and Lamont, 2014;
Jahanshahi and Shirani, 2015). However, the understanding of
the relationship between the shift in oral microbiota and OSCC
pathogenesis is still not fully established (Hu et al., 2016). Studies
have been performed to analyze the microbial diversity between
OSCC patients and healthy subjects using saliva or cancer tissue
samples, but the relationship between microbiota in OSCC and
oral cavity fluid was not clear.

The OSCC microbiota is spatially divided into two subgroups:
the superficial and deep portions of the tumor tissue. The oral
wash samples were included in this study as a supplement to the
saliva and shed, during the sample collection, saliva was collected

after rinse of the whole mouth, we supposed that mouthwash
may have better contacts with tumor site, however, they showed
similar properties to saliva microbiota (Figures 1, 3). Thus,
the saliva and mouthwash data were combined in the following
analysis. Several studies have reported an increase in Fusobacteria
in OSCC (Schmidt et al., 2014), which was consistent with the
high level of Fusobacteria in our research, especially in the late
tumor stage. The results showed that Proteobacteria was the
most predominant phyla in OSCC tissue, and a previous study
indicated that the relative abundance of Proteobacteria in oral
cavity mucosa was less than 20% (Schmidt et al., 2014). The
percentage of Firmicutes was lower in OSCC tissue than in
the S and W groups. The relative abundance of Proteobacteria
in group T was as high as 52% (Figure 1A), the richness was
largely contributed by Acinetobacter and Campylobacter, but
this was not observed in other studies. Since the Proteobacteria
subgroups are mainly anaerobic and facultative anaerobic
bacteria (Ringel et al., 2015), the inner tissue would be a suitable
microenvironment for the colonization and growth of these
bacteria. At the genera level, extremely low abundance of
Streptococcus and Rothia were observed (Figure 1B), which
was in agreement with previous research (Pushalkar et al.,
2012). The high levels of Fusobacterium, Acinetobacter and
Campylobacter were thought to be associated with local infection
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and inflammation. The top 10 taxa that differentiate OSCC tissue
from saliva were p_Proteobacteria, c_Gammaproteobacteria,
o_Pseudomonadales, o_Enterobacteriales, f_Moraxellaceae,
g_Acinetobacter, o_Burkholderiales, c_Epsilonproteobacteria,
o_Campylobacterales and g_Campylobacter (Figure 4, ranked by
LDA value from large to small). There is an immune suppression
in a patient with advanced cancer, for instance, the accumulation
of Pseudomonadales is related to several oral diseases, and
Enterobacteriales and Acinetobacter are often observed in
infections in the intestinal and urinary tract (Fouts et al., 2012;
Peters et al., 2016); we speculated that the increase in these taxa
in OSCC tissue was a signal of immune system depletion.

Our results indicated that there were unique genera in
cancer tissue that were not detected from saliva or mouthwash
(Supplementary Figure S1D). Deinococcus is known for its
robust survival ability against ionizing radiation and oxidative
stress. Species of the Deinococcus genus utilize their highly
conserved helicase RecQ to precisely recover the genome from
damage (Cox and Battista, 2005). Members of the Rubrobacter
genus have similar antioxidant activities (Pavlopoulou et al.,
2016). There were also genera found to be infectious, such
as Chryseobacterium, Sphingobacterium, Staphylococcus, Serratia,
and Burkholderia. For instance, in the Chryseobacterium genus,
C. meningosepticum and C. indologenes are more commonly
observed in human infections, and they usually cause meningitis
and pneumonia, respectively, especially in patients with an
impaired immune system (Nordmann and Poirel, 2002). On
the other hand, we also noticed that all of these bacterial
groups were typically involved in nosocomial infections, which
were possibly attached during incision. Fecal bacteria such as
Parabacteroides, Lachnospira, Faecalibacterium, Megamonas, and
Phascolarctobacterium were also detected in the cancer tissue
group, some of which were found to be more enriched in colon-
rectal cancer (Kverka et al., 2011; Chen et al., 2012; Thomas
et al., 2016; Zeng et al., 2016). The presence of these unusual
taxa probably worsens the local inflammation of the OSCC inner
micro environment.

To study the potential roles of microbiota in OSCC tissue
and saliva sample, we performed a series of functional analyses
(Wang and Ganly, 2014; Yang et al., 2018). By applying PICRUSt
pathway analysis, we examined the capability of microbiota
in epithelial cell invasion, bacterial toxin production, LPS
synthesis protein and the p53 signaling pathway (Figures 5A–
D). Overall, based on the proportion of sequences, group T had
more sequences related to functions affecting the p53 signaling
pathway and genes for LPS synthesis, while groups W and
S were better at penetrating the epithelial cell and producing
bacterial toxins. LPS may act as an effector molecule in shift
oral epithelial cell to cancer (Gholizadeh et al., 2017). The p53
tumor suppressor gene is well known in oral cancer and mutated
in 50% of oral cancer patients, the p53 signaling pathway is
essential for regulation of cell cycle progression, differentiation,
DNA repair and apoptosis (Sinevici and O’sullivan, 2016). In
Greathouse’s study (Greathouse et al., 2018), they established
the microbiome-TP53 gene interaction in human lung cancer
tissue, and the higher abundance of certain taxa, including
Acidovorax, were associated with TP53 mutation in squamous

cancer cells. Perera et al. (2018) suggested that compositional
studies showed inconsistency among results, and functional
predications were useful tools to examine the bacteriome in
OSCC. In our study, the functional predication indicated
that in OSCC tissues, the microbiota were more involved
in LPS synthesis and escape of host cell cycle arrest, which
were potential risk factors for OSCC, while in saliva, the
microbiota functions were more enriched in penetrating cells
and secreting toxins, which worsened the micro-environment.
Considering that the functional analysis in 16S rRNA gene
sequencing is based on bacteria at the genera level by targeting
variable regions, which could not reflect the bacterial gene
function and activity very precisely, metagenomic sequencing
and co-culture with cell lines are needed in future studies
(Wang et al., 2015).

CONCLUSION

In conclusion, this cross-sectional study illustrated the
comparison between microbiota in OSCC and saliva samples
collected from the same subjects. In OSCC tissue, the most
abundant taxa were Acinetobacter and Fusobacterium, they
were also found predominantly in the late stage of OSCC, their
ability of causing infection and local inflammation were potential
facilitator of OSCC progress. The microbiota composition in
mouth wash samples were similar to saliva samples, but both of
them were distinct from OSCC tissue. The PICRUSt pathway
analysis suggested the role of OSCC and saliva microbiota,
respectively. There were several limitations of this study: (1)
Restricted by the resolution of the 16S technique, the similarity
of OTUs was set to 97%, which was not accurate enough to
differentiate members at the species level with limited functional
information, and the amplification biases may lead to inaccuracy
of the result; (2) In our study, we only included 30 subjects,
which was still a small sample size. An enlarged group size will
be needed in future validation studies. Strategies such as whole-
genome shotgun sequencing and metabolomics will be used to
achieve a more detailed analysis. Longitudinal research will be
performed to study the relationship between oral microbiota
shift and OSCC progress.
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