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Abstract: Electronic skin (e-skin) has brought us great convenience and revolutionized our way of
life. However, due to physical or chemical aging and damage, they will inevitably be degraded
gradually with practical operation. The emergence of self-healing materials enables e-skins to achieve
repairment of cracks and restoration of mechanical function by themselves, meeting the require-
ments of the era for building durable and self-healing electronic devices. This work reviews the
current development of self-healing e-skins with various application scenarios, including motion
sensor, human–machine interaction and soft robots. The new application fields and present chal-
lenges are discussed; meanwhile, thinkable strategies and prospects of future potential applications
are conferenced.

Keywords: electronic skin; hydrogels; self-healing; wearable sensors; flexible electronics

1. Introduction

Electronic skin (e-skin) is a highly integrated and ingenious electronic system that
can convert various external stimuli such as pressure, deformation and humidity into
electronic signals. It also can imitate some basic functions of human skin including the
capability of stretching, self-healing and versatile senses [1–3]. It has shown large potential
for application in wearable healthcare sensors, tactile devices, robotic artificial skin, pros-
theses and implantable medical devices [4,5]. To date, e-skin has achieved flexibility, low
weight, miniaturization and multifunctionality [6,7]. However, under the action of many
factors such as stretching, twisting, cutting, compression and excessive usage, the abrasion,
degradation or mechanical damage of e-skins is caused inevitably. This weakens its per-
formance and results in failure, followed by seriously reduced reliability and shortened
service life [8–11]. The high integration of e-skin makes it difficult and costly to maintain
after damage. In addition, the wide application of e-skin will generate a large amount of
electronic waste, causing environmental pollution [12]. Therefore, designing e-skin with a
self-healing ability is an ideal way to address these problems.
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In nature, after being subjected to a certain range of external mechanical damage,
organisms can repair themselves and restore their original structures and functions [13,14].
Inspired by this, researchers have conducted many studies on artificial self-healing sys-
tems [15,16]. Self-healing e-skin combines self-healing materials with electronic devices
and has become one of the main research areas of artificial self-healing systems. To date,
scientists have proposed a new requirement for the ideal e-skin: that it can restore not only
structural and mechanical properties, but even its electrical properties and functions to
improve the durability, reliability and safety of the e-skin [17,18].

Current self-healing e-skin application scenarios involve soft robotics systems, health
monitoring devices, artificial intelligence and communication devices. Focused on the
self-healing property of these e-skins, we summarize its recent research developments here,
with comprehensive consideration from commonly used self-healing materials and self-
healing mechanisms to device design principles and resultant performances. Additionally,
future perspectives and possible strategies for existing challenges are emphasized, which
can inspire the development of high-performance and multifunctional self-healing e-skins.

2. Self-Healing Mechanisms

At present, the healing mechanisms of self-healing materials include autonomous and
nonautonomous systems. Non-autonomous self-healing materials can be incorporated
into the material system and usually require external stimulation, such as light, heat or
pH, to achieve the healing effect. However, autonomous self-healing materials can initiate
the self-healing process without any external stimuli or triggers [19]. On the whole, self-
healing materials can be categorized into intrinsic and extrinsic systems according to the
self-healing principles.

2.1. Extrinsic Self-Healing Materials

Materials with the extrinsic self-healing nature usually repair the damage with pre-
added healing agents, which typically contain catalysts and reactive precursors within
self-healing materials [19]. Healing agents are usually stored in the microcapsule or mi-
crovascular network based on polymer matrixes. Upon damage, the containers will rupture
while the healing agents are delivered to the crack to achieve the repairing effect by poly-
merization or chemical reactions. In addition, since the trigger that activates healing is
the destructive force that causes the encapsulations to break and the healing agents to be
released, some external stimuli such as heat or light are usually required to promote the
self-healing behavior.

2.1.1. Microcapsule Embedment

The capsules’ inserted compounds with reactive groups or healing functionality could
carry out chemical reactions leading to materials healing, which include various processes
such as ring-opening metathesis polymerization, crosslinking reactions, cyclo-addition,
cyclo-reversion or mechanochemical catalytic activation [19]. The healing agent will flow
by capillary action and reach the fracture location when the microcapsules fracture and
break, where the healing agent diffuses in the two fracture surfaces by means of surface
tension to achieve the purpose of healing [20]. Furthermore, the precursor interacts with
the adjacent intercalated catalyst to form a network that prevents further crack growth and
restores mechanical integrity by continuing the above reaction.

White et al. reported the first structural polymer material whose microencapsulated
healing agent has the ability to heal damage autonomously [21]. Cracks in the matrix
caused the microcapsules to rupture and release a dicyclopentadiene (DCPD) monomer,
then the healing agent diffused to the crack interface under the capillary action. Thereafter,
the DCPD monomer is contacted with the embedded catalyst to initiate ring-opening
polymerization, thereby repairing the crack. Structural design, preparation methods and
self-healing mechanisms are the key factors of the research on microencapsulation self-
healing systems. Among them, the preparation technologies of microcapsules, including in
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situ/interfacial polymerization, melt dispersion, sol–gel reaction, microemulsion polymer-
ization and the acid wash emulsion template method, have matured [13,22]. Furthermore,
the wide selection of self-healing agents, including monomeric, catalytic and liquid metal
alloys, enables self-healing composites with many specific properties. Blaiszik et al. de-
signed nanocapsules with an average size of 220 nm, and Kirkby et al. further modified
this design [23,24]. The incorporated shape memory alloy (SMA) filaments were contained
in the composites to reach the reduction of crack volume and improvement of crack-filling
factor. However, a repeated healing process was only possible after the first damage if the
healing agents remained in the damaged region [25].

2.1.2. Microvascular Embedment

To address the limitation that self-healing materials can only heal once, researchers
designed a self-healing microvascular system. Inspired by the respiratory system of living
organisms, microvascular technology was utilized. Composite materials for self-healing
properties are usually composed of very fine hollow fibers and a mesoporous structural com-
pound, which can effectively increase the lifespan of the incorporated structural material
and achieve multiple self-healing processes [26]. When damage occurs, the interconnected
complex network of hollow vessels or canals is retained due to the embedment of microvas-
cular technologies, and the healing agent is incorporated. This state continues until the
fractures are repaired [27,28].

Cuvellier et al. have been researching tailored pullulan nanofibers by electrospinning
to replace the microcapsules and then improve the mechanical properties and self-healing
abilities of e-skins [29]. The selection of healing agents will affect the performance of the
healing process. Moreover, this group has studied four types of healing systems to improve
self-healing and found that a higher glass transition temperature leads to a higher healing
capability [30]. However, the consumption of the healing agent is irreversible, directly
making it impossible for a microencapsulated self-healing system to achieve multiple
healings at the same site. In order to improve the self-healing capacity of a vascular system,
vascular network systems with different dimensions are designed, such as one-dimensional
(1D), two-dimensional (2D) or three-dimensional (3D) networks [31].

White et al. developed a biomimetic self-healing microvascular network [32,33].
Mimicking biological vasculature, they constructed a 3D hollow microtubule network
in the matrix filled with healing agents. The self-healing mechanism of the microvas-
cular network was similar to that of microcapsules, but the most important difference
was that the microvascular network structure could store more self-healing agents and
realize multiple self-healings. After that, White et al. further developed a microcapsule–
microvascular self-healing composite system for repairing multiscale damage caused by
impact puncture [34–36]. Although the authors achieved multiple self-healing goals, the
fabrication process of such a self-healing system was very complex and time-consuming,
resulting in a high cost.

2.2. Intrinsic Self-Healing Materials

Unlike the extrinsic self-healing mode, the intrinsic self-healing mode does not require
a self-healing agent and can achieve multiple reversible self-healings. Compared with
the extrinsic self-healing mode, it has a more stable and reliable self-healing ability and
avoids complex encapsulation and dispersion steps [18]. Overall, the intrinsic self-healing
mode depends on the recombination of internal reversible dynamic covalent bonds or
the reconstruction of non-covalent bonds between cracked interfaces [37]. Reversible
dynamic covalent bonds, such as imine bonds [38], disulfide bonds [39], acylhydrazone
bonds [40], carbon–carbon double bonds [41], urea bonds [42] and so on, possess stronger
bond energy than noncovalent bonds, which makes it possible for self-healing materials to
realize outstanding mechanical properties and stable self-healing abilities. To develop new
materials with dynamic crosslinking properties, reversible covalent bonds are commonly
used, including the Diels–Alder (DA) reaction, disulfide exchange reaction and transes-
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terification reaction. However, most intrinsic self-healing materials with covalent bonds
usually require external stimuli to generate the healing process due to the slow formation
of covalent bonds, such as heat, light and pH changes.

The forces in supramolecular chemistry are reversible dynamic non-covalent bonds
dominated by hydrogen bonds [43], π–π stacking [44], hydrophobic interactions [45],
host–guest interactions [46] and metal–ligand bonds [47], which endow materials with
self-healing functions mainly through inter- and/or intramolecular interactions between
the specific functional moieties of the polymer chains. These forces are relatively weak
compared to covalent bonds but have strong advantages in forming dynamic systems.
Different from networks formed by covalent bonds, those formed by non-covalent bonds
can be reversibly reconfigured from fluid-like, low-density and high-free-volume states to
solid-like, low-free-volume, elastic and plastic networks.

2.2.1. Hydrogen Bonds

Crosslink elastomeric networks with self-healing capacities commonly contain hy-
drogen bonds [48,49]. The hydrogen bond energy is theoretically about 10 kJ mol−1; the
specific value depends on the electron donor and acceptor. Weaker bond energies allow
hydrogen bonds to reform with less energy after being broken. Low-bond-energy crosslink-
ing negatively affects the mechanical strength, creep properties and strain recovery of
the material, but its orientation and higher crosslinking concentration per unit volume
provide acceptable properties for the material [50]. Multiple weak interactions between
hydrogen bond units form a supramolecular polymer network that can greatly improve
the mechanical strength and structural stability of the material, while the network can
prompt the reform of the hydrogen bonds [51]. After the damage occurs in the material,
the hydrogen bonds will resist external force and break. When the cross-sections of the
material come into contact again, the molecules drift dynamically and the hydrogen bonds
are reformed. At that point, the properties of the material return to their original state. The
material based on hydrogen-bond self-healing allows the material to undergo multiple
cycles of damage and healing [52]. Because of these advantages, the study of materials
utilizing hydrogen bonding for self-healing has received extensive attention.

Inspired by multiple hydrogen bonds linked by the double helix structure of deoxyri-
bonucleic acid (DNA), to obtain an ultrafast self-healing ability and autonomy, Cao et al.
used biologically derived carboxyl cellulose nanocrystals (C-CNC) with shell chitosan
(CT)-decorated epoxy natural rubber (ENR) latex to construct multiple hydrogen bond in-
teractions [53,54]. The synthesized sample multiple-hydrogen-bonding elastomer (MHBE)
showed an ability to self-heal in real time in just 15 s, which is much faster than most self-
healing elastomers reported previously [54]. Moreover, it still showed high toughness and
high recovery efficiency after three fractures (η ≈ 93%). In the bending failure re-healing
experiment of the sample, the resistance of the self-healing sample increased only slightly
(not more than one order of magnitude) after bending more than 20,000 times. SEM images
exhibited that the damaged interface was completely healed without scarring, confirming
the complete self-healing process.

2.2.2. Thermo-Reversible Covalent Bonds

Materials accomplished intrinsic self-healing by thermo-reversible covalent bonds
through the DA reaction mostly [55–57]. The reaction could enable the crosslinks between
the diene and dienophile groups, rendering a firm network [57]. When the crack occurs, the
healing mechanism would be initiated by the increase in the temperature, which induces the
reaction in the direction of exotherm and breaks the crosslinks. As a result, the reactive diene
and dienophile groups would gather, increasing the concertation. Once the reactants are
facilitated to contact closely and cool at a lower temperature, the reaction equilibrium would
move towards the opposite direction to establish the network caused by the formation
of crosslinks [57]. The mechanism of introducing the structure characterized by thermo-
reversible covalent bonds has been proven to be a potential solution for efficient self-healing.
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Terryn and his team have applied this mechanism in the realm of the construction of soft
robotics such as soft grippers, soft hands and artificial muscles [58]. The result showed that
the self-healing efficiencies of the materials reached up to 98% with no weak spots.

2.2.3. Photo-Reversible Bonds

Photo-reversible self-healing bonds are achieved by the introduction of photo-reversible
bond features with the ability to repair the damage locally, which makes them superior in
this realm [48]. In the photo-reversible reaction, the olefinic compounds decompose into
cyclobutane-type compounds by dimerization reactions with irradiation of UV light above
300 nm wavelength. Interestingly, this kind of conversion can be inverted with the exposure
of UV light with a shorter wavelength [59]. Recently, the introduction of photo-reversible
bonds has been applied to the research of e-skins effectively. George P. Simon and Kei
Saito selected four photo-reversible crosslinking epoxies by curing a series of commercially
available epoxies by using two anthracene-based diamine crosslinking agents [60]. The
results show that the repair effect is due to the photo-reversible cracking of anthracene
dimers in the center of the crosslinking agents, which leads to the transition from the rigid
and flexible phase to the mobile phase and then restores to the rigid and flexible phase
after filling the damaged part. The research confirmed the existence of this mechanism in
polymer networks through analytical tests and explained in detail the healing effects of
photo-reversible reactions.

2.2.4. Exchange Reaction Covalent Bond

Exchange covalent bond reactions can lead to intrinsic healing. Once the covalent
bonds break with the external stimulus, the new covalent bond of a similar type forms
simultaneously to heal the damage effectively [61]. During the exchange reaction, the num-
ber of bonds keeps a constant. However, the rate of the exchanging process is accelerated
with the increase in temperature. While the e-skin is damaged, at the location of the fracture,
the exchange reaction introduces a new covalent bond which compensates for the breakage
of the original bond [62,63]. Chen Y. and Tang H. propose a facile approach to preparing
permanently crosslinked yet self-healing and recyclable diene rubber by programming
dynamic boronic ester linkages into the network, which is synthesized through a one-pot
thermally initiated thiol-ene “click” reaction between a novel dithiol-containing boronic
ester crosslinker and commonly used styrene–butadiene rubber without modifying the
macromolecular structure [64]. The samples they prepared were covalently crosslinked,
and their mechanical strengths can be simply adjusted by varying the content of the boronic
ester. Owing to the transesterification of boronic ester bonds, the samples can alter network
topologies, endowing the materials with self-healing abilities and malleability.

2.2.5. Ionic (Coordination) Complexes

Ionic interactions were also able to take part in the self-healing polymers based on
reversible crosslinked networks [65,66]. Comparable with hydrogen bonds because of their
saturability and direction abilities leading to the loss of self-healing abilities under room
temperature, ionic bonds are a strong electrostatic interaction between the opposite charges’
atoms or groups [67]. The ionic bond is not only unsaturated but also directional, so the
ionomers are formed due to the charges being arranged with as many as possible around
an opposite charge. Self-healing is achieved by contacting opposite charges on the fracture
surface and then through the attraction of the ionic interaction of opposite charges.

To achieve the self-healing ability of rubbers, one of the most effective methods is
introducing a reversible ionic network. The substance named “lutiods” is contained in
natural rubber that could form protein dimers under the influence of Ca2+ ions. Inspired
by the rubber tree itself, Nuur Laila Najwa Thajudin introduced Zn2+ to substitute Ca2+,
which enabled the formation of a reversible network and endowed the natural rubber with
the self-healing ability [68]. This method provided a new direction for forming self-healing
natural rubber.
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2.2.6. π–π Stacking Interactions

The π–π stacking interactions between π orbitals of aromatic rings are often regarded
as an extension of coordination chemistry [69]. These π–π stacking interactions, which are
highly dependent on chemical structure and stereochemistry, are essentially a kind of re-
versible non-covalent bond interaction as well as a vital factor for the self-healing properties
of materials [70]. For example, dynamic reversible π–π stacking interactions of the fluorenyl
rings enabled the Fmoc-grafted chitosan and Fmoc peptide (FC/FI) hybrid hydrogel to
exhibit excellent injectable and self-healing properties, which can be used to repair spinal
cord injuries [71]. The combination of π–π stacking interactions, metal-coordination chem-
istry and/or H-bonding has been used for the design of several self-healing elastomers. For
instance, the π–π stacking interactions between Pt–Pt and a cyclometalated platinum (II)
complex was able to form a high stretchable and self-healable polydimethylsiloxane (PDMS)
backbone [72]. Compositing with metal nanoparticles also has value to be developed. For
example, π–π stacking interactions between pyrene-functionalized gold nanoparticles and
the polymer matrix, including a blend of pyrene-functionalized poly amide (π–electron
donor) and polydiimide (π–electron acceptor), can result in self-healing [73]. In addition,
thermally triggered self-healing can be achieved under the conjunction of π–π stacking
interactions and H-bonding [74].

In addition, the combination of π–π stacking interactions and H-bonding can be a
feasible way to design UV-triggered self-healing materials. For example, polydopamine
(PDA)-containing benzene rings and polar groups, including hydroxyl, amino and carbonyl
groups, can enhance the compatibility of SiO2/PDA hybrid microcapsules and maintain
a satisfactory self-healing ability due to π–π stacking interactions between benzene rings
and H-bonding between these polar groups [75]. Conductive self-healing polymers such
as lithium–sulfur battery anodes can be considered integrating ionic moieties into π–π
stacking systems, which may provide technical opportunities for development [76]. The
unique multi-crosslinked double-network structure including Schiff-base dynamic covalent
bonding, hydrogen bonding and π–π stacking interactions endows the hydrogel with
both improved injection abilities and mechanical performance while self-healing faster
than single-network hydrogels [77]. Hydrogels assembled via π–π stacking interactions,
hydrogen bonds, dynamic borate ester bonds and cation coordination possess tunable
mechanical properties, excellent self-healing properties and reversible degradation be-
havior in response to pH, glucose and ion concentration [78]. However, the bond energy
(8–12 kJ/mol) of π–π stacking is lower than the hydrogen bond energy and the crosslinks
formed are relatively weak, which makes it difficult to guarantee the strengths and elastic
recovery of materials [79]. Therefore, the application of π–π stacking interactions in the
field of self-healing flexible electronics is also limited.

2.2.7. Metal–Ligand Interactions

By acting as reversible physical crosslinks, metal–ligand (coordination) complexes can
also achieve supramolecular network formation [80,81]. Similar to the clusters in ionomers,
metal–ligand coordination complexes are formed between metal ions and appropriate lig-
ands, linking the polymer chains together [82]. Since the charge on the metal ion is usually
much bigger than that of the ligand molecule, the ionic interaction is correspondingly
stronger than the dipole–ion interaction, that is, the metal–ligand crosslinking complexes
are much weaker. This endows them with the ability to heal macroscopic cracks at ordinary
temperatures without the need for an external stimulus. Another appealing feature associ-
ated with metal–ligand interactions is that the association strengths will different when
coordinating with different kinds of metal ions and ligand substitutes.

2.2.8. Host–Guest Interactions

Guest–host chemistry is commonly used in constructing self-healing polymers. For in-
stance, the hydrophobic cavity of β-cyclodextrin can accommodate a diverse range of guest
moieties [83,84]. When a surface containing one cyclodextrin host meets the other guest
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molecules, host–guest interactions will occur and result in bonding [85]. The supramolecu-
lar polymers possess multiple molecular recognition sites, which are realized by various
water-soluble polymer backbones modified by β-cyclodextrin hosts and hydrophobic
adamantine as side-chain guests. This facile approach yields a transparent, flexible and
tough hydrogel, which can self-heal regardless of wet or dry states [86]. Supramolecular
hydrogels prepared from modified hyaluronic acid and adamantine or β-cyclodextrin are
capable of forming intermolecular host–guest bonds rapidly [87]. Changing the concentra-
tion and ratio of host and guest components can adjust the mechanical properties of the
system [88].

2.2.9. High-Temperature Transition Phase

The high-temperature transition phase could be used for the self-healing of thermo-
plastic elastomers with high physical crosslinks. This is because heat treatment could
enhance molecular mobility and assist the reformation of dynamic bonds so that the high-
temperature transition phase is a possible method for the healing of harder polymers [89].
The self-healing ability is formed by a fully reversible process of fracture upon heating and
then reconnection upon cooling. This process does not require additional ingredients such
as a catalyst, other conditions, or a special surface treatment [90].

Naoko Yoshiea developed a method that could recover mechanical properties of
self-healing polymers by mild heating [89]. Through the reversible DA reaction of poly
(2,5-furandimethylene succinate-co-propylene succinate) and bismaleimide, several kinds
of bio-based network polymers were formed. Additionally, the glass transition temperature,
Tg, could be controlled by changing the amount of bismaleimide added to the copoly-
mer. With the experiment of self-healing, there is a clear relationship between healing
ability and glass transition temperature, and, with temperatures above Tg = 15 ◦C, the
method would have a good balance between mild healing conditions and recovery of high
mechanical strength.

3. Self-Healing Electronic Skin

Fully autonomous self-healing polymers will not require human intervention; the
cost will become lower. The current self-healing methods have greatly improved upon
the traditional weak kinetic bond, which makes it possible to use these polymers as the
basis of e-skin in large-scale applications in motion sensors, soft robots, human–computer
interactions and other fields.

3.1. Motion Sensors

Motion sensors are one of the potential applications of conductive and healable
e-skin [91]. When e-skin is compressed or stretched, its resistance will change propor-
tionally along with the deformation of the e-skin, exhibiting fluctuations in the current. In
this way, human motion can be detected and transferred into electrical signals. Since self-
healing ability and high stretchability are highly desired by wearable devices, stretchable,
self-healing and conductive hydrogels have attracted considerable attention. Currently, the
representative strain sensors as graphene or semiconductor/metal can only be stretched
limitedly, not exceeding strain of 200%, and the healing ability of them is also poor [92–97].
Since human motion is usually complex and subtle, it is necessary for wearable strain
sensors to have a considerable stretchability with fast response. Additionally, to expand the
lifetime of the strain sensor and to adapt to a variety of different environments, structural
material with a good self-healing ability will be preferred. Cai et al. have researched
SWCNT/hydrogels and provided a possibility to develop further applications as strain
sensors [98]. Based on the existence of hydrogen bonds, the porous structure of the SWCNT
and polymeric network inside the SWCNT/hydrogel, this hydrogel has indicated a swift
electrical healing speed (within 3.2 s) and a high self-healing efficiency (98%). Moreover, it
is capable of bearing the strain of 1000% or the strain of 700% 1000 times. The resistance
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keeps constant even with 5 cutting–healing cycles, which means it has good healing stability
and reliability in human-motion-monitoring applications (Figure 1a).

However, in order to have an accurate detection of both large-scale and subtle human
activities, high accuracy of strain sensors is needed. Liao et al. have used carbon nanotubes,
supramolecular, biocompatible polyvinyl alcohol and polydopamine to synthesize a con-
ductive and healable PVA–FSWCNT–PDA hydrogel [99]. Due to the catechol groups on the
PDA chain, this hydrogel has special adhesive properties and can easily adhere to human
skin. The experiments have shown the cracked hydrogel can be recovered to 99% of its
original state within 2 s; meanwhile, the electrical resistance keeps at the same level and
the wearable device made by this healable hydrogel still exhibits high sensitivity to subtle
motion after the healing process (Figure 1b).
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Figure 1. Self-healing motion sensors. (a) Conductive SWCNT–hydrogel based self-healing strain
sensor. Reprinted with permission from [98]. Copyright 2017, WILEY-VCH. (b) Mussel-inspired
conductive-hydrogel-based self-healing epidermal sensor. Reprinted with permission from [99].
Copyright 2017, WILEY-VCH. (c) Gellan gum hybrid-hydrogel-based self-healing strain sensor.
Reproduced with permission from [91]. Copyright 2020, American Chemical Society.

Though the high sensitivity and high conductivity are accomplished by this hydrogel,
its stretchability is limited. Liu et al. have combined a physically crosslinked network
with a chemically crosslinked one to strengthen the mechanical properties of the gellan
gum hybrid hydrogel [91]. Hydrogen bonds and ionic association exist in the gellan gum
network; preferred mechanical properties have been achieved in this hybrid hydrogel, such
as strain at break of 1700% and fracture energy of 7840 J/m2. Due to the dual network, even
in the presence of a notch, the hydrogel can stand the strain of 1000% while the notch keeps
stable. Additionally, the native thermo-responsive property allows the gellan gum gel
network to be reformed through the heating–cooling process to achieve better properties.
With the thermo-reversible gelation of gellan gum and Na+, K+ and Ca2+ ions in gellan gum
powder, the self-healing ability and conductivity can be ensured. The experiment results of
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this hybrid hydrogel have proved that the curves of resistance vs. time almost overlap after
50 cycles of stretching and releasing, indicating good durability of the fabricated strain
sensor (Figure 1c).

3.2. Human–Machine Interaction

Human–machine interaction (HMI) as a method to realize the communication of hu-
mans and machines could make work efficient and transform the human lifestyle [100,101].
Compared to traditional HMI devices that require large numbers of letter buttons and
mice [102], new HMI devices are much more intelligent, adopting human posture or actions
as input sources. However, a huge challenge lies in how to fit the irregular surface of human
skin. The crosslinked 3D network structure and rich water content of e-skin could make
sure it is attached to any surface, such as human skin. Hence, the self-healing ability of the
e-skin is highly desired for the future development of HMI systems.

Realizing the repeatable ability of self-healing materials could ensure response reli-
ability and mechanical stability of the sensors of human–machine interactions. Cao et al.
describe a kind of hydrogen bonding sensor that is highly sensitive and capable of repeat-
able self-healing [55]. The sensor is combined with signal processing software and attached
to special places that can detect not only subtle human motions but also wrist motion. In
addition, the sensor can be directly attached to the throat to recognize different words due
to their characteristic signal curves (Figure 2a). The high sensitivity of the sensor, which en-
ables it to display the data by 15 s at the most, is achieved by C-CNC, constructing a brittle
but effective nanostructure 3D conductive network [103]. Meanwhile, C-CNC can build
a supramolecular multiple-hydrogen-bonding network to achieve repeated self-healing
abilities. The self-healing ability of the material would not be influenced even after bending
over 2000 cycles. The sensor can still provide highly sensitive and reliable results under a
high-intensity working environment for the system of human–machine interaction. The
cold resistance of self-healing material could be achieved by a special ionic-crosslinking
phase. Miao et al. designed a “C-I hydrogel” that is conductive, cold-resistant and elastic
and can be used as a potential bionic skin for human–machine interaction control [104].
The sensor can be attached to the human skin as a soft sensor. The resistance of the sensor
would change with the difference of the finger’s bending, which could be transferred
to corresponding digital signals and guide the motion of the electric steering engine by
encoding these digital signals (Figure 2b).

The ionic-crosslinking phase generated by the presence of K+ and locust bean gum
gives the hydrogel cold-resistance properties [105]. When the sensor attaches to the human
finger skin, the self-healing property makes it not fall off even under the repeating bending
motion. The notch insensitivity suggests that the gap would not extend after unloading.
Furthermore, the cold resistance of the C-I hydrogel was able to keep its softness and
stretchability at −10 ◦C, which can help realize the work of a human–machine interaction
system in a low-temperature environment. Another enabling factor of the self-healing
e-skin is biocompatibility. This design ensures the e-skin can be contacted to the human skin
directly without adverse reactions. Zhao et al. fabricated a poly(N-vinylpyrrolidone)/gallic
acid (PVP/GA) composited hydrogel, which exhibits nice self-adhesive, self-healing and
biocompatible properties [106]. The hydrogels adhering to human skin could detect physi-
ological activity signals according to the change in resistance signals (Figure 2c). The high
cell affinity of the PVP/GA hydrogels is ascribed to the presence of the biocompatible
pyrogallol groups, which are known for absorption on the hydrogel surface, leading to a
better environment for cell attachment and proliferation [107]. The biocompatibility of the
sensor could allow it to be attached to human skin directly and detect human activities in
real-time so that the biocompatibility sensor could provide reliable and sensitive data to
the HMI systems.



Gels 2022, 8, 356 10 of 18

Gels 2022, 8, x FOR PEER REVIEW 10 of 17 
 

 

2c). The high cell affinity of the PVP/GA hydrogels is ascribed to the presence of the bio-
compatible pyrogallol groups, which are known for absorption on the hydrogel surface, 
leading to a better environment for cell attachment and proliferation [107]. The biocom-
patibility of the sensor could allow it to be attached to human skin directly and detect 
human activities in real-time so that the biocompatibility sensor could provide reliable 
and sensitive data to the HMI systems. 

 
Figure 2. Self-healing human–machine interaction. (a) Multiple-hydrogen-bonding-elastomer-
based self-healing sensor. Reprinted with permission from [55]. Copyright 2017, WILEY-VCH. (b) 
Conductive cold-resistant and elastic hydrogel-based bionic skin. Reprinted with permission from 
[104]. Copyright 2021, Elsevier. (c) Conductive poly(N-vinylpyrrolidone)/gallic acid hydrogel-based 
wearable sensor. Reproduced with permission from [106]. Copyright 2020, Elsevier. 

3.3. Soft Robots 
Soft robots are new types of robots that have been developed in recent years 

[108,109]. Compared to traditional hard robots, soft robots made of soft organic elastomers 
require fewer parts for the system and can produce surprisingly complex movements 
based on their ability to deform under low stress [110,111]. Since the constructions of soft 
robots are almost entirely made of flexible materials, they are suitable for some complex, 
uncertain scenarios, such as cuts and perforations in uncontrolled and unpredictable 
shapes caused by sharp objects [112]. Complex scenarios demand soft robots to be able to 
heal themselves after sustaining damage. Currently, the main polymers used in soft ro-
botics are thermo-reversible polymers, which can repeatedly heal macroscopic damage in 
elastomers with relatively high mechanical strength and high healing efficiency. Since 
photo-reversible polymers can heal only damage of a limited depth (< 0.2 mm), they are 
not currently used in soft robots [55]. In addition, for many application scenarios, the gen-
eral requirement of self-healing time is in hours, but for soft robots alone, the parameter 
of self-healing time is very important (generally in the level of seconds). 

Figure 2. Self-healing human–machine interaction. (a) Multiple-hydrogen-bonding-elastomer-based
self-healing sensor. Reprinted with permission from [55]. Copyright 2017, WILEY-VCH. (b) Con-
ductive cold-resistant and elastic hydrogel-based bionic skin. Reprinted with permission from [104].
Copyright 2021, Elsevier. (c) Conductive poly(N-vinylpyrrolidone)/gallic acid hydrogel-based wear-
able sensor. Reproduced with permission from [106]. Copyright 2020, Elsevier.

3.3. Soft Robots

Soft robots are new types of robots that have been developed in recent years [108,109].
Compared to traditional hard robots, soft robots made of soft organic elastomers require
fewer parts for the system and can produce surprisingly complex movements based on
their ability to deform under low stress [110,111]. Since the constructions of soft robots are
almost entirely made of flexible materials, they are suitable for some complex, uncertain
scenarios, such as cuts and perforations in uncontrolled and unpredictable shapes caused
by sharp objects [112]. Complex scenarios demand soft robots to be able to heal themselves
after sustaining damage. Currently, the main polymers used in soft robotics are thermo-
reversible polymers, which can repeatedly heal macroscopic damage in elastomers with
relatively high mechanical strength and high healing efficiency. Since photo-reversible
polymers can heal only damage of a limited depth (<0.2 mm), they are not currently used
in soft robots [55]. In addition, for many application scenarios, the general requirement of
self-healing time is in hours, but for soft robots alone, the parameter of self-healing time is
very important (generally in the level of seconds).

Due to the complexity of soft robotics application scenarios, soft robots can be easily
cut and perforated by sharp objects [113]. Terryn et al. demonstrate that soft robots are
capable of self-healing using DA polymers with thermo-reversible covalent networks for
the development of soft grippers, soft hands and artificial muscles in self-healing soft
pneumatic actuators (Figure 3a) [112].
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Figure 3. Self-healing soft robots. (a) Schematic of the self-healing cycle of DA polymers and
validation of the self-healing ability in practice. Reprinted with permission from [112]. Copyright
2017, American Association for the Advancement of Science. (b) Testing autonomous healing at room
temperature and the self-healing efficiencies. Reprinted with permission from [114]. Copyright 2020,
IEEE. (c) A healable resistive-heater self-healing soft robot. Reprinted with permission from [115].
Copyright 2022, IEEE.

Devices fabricated with DA thermally reversible elastomers have been used on mil-
limeter scalpels, requiring heating of the parts to 80 ◦C after 40 molecules, followed by
placement at 25 ◦C at room temperature, with full recovery of performance after 24 h.
Although full recovery of performance can be achieved, the need to heat the tempera-
ture to 80 ◦C limits their application. Terryn et al. propose a new network based on DA
polymers [114]. A low maleimide-to-furan ratio is used in the fabrication of DA polymers,
which reduces the crosslink density and improves the mobility of the molecules and can
enable DA-fabricated devices to accomplish self-healing (full recovery of properties) at
room temperature (Figure 3b). More importantly, the recovery time depends on the lo-
cation of the damage, ranging from seconds to days. Although good self-healing can be
achieved without heating, defects and longer recovery times may be present. For thermally
reversible self-healing networks, higher temperatures can accelerate the healing process.
Tabrizian et al. developed a self-healing soft actuator integrated with a self-healing elec-
tronic heater in which the actuator consists of a DA thermally reversible elastomer with a
healing capability [115]. DA filled with 20% carbon black serves as a substrate of the heater,
providing conductive properties for Joule resistance heating. The heater will behave as
a localized heating source in severely damaged areas, and it takes only 15 min at 35 v to
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achieve more than 96% healing efficiency (Figure 3c). This strategy makes the self-healing
material promising for a wide range of applications in soft robotics.

3.4. Other Applications

Regarding self-healing e-skin progress, more application scenarios are being explored.
For human skin, sensing temperature is an important aspect of tactile sensing. In the field
of thermal sensors, commercial temperature sensors mainly utilize the thermal resistance
effect of pure metal or ceramic-based semiconductors [116], the resistivity of which varies
with temperature due to changes in mobility and/or carrier density (Figure 4a). However,
they are not compatible with e-skin devices due to their inherent rigidity. Most e-skin
devices use polymers as substrates, and the properties of polymers depend to some extent
on temperature due to their mobility that is easily affected by temperature. Among them,
conductive polymers have high sensitivity due to their temperature-dependent conductivity
and thus can be used as sensing materials for sensors. In temperature monitoring, e-skin
is prone to damage in a complex external environment; thus, self-healing is valued as an
important property in thermal sensors. Rapid self-healing allows e-skin to maintain high
sensitivity and durability during thermal monitoring.
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Figure 4. Self-healing e-skin devices. (a) A multifunctional epidermal electronic system. Reprinted
with permission from [116]. Copyright 2017, Elsevier. (b) Stretchable and self-healable electrical
sensors for surface texture discernment and biosignal monitoring. Reprinted with permission
from [117]. Copyright 2019, WILEY-VCH. (c) Autonomous self-healing elastomer using metal
coordination. Reprinted with permission from [118]. Copyright 2019, The Royal Society of Chemistry.

The e-skin has good sensing performance with ultra-fast response time, and it can
monitor smooth pulses at high frequencies to achieve real-time determination of the pulse
response of the wrist artery [117]. In addition, human sweat can provide a lot of human
health information, and diagnoses based on sweat can be an effective non-invasive moni-
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toring method to gather information for understanding the health condition of the human
body (Figure 4b). E-skin can capture, store and analyze sweat by fabricating skin-mountable
sweat sensors and quantitatively measuring sweat rate, total sweat volume, pH, chloride
and lactate concentrations. The gathered information can be sent wirelessly via near-field
communication technology [118]. A good self-healing ability enables an electronic device to
complete repairing itself and recovering its performance, ensuring its stable operation in a
short time after being injured by external effects such as twisting, squeezing and stretching
(Figure 4c). This makes self-healing e-skin promising for medical monitoring applications.

4. Summary

The common mechanisms for self-healing materials are extrinsic self-healing and
intrinsic self-healing. Extrinsic self-healing mechanisms usually require additional healing
agents to help repair the damaged part. Their practical application, consequently, is limited
by the fact that healing agents are easily depleted, multiple healings of the same site are
difficult and larger damages need to be repaired by encapsulating the healing agent in
hollow fibers or vascular systems. Compared with the external self-healing mechanism,
the internal self-healing mechanism will be the mainstream direction of future self-healing
technology, which promotes a self-healing ability that is more stable and reliable and can
achieve rapid multiple reversible healings through intrinsically reversible dynamic covalent
bonding or dynamic non-covalent bonding. It is worth noting that in some materials,
the conditions for non-covalent and covalent bonding self-healing are similar and not
always limited to reversible conversion of individual chemists. In addition, different
modifications of self-healing polymeric materials can lead to unique properties such as
stretchability, meeting other properties such as mechanical properties, self-healing rate and
biocompatibility required for various applications.

Although considerable progress has been made in self-healing materials, research
on electronic devices with self-healing capabilities is still in its infancy. Most current
self-healing e-skins are able to achieve almost complete self-healing but with a short life
cycle, which can lead to significant waste generation. In addition, designing conductive
ionic skins with good elasticity, complete self-healing and strain enhancement is difficult
due to stress relaxation and strain hardening. Excitingly, e-waste has now attracted the
attention of scholars and there has been some progress in that direction, which can make
it possible to recycle some of the raw materials of electronic devices. Moreover, some
scholars have designed conductive ionic skins with good self-healing and elasticity by
introducing entropy-driven supramolecular amphiphilic ion-formed e-skins in addition to
the development of materials with excellent self-healing capabilities. The future of e-skin
will still present more challenges.
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