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Simple Summary: Immune surveillance during periods of cellular stress is necessary to maintain
homeostasis. In distressed cells, the expression of stress (natural killer group 2 member D (NKG2D))
ligands is induced on cells to promote recognition by cytotoxic immune populations. This process
is exemplified during cancer initiation, progression, and maintenance. Unfortunately, cancer cell
adaptation yields multiple mechanisms to evade immune cell recognition. Therefore, extensive efforts
have been investigated to induce stress ligands on tumor cells to complement immunotherapy efforts.
In this review, we provide updates on the current regulatory mechanisms involved with both stress
ligand induction and repression and offer areas of consideration as research on this topic progresses.

Abstract: Under cellular distress, multiple facets of normal homeostatic signaling are altered or
disrupted. In the context of the immune landscape, external and internal stressors normally promote
the expression of natural killer group 2 member D (NKG2D) ligands that allow for the targeted
recognition and killing of cells by NKG2D receptor-bearing effector populations. The presence or
absence of NKG2D ligands can heavily influence disease progression and impact the accessibility of
immunotherapy options. In cancer, tumor cells are known to have distinct regulatory mechanisms for
NKG2D ligands that are directly associated with tumor progression and maintenance. Therefore, un-
derstanding the regulation of NKG2D ligands in cancer will allow for targeted therapeutic endeavors
aimed at exploiting the stress response pathway. In this review, we summarize the current under-
standing of regulatory mechanisms controlling the induction and repression of NKG2D ligands in
cancer. Additionally, we highlight current therapeutic endeavors targeting NKG2D ligand expression
and offer our perspective on considerations to further enhance the field of NKG2D ligand biology.
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1. Introduction

To maintain normal homeostatic conditions, immune surveillance in the body is neces-
sary to ensure the clearance of damaged, infected, or neoplastically transformed cells [1–4].
However, dysregulated immune surveillance can strongly contribute to disease etiology
and progression [5–7]. Specifically in cancer, there are a host of mechanisms that these cells
implement to evade immune recognition and ensure sustained survival [8–11]. Many of
these adaptive mechanisms are implemented to mitigate both intrinsic (excessive prolifera-
tion, oxidative stress, etc.) and extrinsic cellular (chemo-, radiotherapy, etc.) stress, which
can negatively impact immune cell activity [12–17]. Adverse immune reactions in response
to stress are evident in the natural killer group 2 member D (NKG2D) stress response
pathway. After exposure to stress-inducing stimuli, there is a consequent induction of
NKG2D ligands on target cells. NKG2D ligands are then recognized by NKG2D receptors
on subsets of neighboring cytotoxic immune cells [18–20]. However, in many cancers, there
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is a dysregulation of the stress response pathway resulting in decreased levels of NKG2D
ligands, which interferes with immune recognition by effector cell populations [21–23].
Mechanisms of NKG2D pathway regulation have been investigated by multiple groups,
and much emphasis has been placed on the activity of NKG2D receptor bearing immune
cell populations [19,24–27]. However, the mechanisms through which the NKG2D ligands
are regulated have not been fully elucidated, and further investigation is warranted to
provide additional molecular insight into this clinically relevant immune pathway. In this
review, we examine the current understanding of the regulatory mechanisms that govern
NKG2D ligands in cancer, and we provide insight into therapeutic modulation of the stress
response pathway for anti-cancer treatments.

2. NKG2D Pathway Overview
2.1. NKG2D Receptor

As a master regulator of immune surveillance, NKG2D receptor activation is essential
for downstream signal transduction by cytotoxic effector cell populations (Figure 1) [28,29].
The NKG2D receptor, encoded by Killer Cell Lectin Like Receptor K1 (KLRK1), is found on
natural killer (NK) cells, natural killer T (NKT) cells, subsets of gamma delta T cells, and
small populations of CD4+ T cells [30–34]. Distinct polymorphisms of the NKG2D receptor
have been described and have varying roles within disease etiology [25,35]. Polymor-
phisms in the receptor have been shown to correlate with susceptibility of chronic hepatitis
B [36] and protection against systemic lupus erythematosus [37]. In cancer, a guanine to
alanine mutation (Thr72Alanine) displayed increased expression in control samples in a
cervical cancer study, suggesting a protective effect against cancer progression through the
modulation of NK and T cell activity [38]. Functionally, the transmembrane homo-dimeric
protein structure of the NKG2D receptor allows for signal transduction via the utilization
of adapter molecules, as the intracellular domains of this receptor lack signaling capac-
ity [39–41]. Humans are thought to exclusively utilize the DNAX activation protein 10
(DAP10) adaptor molecule, as there has only been one identified isoform of NKG2D in
humans [42,43]. However, alternative splicing of the KLRK1 gene in mice results in two
distinct isoforms of the NKG2D receptor, which warrants the utilization of two adaptor
molecules, DAP10 and DNAX activation protein 12 (DAP12) [44,45]. Upon activation in
humans, DAP10 recruits intracellular signal transducers, phosphatidylinositol-3-kinase
(PI3K) and growth factor receptor-bound protein 2 (Grb2), to sustain the proliferation
and survival of NK cells and to potentiate their cytotoxic effect [46,47]. Activation of the
NKG2D receptor is induced by external changes to neighboring cells that promote signaling
cascades that cause either an inhibition of homeostatic maintenance and/or induction of
cellular stress (Figure 1) [19,48]. NKG2D receptor activity is further enhanced through
additional immune-modulating stimuli, such as exposure to pro-inflammatory cytokines
interleukin (IL)-15 and IL-2 [49–52]. Specifically, IL-15 promotes the phosphorylation of
the DAP10 adaptor molecule to further support downstream signaling via the NKG2D
receptor [53]. In contrast to NK receptors aimed at recognizing major histocompatibility
complex (MHC) I molecules (HLA-A, HLA-B, HLA-C), the NKG2D receptor preferentially
recognizes non-MHC I molecules known as NKG2D ligands [54–56].

2.2. NKG2D Ligands

There are a variety of NKG2D ligands, and the regulatory mechanisms that control
their expression vary contextually [57–60]. NKG2D ligands have been identified only
in placental and marsupial mammals [61]. Humans express two distinct categories of
NKG2D ligands with a large degree of polymorphism that have developed over time,
possibly in response to various microbial evasions [62]. One family consists of MHC Class
I Polypeptide-related sequence A and B (MICA and MICB, respectively), while the other
family of NKG2D ligands consists of a six-member glycoprotein family of UL16-binding
proteins (ULBP1–6) [34,63–66]. Compared to humans, NKG2D ligands in mice consist of
retinoic acid early inducible-1 (RAE-1) with five distinct isoforms (alpha-epsilon), three
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isoforms of histocompatibility H60 (a, b, c), and one homologous murine UL-16 binding
protein (MULT-1) [67–71]. Further contributing to the diversity of NKG2D ligands, there is
a high degree of polymorphic expression [24,72]. For example, there are over 60 distinct
allelic sequence of MICA and 20 of MICB, and this, coupled with differential receptor
binding affinity, can significantly impact immune effector-mediated cytotoxicity [73–78].
The varying binding affinity of the respective ligands to the NKG2D receptor is particularly
high for immune reactions in terms of dissociation constant (KD) ranges [68,79–81]. In ad-
dition to the canonical NKG2D ligands, novel non-canonical ligands have been discovered
that activate the NKG2D receptor (i.e., LETAL, MUTS) [82,83]. While it is important to
recognize there are alternative molecules that can potentiate this pathway, this review will
focus primarily on the foundational NKG2D ligands and their regulation by distinct stimuli
with known roles in cancer development and progression.
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signaling cascades, transcriptional activation of target genes associated with effector cell mainte-
nance, including those regulating proliferation, cytotoxicity, and cytokine release, is initiated. Image 
generated using Biorender.com (accessed on 22 April 2022), licensure certificate available as File S1. 

2.2. NKG2D Ligands 
There are a variety of NKG2D ligands, and the regulatory mechanisms that control 

their expression vary contextually [57–60]. NKG2D ligands have been identified only in 
placental and marsupial mammals [61]. Humans express two distinct categories of 
NKG2D ligands with a large degree of polymorphism that have developed over time, 
possibly in response to various microbial evasions [62]. One family consists of MHC Class 
I Polypeptide-related sequence A and B (MICA and MICB, respectively), while the other 
family of NKG2D ligands consists of a six-member glycoprotein family of UL16-binding 
proteins (ULBP1–6) [34,63–66]. Compared to humans, NKG2D ligands in mice consist of 
retinoic acid early inducible-1 (RAE-1) with five distinct isoforms (alpha-epsilon), three 
isoforms of histocompatibility H60 (a, b, c), and one homologous murine UL-16 binding 
protein (MULT-1) [67–71]. Further contributing to the diversity of NKG2D ligands, there 
is a high degree of polymorphic expression [24,72]. For example, there are over 60 distinct 
allelic sequence of MICA and 20 of MICB, and this, coupled with differential receptor 
binding affinity, can significantly impact immune effector-mediated cytotoxicity [73–78]. 
The varying binding affinity of the respective ligands to the NKG2D receptor is particu-
larly high for immune reactions in terms of dissociation constant (KD) ranges [68,79–81]. 
In addition to the canonical NKG2D ligands, novel non-canonical ligands have been dis-
covered that activate the NKG2D receptor (i.e., LETAL, MUTS) [82,83]. While it is im-
portant to recognize there are alternative molecules that can potentiate this pathway, this 
review will focus primarily on the foundational NKG2D ligands and their regulation by 
distinct stimuli with known roles in cancer development and progression. 

2.3. Cell Type Specific Expression 
As the NKG2D pathway can be modulated to advance anti-cancer therapies, there is 

a need to understand which cell populations are more resistant or susceptible to its tar-
geting. The expression of NKG2DLs in healthy human tissues is generally low or re-
stricted [63]: however, there can be the heterogeneous expression of each ligand based on 
its specific role, tissue type, regulation, and exposure to certain inducers [63,84]. For 

Figure 1. NKG2D ligand (NKG2DL) binding activates the cytotoxic potential of effector cells. In
response to stressors, human or murine NKG2D ligands are expressed on the surface of target cells.
NKG2D ligands bind to the respective NKG2D receptor found on cells such as natural killer (NK)
cells or gamma-delta T cells. Utilizing adaptor molecules DAP10 or DAP12 (murine), the signal
transducers, PI3K and Grb2, are recruited to the NKG2D-binding domain. Through intracellular
signaling cascades, transcriptional activation of target genes associated with effector cell mainte-
nance, including those regulating proliferation, cytotoxicity, and cytokine release, is initiated. Image
generated using Biorender.com (accessed on 22 April 2022), licensure certificate available as File S1.

2.3. Cell Type Specific Expression

As the NKG2D pathway can be modulated to advance anti-cancer therapies, there is a
need to understand which cell populations are more resistant or susceptible to its targeting.
The expression of NKG2DLs in healthy human tissues is generally low or restricted [63]:
however, there can be the heterogeneous expression of each ligand based on its specific
role, tissue type, regulation, and exposure to certain inducers [63,84]. For example, ULBP1
is found in human B cells and monocytes and may aid in hematopoiesis [85], whereas
MICA, ULBP1, and ULBP3 are present in human bone marrow and early progenitor
cells [86]. In addition to varying baseline expression, the ligands have differing responses
to various stressors. For example, in hematopoietic tissues, stimulation with alloantigen or
superantigen upregulates NKG2DLs in T cells [87], and myelomonocytic differentiation
leads to an increase in ULBP1 [85]. Stimulation with various growth factors induces ULBPs
in CD14+ monocytes, and both IFN-α and IL-15 can upregulate MICA expression on
mature dendritic cells [88]. In gut epithelial cells, MICA may be present and increased in
response to changes or disruptions in gut flora [63]. Lastly, in airway epithelial cells, the
upregulation of surface NKG2DLs can occur in response to oxidative stress [89].
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Off-target effects of any therapy can limit clinical implementation; therefore, identify-
ing potential risks to the healthy surrounding tissue is critical [90,91]. Although studies
demonstrated NKG2D ligand expression on normal tissue, other reports have emphasized
the semi-restricted tumor-targeting potential of effector populations. For example, a 2015
study by Pereboeva et al. showed that stress-inducing stimuli, such as irradiation and
chemotherapy, did indeed induce both MICA and ULBP2 ligands on both glioblastoma
tumor cells and human astrocytes [92]. However, despite these ligands being expressed
on the astrocytes, these cells were significantly spared from the cytotoxic effect of ex vivo
expanded gamma-delta T cells in comparison to their tumor cell counterparts [92]. Ad-
ditionally, work from Lamb et al. utilized normal human astrocytes as an experimental
control for the cytotoxic potential of temozolomide-resistant gamma delta T cells toward
glioblastoma cells, and no toxicity to the astrocytes was reported [93]. Importantly, these
findings provide preclinical evidence supporting the safe implementation of NKG2D-based
therapies without risk to the surrounding non-tumor tissue.

In addition to understanding the impact that NKG2D ligands have on normal tissue
in response to cancer therapy, it is also important to acknowledge that NKG2D ligands do
play homeostatic roles. The expression of NKG2D ligands serves as a vital signal to the
immune surveillance system where NKG2D receptor-bearing cells promote the clearance
of damaged tissue. For instance, in response to events such chronic inflammation, burn
injury, and obesity, NKG2D ligands are induced: this results in the recruitment of effector
cells to rid the affected area of damaged cells to maintain tissue health [94–96]. Since the
NKG2D ligands are stress responsive, a process such as tumorigenesis can have an overlap
of stimuli that regulate NKG2D ligand expression. For example, infection with the bacteria
Helicobacter pylori (H. pylori) is an established risk factor associated with the onset of gastric
adenocarcinoma [97]. A recent study by Hernandez et al. demonstrated that exposure to
H. pylori induced MICA and ULBP4 in gastric adenocarcinoma cell lines, which promoted
NK cell cytotoxic activation [97]. In addition, stress to the endoplasmic reticulum induced
MULT-1 expression in human endothelial cells is also linked to tumorigenesis [98]. A
functionally intact NKG2D system also had a protective effect against tumor initiation as
evident in both a fibrosarcoma and ovarian cancer model, respectively [99,100]. With the
relatively harsh conditions that tumors maintain, the exploitation of NKG2D ligands to
enhance immunotherapies is a promising approach.

Another important cell-specific consideration for therapeutic intervention is the ability
of certain malignant cell populations to evade this pathway. For example, chemo- and
radiotherapy-resistant tumor-initiating cell or cancer stem cell (CSC) populations may
have relatively lower levels of NKG2D ligands [101–103]. For example, acute myeloid
leukemia (AML) stem cells evaded killing by NK cells through increased expression of the
DNA repair enzyme poly-ADP-ribose-polymerase 1 (PARP1), which caused a repression
of NKG2D ligands [104]. Similarly, stem cells in solid tumors such as glioblastoma have
also been shown to evade immune system detection via dysregulation of NKG2D ligand
expression. Zhang et al. determined that epigenetic silencing resulted in ULBP1 and ULBP3
ligand repression in glioblastoma [105]. Following treatment with the hypomethylating
agent decitabine, ligand repression was reversed, and NK-mediated killing increased [105].
However, other reports using glioblastoma cells have noted the increased expression of
stress ligands in cancer stem cell populations, supporting a heterogeneous expression
pattern that is not yet fully understood [106,107]. Substantial efforts have been dedicated
to manipulating and targeting CSC populations to make them more susceptible to cyto-
toxic killing by NKG2D receptor-bearing effector populations [108–110]. However, it is
important to note that other cell populations critical for tumor biology also express NKG2D
ligands: this pathway can influence the more differentiated, non-CSC tumor cells as well
as macrophages, dendritic cells, B-cells, and T-cells [69,111,112]. Despite the expression of
NKG2D ligands being necessary for immunoreactivity and immune surveillance, sustained
expression can be detrimental to pathway activity [113]. Constitutive MICA and Rae-1ε
expression in a cutaneous carcinoma model was associated with the downregulation of
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NKG2D receptor expression and diminished NK-mediated cytotoxicity via receptor inter-
nalization and lysosomal-mediated degradation [114,115]. Adding to the complexity of
NKG2D pathway regulation, there are also heterogeneous induction mechanisms for stress
ligand expression that are relevant for cancer etiology.

3. Positive Regulators of NKG2D Ligand Expression

The regulation and activation of the NKG2D receptor has been extensively reviewed
(see Refs. [19,24–27]); therefore, we have focused on the cancer-relevant regulation of
NKG2D ligands and the potential for developing novel, targeted cancer therapeutics
related to this pathway.

3.1. DNA Damage

Many current cancer treatment strategies rely on initiating DNA damage in malignant
cells: DNA damage has an important role in immunoreactivity, specifically as it pertains to
NKG2D ligand expression [116]. In transduced ovarian cancer cells, DNA damage from ion-
izing radiation and certain chemotherapies induced both human (MICA/B, ULBP1-3) and
mouse (RAE-1) NKG2D ligands [117]. Along with ligand induction, there was increased
activity of DNA damage response (DDR) pathway regulators, such as ataxia telangiecta-
sia mutated (ATM) and ataxia telangiectasia and RAD3 related (ATR): their activity was
supported by an increased phosphorylation of downstream pathway mediators Chk1 and
Chk2 and the tumor-suppressor protein p53 [117]. Other cancer types, such as multiple
myeloma and leukemia, also have a dependency on ATM and ATR for NKG2D ligand
induction [118,119].

Along with the direct influence that the DNA damage response has on NKG2D
ligand expression, there is also evidence that indirect mechanisms can contribute to ligand
induction [120]. For example, as DNA damage occurs, there is an increased presence of
cytosolic DNA that activates corresponding sensory pathways. These pathways can further
activate the stimulator of interferon (IFN) genes (STING) pathway, which is an established
immune regulatory pathway [121]. Lam et al. determined that RAE-1 expression in
lymphoma cell lines was dependent on the activation of IFN regulatory factor-3 (IRF3),
whose phosphorylation was regulated by DNA sensor pathway activation [122].

In addition to cytosolic sensory pathways, downstream molecular targets of DNA
damage, such as the transcription factor and tumor suppressor protein p53, have also
been shown to influence the expression of NKG2D ligands [122]. In lung cancer models,
p53 mutational status influenced the expression of ULBP1 and ULBP2, as these ligands
are direct transcriptional targets of p53 [123]. Cancer cells transduced with wild-type
p53 resulted in a significant upregulation of the ULBP1 and ULBP2 ligands as compared
to those with mutant p53 [123]. In the context of DNA damage, p53 is a downstream
target of activated response elements, which promotes ligand expression, suggesting its
necessity [117,124,125].

3.2. Cell Cycle Alterations

While DNA damage is one of the more established mechanisms that regulates NKG2D
ligand expression, other phenotypes associated with cancer initiation and maintenance
have also been implicated in ligand regulation. Malignant cells commonly have alterations
in their cell cycle, and investigators are working to elucidate mechanistic links between cell
cycle regulators and immune surveillance. An established family of cell cycle regulating
transcription factors, the E2 factor family (E2F), is a direct regulator of NKG2D ligands.
Specifically, the Rae family of NKG2D ligands are direct transcriptional targets of E2F, and
increased overall E2F family (1,2,3) transcriptional activity leads to increased proliferation
and Rae family expression [126]. E2F is also a direct phosphorylation target of ATM and
ATR kinase activity. Therefore, E2F provides further regulation of NKG2D ligands by the
DNA damage response pathway.
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In addition to pathway regulators, the behavior of malignant cells has been linked
to the expression of NKG2D ligands. The induction of hyperploidy in various cancer cell
lines by cytochalasin D, a microfilament polymerization inhibitor, resulted in a subsequent
upregulation of MICA and an increased NK cell cytotoxic response [127]. In multiple
myeloma cells, a high-self renewal capacity resulted in increased NKG2D ligand expression
and preferential targeting by NK cells [128]. As energetic output is often associated with
increased cell division, some studies have determined that nutrient availability influences
ligand expression. For example, enhanced mitochondrial citrate metabolism, glycolysis,
and fatty acid metabolism promoted either ligand expression (MICA/B) or enhanced NK
cell functionality in their respective tumor models, which supports the potential targeting
of metabolically active cell populations [129–132].

3.3. Oncogenic Transformation

The acquired genetic changes during cancer can also influence NKG2D ligand expres-
sion. During oncogenesis, there is an immune landscape shift that contributes to disease
progression [133–135]. Genetic alterations commonly associated with tumor formation
have been reported to regulate NKG2D ligand expression. Unni et al. demonstrated a
novel link between NKG2D ligands and genetic transformation: the combination of in-
creased oncogenic Myc activity and diminished tumor-suppressor activity of either p53 or
Arf resulted in an increased surface expression of Rae-1ε during lymphomagenesis [136].
Furthermore, Schuster et al. determined that not only did p53 need to be lost but the
anti-apoptotic protein BCL2 also needed to be overexpressed to induce expression of the
murine NKG2D ligand, MULT-1, in a Eµ-myc model of lymphoma [137]. These multiple
oncogenic “hits” were necessary to facilitate NK cell-mediated killing of the lymphoma
cells. An important distinction to note is that diminished tumor suppressor activity of p53
can regulate ligand expression independent of the DNA damage response cascade.

The phosphatidylinositol-3-kinase (PI3K) pathway is also commonly altered during
transformation and implicated in NKG2D signaling. In a model of cellular stress in mouse
fibroblast infected with cytomegalovirus, the PI3K catalytic subunit, p110α, induced RAE-
1 family ligands. Inhibition of this subunit caused a reduction in expression of RAE-1
ligands [138]. PI3K-mediated regulation of ligands has also been demonstrated in human
breast cancer cell lines. Specifically, the dimerization of epidermal growth factor family
members, HER2 and HER3, upregulated MICA and MICB expression via the PI3K axis,
which increased NK cell recognition and killing of tumor cells [139].

Upstream of both Myc and PI3K, the oncogene RAS also influences stress ligand
expression. Constitutive activation of mutant RAS in a human breast cancer model resulted
in an increase in downstream pathway mediators such as mitogen-activated protein kinase
(MAPK) and PI3K and in murine RAET1 ligand expression in mouse breast cancer cell
lines [140]. Although established as a regulator of stress ligand expression, there was
no dependency on enhanced ATM or ATR expression to substantiate NKG2D ligand
expression in this model. This supports the heterogeneous regulation of NKG2D ligand
expression independent of established pathways, such as that of the DNA damage response
pathway [140].

Another common occurrence during oncogenesis is epithelial-to-mesenchymal transi-
tion, which has been shown to repress ULBP1 ligand expression in a gastric cancer model
and further contribute to the immunosuppressive tumor microenvironment [141]. In ad-
ditional studies related to cancer stressors, there is an increased expression of heat shock
proteins, which facilitate the restoration of homeostatic signaling through refolding of
denatured proteins and are known to be both upregulated under malignant conditions and
regulate the expression of NKG2D ligands [142–145]. As illustrated above, increasing evi-
dence suggests a relationship between NKG2D ligands and tumor initiation/maintenance.
However, the impact of carcinogenesis on NKG2D ligands also depends on the immune
cell influenced by the ligand expression. A study by Strid et al., using the epidermis as
a model, reported that in response to local Rae-1 induction, certain immune cell popula-
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tions exuded differing effects on carcinogenesis [146]. For example, with Rae-1 expression,
gamma delta cells were able to protect the tissue from carcinogenesis, while Langerhans
cells promoted it [146]. The immune cell responsive to NKG2D ligand induction could be
one explanation for the diversity in cancer-mediated regulation of this pathway. Under-
standing the heterogeneous induction of this immune surveillance pathway is extremely
important for targeting cancer cell vulnerabilities (Figure 2): however, there is also a neces-
sity to understand compensatory mechanisms that cancer cells may employ to diminish
pathway activity.
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sociated with cancer progression may influence stress ligand expression. The DNA damage response
pathway, which is activated during cancer treatments, increases NKG2D ligand expression via activa-
tion of signaling kinases ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and RAD3
related (ATR). ATM/ATR promote the activation of downstream targets that increase and maintain
ligand expression. Genetic alterations, such as the oncogenic hits that promote tumorigenesis and
behavioral phenotypes, including excessive proliferation and “epithelial-to-mesenchymal” transition,
associated with tumor biology are also important regulators of NKG2D ligand expression. Image
generated using Biorender.com (accessed on 16 March 2022), licensure certificate available as File S1.

4. Biological Repression of NKG2D Ligands in Cancer

Mechanisms to combat NKG2D ligand-mediated recognition are commonly implored
in cancer cells. Due to their high degree of plasticity and adaptability, cancer cells can
manipulate their biological activity to evade the NKG2D immune surveillance pathway.
Next, we highlight the established immunosuppressive mechanisms utilized by cancer
cells to downregulate NKG2D ligands and avoid NKG2D-mediated killing (Figure 3).

Biorender.com


Cancers 2022, 14, 2339 8 of 23

Cancers 2022, 14, x 8 of 25 
 

 

4. Biological Repression of NKG2D Ligands in Cancer 
Mechanisms to combat NKG2D ligand-mediated recognition are commonly im-

plored in cancer cells. Due to their high degree of plasticity and adaptability, cancer cells 
can manipulate their biological activity to evade the NKG2D immune surveillance path-
way. Next, we highlight the established immunosuppressive mechanisms utilized by can-
cer cells to downregulate NKG2D ligands and avoid NKG2D-mediated killing (Figure 3). 

 
Figure 3. Repression mechanisms of NKG2D ligands in cancer. Multiple mechanisms have been 
identified in cancer cells to evade immune cell recognition. Generation and release of NKG2D lig-
ands into the extracellular space via exosomes is enhanced and stimulated by the hypoxic tumor 
microenvironment. Similarly, enhanced proteolytic cleavage activity of matrix metalloproteinase 
(MMP) and a disintegrin and metalloproteinase (ADAM) family members is regulated by the hy-
poxic tumor microenvironment. Immunosuppressive and inhibitory mediators (Transforming 
Growth Factor Beta (TGF-β), Janus Kinase and Signal Transducer and Activator of Transcription 
(JAK/STAT), and Programmed Death Receptor Ligand 1 and 2 (PDL1/2)) also collectively diminish 
NKG2D ligand expression by potentiating the immunosuppressive landscape in cancer. Image gen-
erated using Biorender.com (accessed on 16 March 2022), licensure certificate available as File S1. 

4.1. Shedding 
A regulatory mechanism of the immune surveillance pathway is the proteolytic 

cleavage of cell surface bound NKG2D ligands, which is also known as shedding. Two 
primary families of proteases associated with this shedding phenotype include matrix 
metalloproteinases (MMPs) and disintegrin and metalloproteinases (ADAMs). First estab-
lished using epithelial-derived tumors, MICA was shown to be actively released by tumor 
cells as a means of immunosuppression [147]. Inhibition of metalloproteinases reversed 
the shedding phenotype and promoted the accumulation of MICA on the tumor cell sur-
face [147]. NKG2D ligand shedding occurs in many other tumor types and has been vali-
dated in analyses from cancer patient serum [148–152]. Further supporting the complexity 
of the immune landscape, immune regulatory cytokines also have multi-faceted roles in 
NKG2D ligand expression, which is mediated partly by MMP cleavage. For example, in-
terferon alpha (IFN-𝛼) has been shown to enhance MICA expression on tumor cells 
through increased promoter activity. Alternatively, interferon-gamma has been shown to 
enhance the cleavage of MICA via MMP9 [153]. As mentioned earlier, ADAM proteases 

Figure 3. Repression mechanisms of NKG2D ligands in cancer. Multiple mechanisms have been
identified in cancer cells to evade immune cell recognition. Generation and release of NKG2D
ligands into the extracellular space via exosomes is enhanced and stimulated by the hypoxic tumor
microenvironment. Similarly, enhanced proteolytic cleavage activity of matrix metalloproteinase
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4.1. Shedding

A regulatory mechanism of the immune surveillance pathway is the proteolytic cleav-
age of cell surface bound NKG2D ligands, which is also known as shedding. Two primary
families of proteases associated with this shedding phenotype include matrix metallopro-
teinases (MMPs) and disintegrin and metalloproteinases (ADAMs). First established using
epithelial-derived tumors, MICA was shown to be actively released by tumor cells as a
means of immunosuppression [147]. Inhibition of metalloproteinases reversed the shed-
ding phenotype and promoted the accumulation of MICA on the tumor cell surface [147].
NKG2D ligand shedding occurs in many other tumor types and has been validated in analy-
ses from cancer patient serum [148–152]. Further supporting the complexity of the immune
landscape, immune regulatory cytokines also have multi-faceted roles in NKG2D ligand ex-
pression, which is mediated partly by MMP cleavage. For example, interferon alpha (IFN-α)
has been shown to enhance MICA expression on tumor cells through increased promoter
activity. Alternatively, interferon-gamma has been shown to enhance the cleavage of MICA
via MMP9 [153]. As mentioned earlier, ADAM proteases are also responsible for the prote-
olytic shedding of NKG2D ligands. Using a standard model of glioblastoma, ADAM17 was
shown to promote MICB solubilization through specific active sites at detergent-resistant
membrane microdomains (DRMs) [154]. In addition to ADAM17, ADAM10 and ADAM9
have both been implicated in the shedding of NKG2D ligands [155–158]. Of note, hypoxia
is a potent negative regular of NKG2D ligand expression: hypoxia directly influences both
exosome release and the shedding of ligands [159]. Additionally, hypoxia diminishes the
effector functionality of the NKG2D receptor expressing immune populations [160–162].

Biorender.com
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Relevant to clinical implications, investigators have sought to target hypoxia-induced
immunosuppression in the hopes of enhancing immunotherapies [159,163–167].

4.2. Exosomes

One mechanism cancer cells use to regulate NKG2D ligands is their extracellular
release through vesicular transport via exosomes [168]. In response to different stimuli,
exosomes are intracellularly produced during endo-lysosomal processing and then released
into the external microenvironment. Multiple tumor models including ovarian, mesothe-
lioma, and cervical cancer have displayed the regulation of ligands through enhanced
exosome production and release [169–171]. Specifically in leukemia cells, tumor-specific
stressors, such as thermal and oxidative stress, promoted the release of exosomes con-
taining NKG2D ligands that subsequently diminished NK cell cytotoxicity [172]. This
exosome-mediated immunosuppressive phenotype has also been observed in prostate
cancer cells where cancer cell-derived exosomes containing MICA/B, ULBP1, or ULBP2
led to the downregulation of NKG2D receptor expression on effector populations [173].
Elegantly proving this mechanism, the supplementation of tumor-derived exosomes to
healthy lymphocytes led to the subsequent downregulation of NKG2D receptor expres-
sion [173]. In the broader context of the tumor microenvironment, exosomes derived from
other cell populations, such as dendritic cells, regulate immune reactivity. Interestingly,
dendritic cell-derived exosomes containing NKG2D ligands were able to enhance the pro-
liferation and activity of NK cells through an IL-15Ralpha-mediated mechanism [174]. The
exact mechanisms that regulate ligand secretion via exosomes remains to be elucidated, as
exosomes are an evolving area of study.

4.3. Immunosuppressive Signaling Regulators

Many signaling pathways are aberrantly active under malignant conditions, and
some of these may repress the expression and activity of NKG2D pathway intermediates.
For example, transforming growth factor beta (TGF-β) has a multi-faceted role in cancer
progression, where its effects on the tumor microenvironment can dampen immune cell
activity [175]. In a lung cancer model, Lee et al. recently determined that TGF- β negatively
regulated NGK2D ligand expression through the upregulation of MMP activity [176].
Similarly, TGF-β-suppressed NKG2D ligands MICA, ULBP2, and ULBP4 via MMP activity
in a glioma model [177]. Importantly, in addition to repressing ligand expression, TGF- β
has also diminishes the effector activity of NKG2D-bearing T-cells [178–180].

Another pathway implicated in the negative regulation of NKG2D ligand expression
is the Janus Kinase and Signal Transducer and Activator of Transcription (JAK/STAT)
pathway. In melanoma, MICA expression was negatively regulated by the production of
interferon-gamma mediated by the activity of STAT1 [181]. In a castration-resistant pancre-
atic cancer model, the JAK/STAT signaling axis also regulated NKG2D ligand levels [182].
Specifically, IL-6 mediated the activation of JAK-STAT3, which led to a repression of multi-
ple NKG2D ligands (MICA, MICB, ULBP1, ULBP2, and ULBP3) and evasion from NK cell
killing [182]. Interestingly, this study also determined that the IL-6/JAK/STAT3 signaling
cascade regulated the expression of the immune cell inhibitory molecule Programmed
Death Receptor Ligand 1 (PD-L1), which is known inhibit effector cell activity [182–184].
Other studies have also demonstrated the negative regulation of NKG2D ligand expression
via the PDL1/2 axis. For example, Okita et al. determined that MICA, ULBP2, ULBP5, and
ULBP6 expression was induced in response to cisplatin [185]. However, along with this
increase in NKG2D ligands, there was also an induction of PDL-1, diminishing the potential
of NK cell-mediated killing [185]. A recent study by Lee et al. suggested that radiotherapy
could induce expression of MICA, MICB, ULBP1, ULBP2, and ULBP3 in melanoma cells,
but the concurrent induction of PD-L1 on the cells diminished the potential cytotoxic effect
of the NK-92 cell line [186].

There is also increasing evidence that the epigenetic landscape regulates the expres-
sion patterns of NKG2D ligands. For example, histone deacetylases suppress NKG2D
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ligand expression. In epithelial tumor cells, both pharmacologic and genetic inhibition of
histone deacetylase 3 (HDAC3) were able to rescue the suppressed expression of ULBP1-3.
Mechanistically, it was determined that in response to stress, HDAC3 was recruited to the
promoter regions of ULBP1-3, where it mediated the direct repression of these ligands. Re-
cently, Histone Deacetylase 8 (HDAC8) was shown to modulate glioma immune responses
through regulation of NKG2D ligands. Following pharmacologic inhibition of HDAC8,
chromatin immunoprecipitation sequencing (ChIP) analysis identified a direct regulation of
MULT-1, Rae-1, and H60 murine NKG2D ligands [187]. Collectively, the diverse regulatory
mechanisms for NKG2D ligand expression provides promising therapeutic targets.

5. Therapeutic Approaches Utilizing NKG2D Ligand Expression

Identifying treatments that induce NKG2D ligands to enhance immune cell-mediated
killing is a promising immunotherapy approach (Table 1). While they have off-target effects,
standard of care radio- and chemotherapy can alter the NKG2D pathway [188–190]. In
glioblastoma, radiation and the DNA alkylating agent, temozolomide, were shown to
induce MICA, MICB, ULBP2, and ULBP3 ligand expression in vitro and in vivo, which
conferred higher immunoreactivity [191]. Additionally, temozolomide was able to induce
multiple NKG2D ligands (MICA/B, ULBP1-3) in a glioblastoma stem cell model [106].
These findings support previous work performed by Lamb et al. where a transient induction
of MICA/B, ULBP1-ULBP3 ligands was observed in standard models of glioblastoma
after treatment with temozolomide [93]. Interestingly, the addition of gamma delta T-
cells engineered to be temozolomide-resistant (through overexpression of the DNA repair
enzyme methylguanine DNA methyltransferase (MGMT)) to temozolomide treatment
increased overall survival in mice bearing glioblastoma xenografts [192,193]. Based on
these results, temozolomide-resistant gamma delta T cells combined with standard of care
temozolomide are being investigated in a phase 1 clinical trial as upfront maintenance
therapy in adults with glioblastoma (NCT04165941).

The heterogeneous regulation of NKG2D ligands provides multiple potential avenues
for immunotherapies that enhance ligand expression. As illustrated in Figure 2, TGF- β
is a negative regulator of NKG2D ligand expression. Either genetic or pharmacologic
inhibition of this pathway has shown promise at restoring ligand expression and effector
cell activity [194,195]. Recently, in a preclinical breast cancer model, Liu et al. observed
therapeutic efficacy of an encapsulated combination of TGF-β inhibitors with selenocystine.
The combination enhanced NK cell-mediated tumor cell death through the induction of
MICA, MICB and ULBP1-4 [196]. In addition, HDAC inhibitors are a promising approach
and have proven successful for enhancing NKG2D ligand expression in a variety of cancer
models [197–202]. Another approach being explored is inhibiting MMP activity to decrease
the shedding activity that may limit cytotoxic effects [136–138]. In addition to targeting
the negative regulators of NKG2D ligands, activating the positive regulators of NKG2D
ligands has proven successful in a variety of cancer types. For example, DDR activation
through small molecule inhibition can increase NKG2D ligands. Furthermore, heat shock
protein inhibitors (i.e., HSP90), inhibitors of apoptosis (IAP), and proteosome inhibitors
have been shown to enhance the expression of a variety of NKG2D ligands in different
cancer types via the activation of DDR pathway mediators [203–205].

Another promising cancer therapeutic that may be responsive to NKG2D pathway
manipulation is oncolytic virotherapy [206–208]. As a well-established stressor to induce
NKG2D ligand expression, viral infection targeting malignant cells may result in ligand
induction to potentiate the cytotoxic effect of NKG2D bearing immune populations [209–213].
As cancer cells are highly adaptable, there are mechanisms to evade viral-induced NKG2D
ligand expression. Therefore, strategic manipulation is necessary to maximize therapeutic
effect. Table 1 summarizes current clinical trials utilizing NKG2D pathway manipulation
(Table 1). As a by-product of ligand induction, an added advantage may be the identification
of predictive biomarkers to support NKG2D-driven immunotherapy [214–217].
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Table 1. Current clinical trials utilizing the NKG2D stress response pathway.

Study Title Disease Targeted Therapeutic Approach Clinical Trials Identifier

NKG2D-based CAR T-cells Immunotherapy for Patient
with r/r NKG2DL+ Solid Tumors

Hepatocellular Carcinoma, Glioblastoma,
Medulloblastoma, Colon Cancer

Autologous genetically modified
anti-NKG2DLs CAR transduced T cells NCT05131763

NKG2D CAR-T Cell Therapy for Patients With Relapsed
and/or Refractory Acute Myeloid Leukemia Acute Myeloid Leukemia NKG2D CAR T cells NCT04658004

Pilot Study of NKG2D CAR-T in Treating Patients with
Recurrent Glioblastoma Recurrent Glioblastoma NKG2D CAR T cells NCT04717999

alloSHRINK—Standard cHemotherapy Regimen and
Immunotherapy with Allogeneic NKG2D-based

CYAD-101 Chimeric Antigen Receptor T-cells
Unresectable Metastatic Colorectal Carcinoma

Allogeneic NKG2D-based CYAD-101
Chimeric antigen Receptor T-cells, 5-FU,

leucovorin, oxaliplatin, irinotecan
NCT03692429

Safety Study of Chimeric Antigen Receptor Modified
T-cells Targeting NKG2D-Ligands

Acute Myeloid Leukemia,
Multiple Myeloma

Myelodysplastic Syndrome
NKG2D CAR T cells NCT02203825

Pilot Study of NKG2D-Ligand Targeted CAR-NK Cells in
Patients With Metastatic Solid Tumours Solid Tumors CAR-NK Cells followed by IL-2 injection NCT03415100

Immunotherapy of CD8+ NKG2D+ AKT Cell With
Chemotherapy to Pancreatic Cancer Pancreatic Ductal Adenocarcinoma CD8+, NKG2D+, AKT cells, Gemcitabine NCT02929797

NKG2D CAR-T(KD-025) in the Treatment of Relapsed or
Refractory NKG2DL+ Tumors

Solid Tumor,
Hepatocellular Carcinoma,

Colorectal Carcinoma,
Glioma

Autologous genetically modified
anti-NKG2DLs CAR transduced T cells NCT04550663

Adoptive Cellular Immunotherapy Following
Autologous Peripheral Blood Stem Cell Transplantation

for Multiple Myeloma
Myeloma, Transplant Eligible Patients Cytotoxic T-cells, IL-2, GM-CSF NCT00439465

Novel Gamma-Delta (γδ) T Cell Therapy for Treatment of
Patients with Newly Diagnosed Glioblastoma (DRI) Glioblastoma Gene modified drug resistant immunotherapy

(γδT Cell) administered NCT04165941
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Although this notion of NKG2D ligand induction for immunotherapies is exciting,
the heterogeneity of tumors across tissue types, and even the intratumoral heterogeneity
amongst patients, makes universal prognostic indicators extremely difficult. In certain
instances, there is a benefit to having NKG2D ligands robustly induced and expressed.
However, in other tumors, sustained NKG2D ligand overexpression is a negative indicator
of overall patient survival. For example, from an immunohistology screen, MICA/B and
ULBP1 were shown to be both correlated and good prognostic indicators for cervical
cancer patient survival [215]. On the other hand, a recent bioinformatic analysis of ULBP1
expression in colon adenocarcinoma patients revealed ULBP1 as a negative indicator
of overall patient survival [218]. Interestingly, in colorectal cancer, MICA and ULBP5
(RAET1G) co-expression was shown to positively influence overall patient survival [219].
However, their expression was most abundant in stage 1 metastatic tumor nodes, while
expression decreased as the tumor stage increased [219]. The tissue and patient-specific
reasoning behind differential survival responses to NKG2D ligand expression has not been
clearly elucidated, and further research investigating the regulation of this pathway that
carefully considers heterogeneity, including in preclinical models, is needed.

6. Conclusions

Employing the NKG2D stress response pathway for therapeutic benefit is an exciting
immunotherapy strategy. While significant strides have been made in the foundational
understanding of these immune-modulating ligands, there is still ample room to increase
our understanding to utilize this pathway more precisely for clinical benefit. The diverse
regulation of NKG2D ligands provides numerous therapeutic opportunities. There re-
mains a need for further investigation of the mechanistic role that oxidative stress has on
NKG2D ligand expression. In addition, a better understanding of the tumor microenvi-
ronment is critical. The nutrient availability, oxygen tension, and overall acidity of the
tumor microenvironment largely affect signaling cascades. The large-scale implications of
these environmental conditions have not been well established in the context of NKG2D
ligand expression and may provide needed opportunities to enhance the effectiveness
of immunotherapies. Additionally, further investigation into tumor-specific niches and
regulation is necessary.

As evidenced by the diverse clinical responses amongst different tumor types, variabil-
ity in NKG2D ligand-based immunotherapy efficiency is apparent: this warrants further
investigation to identify strategies that may need to be disease-specific to overcome this
differential response. For example, blood-borne (liquid) malignancies have often been
utilized as models for the foundational mechanistic studies for NKG2D ligand biology,
and these tumor types have shown significant success this specific type of immunother-
apy [109,119,152,220]. However, due to the cellular heterogeneity and physiologic complex-
ity that many solid tumors possess, targeting solid tumors with NKG2D ligand induction
may have more therapeutic hurdles. Resulting from the diverse nature of solid tumors,
the expression of NKG2D ligands can also be heterogeneously induced depending on the
stimuli. As many cells within the tumor microenvironment differ in both therapeutic sensi-
tivity and antigen generation/presentation, there is a benefit to utilizing stress-responsive
NKG2D ligands. Under stressful stimuli, multiple ligands may be induced on differing
cell populations within the tumor. These stimuli may arise from a variety of sources such
as the different chemotherapeutic agents commonly employed as first-line treatments to
newly diagnosed cancers. Despite the potential NKG2D ligand induction being diverse,
with ligands displaying varying induction time/stability, intratumoral heterogeneity, and
abundance, there is still the potential therapeutic benefit as the tumor becomes more rec-
ognized by the immune system. This enhanced recognition by effector cells may allow
for the better implementation of cell-based immunotherapies by mechanistically making
historically immunogenically cold tumors (inactive) turn hot (active). To illustrate this point
further, some chemotherapies that have been investigated for NKG2D ligand induction
in cancer are summarized below (Table 2). In summation, targeting the NKG2D stress
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response pathway has shown extraordinary promise in preclinical settings for treatment of
cancer, and with further research, there is an opportunity to implement these strategies to
maximize therapeutic efficacy.

Table 2. Chemotherapies investigated in cancer for NKG2D ligand induction.

Chemotherapy Cancer Type Ligands Induced Reference(s)

Cisplatin Lung MICA/B; ULB2/5/6 [185,221]
Bortezomib Multiple Myeloma AML, ALL MICA/B; ULBP1/2/3/5/6 [222–224]
Gemcitabine Lung, Hepatocellular, Colorectal MICA/B; ULBP1/2/3/5/6 [225–227]

5-Fluorouracil Pancreatic Cancer, Lung MICA/B; ULBP1/2/4/5/6 [228,229]
Pemetrexed Lung MICA/B; ULBP2/5/6 [230]
Vemurafenib Melanoma MICA; ULBP2 [231]
Decitabine Osteosarcoma, IDH Mutant Glioma MICB; ULBP1/3 [105,232,233]

Temozolomide Glioblastoma MICA/MICB; ULBP1/2/3/4 [93,191,192]
Metformin Leukemia ULBP1 [234]
Gefitinib Lung MICA; ULBP1/2 [226,235]
Erlotinib Lung MICB; ULBP1 [236]

Dacarbazine Melanoma Rae-1; Mult-1 [237,238]
Sunitinib Nasopharyngeal MICA/B; ULBP1/2/3 [239,240]

Trabectedin Multiple Myeloma MICA/B; ULBP1 [241]
Sulforaphane Breast, Adenocarcinoma, Lymphoma MICA/B [242]
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