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Abstract: The application of crumb rubber from end-of-life tires and waste cooking oil (WCO) in road
pavements is of significant importance from an economic and environmental viewpoint. However,
the incorporation of crumb rubber greatly shortens the allowable construction time of epoxy asphalt
binders due to the high viscosity of the epoxy asphalt rubber (EAR) binder and poor compatibility
between crumb rubber and asphalt binder. To lower the viscosity of asphalt rubber, extend the
allowable construction time and improve the compatibility of EAR binder, waste cooking oil (WCO)
was introduced. The effect of WCO on the viscosity–time behavior, thermal stability, dynamic
modulus, glass transitions, crosslink density, damping ability, compatibility, mechanical properties
and phase separation of WCO-modified EAR binders was investigated by using the Brookfield
viscometer, thermogravimetric analysis, dynamic mechanical analysis, universal testing machine and
laser confocal microscopy. The test results demonstrated that the incorporation of WCO declined the
viscosity and extended the allowable construction time of the unmodified EAR binder. The inclusion
of WCO improved the compatibility between asphalt and crumb rubber and the damping ability and
elongation at the break of the unmodified EAR binder. The presence of WCO had a marginal effect
on the thermal stability of the unmodified EAR binder. Confocal microscopy observation revealed
that asphalt rubber particles aggregated in the epoxy phase of the unmodified EAR binder. With the
inclusion of WCO, co-continuous asphalt rubber particles became more spherical.

Keywords: crumb rubber; waste cooking oil; epoxy asphalt; viscosity; phase separation; mechanical
properties

1. Introduction

As a thermosetting polymer-modified asphalt, epoxy asphalt is mainly composed
of asphalt and epoxy resin. Unlike thermoplastic polymer-modified asphalts, the initial
composition of epoxy asphalt includes asphalt and low-molecular-weight, or uncured
epoxy resin, which consists of epoxy oligomer and hardener [1–3]. To avoid the reaction
of the epoxy oligomer to hardener, three components of epoxy asphalt are stored sepa-
rately. An example of the three-component epoxy asphalt is the hot-mix epoxy asphalt
binder. More often than not, asphalt is premixed with hardener. In this case, epoxy as-
phalt, such as warm-mix and cold-mix epoxy asphalt binders, contains two components:
asphalt premixed with hardener and epoxy oligomer. When three components are blended,
epoxy oligomer reacts with hardener, which leads to the crosslink of epoxy resin and the
incompatibility between cured epoxy and asphalt [4–6]. As a consequence, phase-separated
morphology forms, in which the continuous phase is determined by the ratio of asphalt to
epoxy resin [7–9]. Crosslinked networks of cured epoxy completely change the thermoplas-
tic feature of asphalt and confer high strength, excellent fatigue resistance, as well as strong
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adhesion to aggregates, good temperature and water stability. Therefore, epoxy asphalt
materials have been extensively utilized as bond coats and binders in the paving of the
steel bridge [10–12]. However, the short allowable construction time increases the paving
difficulty of epoxy asphalt, especially for warm-mix epoxy asphalt binder (WEAB). Thus,
WEAB is seldom used in the pavement rehabilitation and maintenance of steel bridges. To
solve this drawback, warm-mix asphalt additives, such as Sasobit and waste cooking oil
(WCO), have been introduced into warm-mix epoxy asphalt binder [13–15].

Waste cooking oil, mainly composed of triglycerides, is the used vegetable oil that has
been heated at a high temperature and collected from food industries, restaurants, hotels
and households. It is estimated that the global generation of waste cooking oil is over 16.5
million tons annually [16]. A total of 5.6 million tons of waste cooking oil are available in
China every year [17]. As a hazardous and challenging waste, the inappropriate disposal
of waste cooking oil in landfills and drains causes soil and water pollution, oxygen scarcity
and even the death of flora and fauna in aquatics [18]. In addition, poisonous WCO-born
compounds absorbed by aquatic organisms can return to the human food chain [19]. Using
waste cooking oil in food industries can give rise to serious diseases, such as stomach aches,
dyspepsia and intestinal or gastric cancer [20]. In this case, waste cooking oil also threatens
human health. Therefore, more and more attention has been received to the sustainable
utilization of waste cooking oil [21]. Among all these strategies, the potential modification
of asphalt with waste cooking oil as warm-mix asphalt additives and rejuvenating agents as
well as raw materials to produce bio-asphalts has attracted more and more attention [22,23].
For instance, adding WCO declines the relative asphaltene content and increases the light
components of asphalt [24]. However, the elastic recovery, high-temperature performance,
rutting and deformation resistance of asphalt decrease with the addition of WCO [22]. For
epoxy asphalt, the inclusion of WCO not only extends the allowable construction time
but also lowers the glass transition temperature (Tg) of the WEAB [15]. However, phase
inversion occurs when adding 6% WCO, where asphalt becomes the continuous phase,
which highly declines the tensile strength of the WEAB.

On the other hand, fatigue crack after long service periods is one of the main distresses
of epoxy asphalt [25]. Without timely treatments, fatigue cracks propagate rapidly under
the impact of water and develop into potholes, which severely threaten road safety and
shorten the lifetime of pavements [26]. To solve this drawback, inorganic additives, such
as basalt and glass fibers [27,28], and polymers, such as styrene-butadiene-styrene copoly-
mer (SBS) [29], epoxidized SBS (ESBS) [30], ethylene vinyl copolymer (EVA) [31], waste
polyethylene (PE) [32], core-shell rubber (CSR) [33], hyperbranched polyester (HBP) [34],
poly(ethylene glycol) (PEG) [35], polyurethane (PU) [36] and crumb rubber (CR) [37], have
been employed to enhance the toughness of epoxy asphalts to relieve or eliminate fatigue
cracks. Among all developed modifiers, CR is attracting more and more attention because
of its low cost and significant improvement in the asphalt binder’s performance [38]. More
importantly, CR used in the production of asphalt rubber binder is a sustainable solution
for end-of-life tire disposal, which poses severe environmental pollution and potential
health hazards [39]. It is believed that the inclusion of CR improves the high-temperature
permanent deformation, low-temperature fatigue crack and noise-reducing capacity of
the asphalt binder [40–42]. However, CR significantly increases the binder’s viscosity by
absorbing the lighter components of the asphalt [43]. For this reason, a higher temperature
is needed for the production and pavement of asphalt rubber mixtures in comparison to
conventional asphalt mixtures, which results in high energy consumption and the release
of large amounts of harmful fumes [44]. Further, asphalt rubber binder has poor storage
stability because of the high heterogeneity between CR and asphalt and significant differ-
ence in density [45], which becomes a severe challenge for the application of asphalt rubber.
In the case of CR modified epoxy asphalt binder, also called epoxy asphalt rubber (EAR)
binder, the presence of CR significantly increases the viscosity and thus greatly shortens
the allowable construction time [37,46]. Moreover, the heterogeneity between vulcanized
rubber and asphalt results in the poor storage stability of the EAR binder.
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Recently, the combined use of WCO and CR in the asphalt modification has attracted
growing attention, since the shortcomings of the asphalt modified by a single modifier can
be overcome by combining the advantages of two modifiers [47]. There are two ways to
produce WCO-modified asphalt rubber; the first is by mixing WCO with asphalt rubber
and the second is by pre-swelling crumb rubber in WCO and then mixing it with asphalt
binder [48]. Due to the improvement of the compatibility between CR and the binder
through the chemisorption of WCO and CR [48], WCO has been utilized to improve
the storage stability and workability of the asphalt rubber binder. On the other hand,
WCO significantly reduces the viscosity of the asphalt rubber [49]. However, to our best
knowledge, there are few performance investigations on the modification of epoxy asphalt
binder with composite WCO/CR.

In this study, WCO was used an additive to lower the viscosity and the compatibility
between the CR and asphalt of EAR binders. To obtain this goal, WCO was mixed with
the industrial asphalt rubber binder to prepare the composite WCO/CR-modified asphalt
binder. Afterward, epoxy resin was added to the composite modified binder. After curing,
the composite WCO/CR-modified epoxy asphalt binder was obtained. The viscosity–time
behavior, thermal properties, mechanical performance and microstructures of composite
WCO/CR-modified epoxy asphalt binders were investigated. It is believed that an epoxy
asphalt rubber binder with a long allowable construction time and good compatibility
could be prepared.

2. Results and Discussion
2.1. Viscosity vs. Time Curves

The rotational viscosity-curing time curves of the unmodified and WCO-modified
EAR binders at 160 ◦C are presented in Figure 1. Unlike conventional asphalt rubber
binders, the rotational viscosity of the unmodified EAR binder increases in the curing time
because of the curing of epoxy [50]. The inclusion of WCO lowers the rotational viscosity
of the unmodified EAR binder. Further, the rotational viscosity of the WCO-modified EAR
binders decreases in the oil concentration. That is to say, the existence of WCO dilutes
the concentration of active epoxide and hydroxyl moieties of epoxy and thus hinders the
curing of epoxy.
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The time to reach 1 and 3 Pa·s obtained from the rotational viscosity–time curves are the
lower limit and upper limit of epoxy asphalt binder, which are often utilized to determine
the shortest and longest allowable construction time of epoxy asphalt mixtures [51]. The
lower and upper limits of the unmodified EAR binder are 66 and 94 min, respectively.
When adding 2, 4 and 6% WCO, the lower limit increases to 82, 96 and 120 min. At the
same time, the upper limit increases to 113, 125 and 144 min, respectively. Compared to
the unmodified EAR binder, the shortest and longest allowable construction time of the
modified binder containing 6% WCO extend by 82% and 50%, respectively.

2.2. Thermal Stability

Figure 2 illustrates the thermogravimetric and differential thermogravimetric (DTG)
thermograms of WCO and the unmodified and WCO-modified EAR binders. The one-step
thermal decomposition of WCO occurs in the temperature range of 300~500 ◦C, which is
attributed to the degradation of triglycerides [52]. However, the thermal decomposition of
the unmodified and WCO-modified EAR binders undergoes two steps. The first one in the
temperature region of 250–420 ◦C is attributed to the release of small gaseous molecules of
uncured epoxy and asphalt and the degradation of natural rubber of crumb rubber and
triglycerides of WCO. The second one, between 420 ◦C and 510 ◦C, is correlated to the
decomposition of larger asphalt molecules, cured epoxy and styrene-butadiene rubber and
additives of crumb rubbers and triglycerides of WCO [37,53].
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Figure 2. (a) TGA and (b) DTG curves of WCO and the unmodified and WCO-modified EAR binders.

The thermal parameters of WCO and the unmodified and WCO-modified EAR binders
are summarized in Table 1. Although the onset decomposition temperature (Tonset, the
temperature at 5% weight loss) and maximum decomposition rate temperature (Tmax) are
higher than those of the unmodified EAR binder, the incorporation of WCO has a marginal
effect on the Tonset and Tmax at the first and second decomposition steps (Tmax1 and Tmax2)
of the unmodified EAR binder, which indicates that the thermal stability of the unmodified
EAR binder is not altered with the inclusion of WCO.
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Table 1. Thermal parameters of WCO and the unmodified and WCO-modified EAR binders.

WCO (%) Tonset (◦C) Tmax1 (◦C) Tmax2 (◦C)

0 304 391 435
2 308 391 436
4 300 392 433
6 300 393 435

100 364 433 -

2.3. Dynamic Mechanical Properties

Figure 3 depicts the dynamic modulus-temperature curves of the unmodified and
WCO-modified EAR binders. As shown in Figure 3a, the inclusion of WCO lowers the
storage modulus (E′) of the unmodified EAR binder during the whole temperature region.
For WCO-modified EAR binders, the E′ increased in the WCO concentration in the glassy
state, whereas an opposite trend exhibits in the glass transition and rubbery state. Apart
from the concentrations of 4% and 6% in the glassy state, the effect of WCO on the loss
modulus (E”) of the unmodified EAR binder follows the same trend as the E′, as shown in
Figure 3b.
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Figure 4 illustrates the damping factor (tan δ) as a function of the temperature of the
unmodified and WCO-modified EAR binders. With the addition of WCO, the main peak
(around 30 ◦C) of the damping factor-temperature curve shifts to a lower temperature.
It is known that the peak in a tan δ versus temperature curve typically represents the
glass transition of polymeric material [54,55]. Apart from the main peak, another weak
peak appears at −30–0 ◦C in the damping factor-temperature curve. The appearance of
two glass transitions of epoxy asphalt is attributed to the inhomogeneity of cured epoxy
and asphalt, which results in the occurrence of phase separation [25,56]. For this reason,
the higher temperature peak is the Tg of epoxy resin, while the lower temperature peak
is the Tg of asphalt rubber. Table 2 lists the Tgs of epoxy and asphalt rubber for the
unmodified and WCO-modified EAR binders. Apparently, the Tgs of both asphalt rubber
and epoxy of the unmodified EAR binder are lowered by the inclusion of WCO. For
WCO-modified EAR binders, the Tgs of both the asphalt rubber and epoxy decrease in
the oil concentration. WCO-modified warm-mix epoxy asphalt binders and a warm-mix
asphalt additive and Sasobit-modified EAR binders showed a similar trend [15,46]. It is
believed that the low-temperature properties of asphalt mixtures relate to the Tg of the
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asphalt binder [57]. Therefore, the low-temperature performance of the EAR mixture is
improved with the inclusion of WCO. In addition, the enhancement effect increases with
the WCO concentration.
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Table 2. Glass transition temperatures and crosslink densities of the unmodified and WCO-modified
EAR binders.

WCO (%) Tg of Epoxy
(◦C)

Tg of Asphalt Rubber
(◦C)

CD
(mol m−3)

0 35.9 −14.8 27.2
2 33.0 −16.7 18.1
4 31.2 −18.9 15.9
6 28.7 −22.7 15.7

The Tg of thermosetting polymers, to a great extent, relies on the crosslink density
(CD), which is determined by the storage modulus (E′r) and temperature (Tr) at the rubbery
state [58,59]:

CD =
E′r

3RTr
(1)

where R is the gas constant. Tr = Tg + 40 K. As shown in Table 2, the incorporation of
WCO significantly declines the crosslink density of the unmodified EAR binder. Further,
the crosslink density of WCO-modified EAR binders decreases with the oil concentration.
Consequently, WCO lowers the Tg of the unmodified EAR binder and the Tg of WCO-
modified EAR binders decreases with the oil concentration.

Like epoxy asphalts, the unmodified EAR binder exhibits an outstanding damping
ability [46]. Dynamic mechanical analysis (DMA) was used to evaluate the influence of
WCO on the damping ability of the unmodified EAR binder. The damping parameters of
the unmodified and WCO-modified EAR binders are listed in Table 3 The incorporation of
WCO has little effect on the (tan δ)max (maximum damping factor) value of the unmodified
EAR binder. However, the ∆T (effective damping region where damping factor is over
0.3) of the unmodified EAR binder is widened and TA (integral of damping factor vs.
temperature curve) is increased with the inclusion of WCO. Especially for 6% WCO, the ∆T
and TA values of the unmodified EAR binder are increased by 9.0 and 8.9 K, respectively.
The above outcomes indicate that the damping behavior of the unmodified EAR binder is
enhanced with the incorporation of WCO.
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Table 3. Damping parameters of the unmodified and WCO-modified EAR binders.

WCO (%) (tan δ)max ∆T (K) TA (K)

0 1.09 59.4 (8.3–67.7) 51.5
2 1.10 65.4 (4.1–69.5) 56.0
4 1.13 61.5 (6.2–67.7) 55.5
6 1.10 68.4 (−1.3–67.1) 59.4

Figure 5 shows the loss modulus versus storage modulus curves (also called Cole-Cole
plots) of the unmodified and WCO-modified EAR binders. Cole-Cole plots of polymeric
materials indicate the compatibility and homogeneity between individual components [60,61].
Due to the inhomogeneity between asphalt and cured epoxy, epoxy asphalt binder exhibits
two smooth semicircular curves: the one at high moduli is attributed to cured epoxy
and the one at low moduli is related to asphalt [15]. Similar to epoxy asphalt binder, the
Cole-Cole plot of the unmodified EAR binder shows two semicircular curves. However,
the one at low moduli of asphalt rubber is irregular due to the incompatibility between
asphalt and vulcanized rubber. With the inclusion of WCO, the semicircular curves of both
asphalt rubber and cured epoxy become smoother. When adding 6% WCO, the semicircular
curve of asphalt rubber is nearly as smooth as that of the cured epoxy. These outcomes
indicate that the compatibility between asphalt rubber and cured epoxy, particularly for
the compatibility between asphalt and vulcanized rubber, is improved with the existence
of WCO.
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2.4. Mechanical Performance

The tensile properties of the unmodified and WCO-modified EAR binders are illus-
trated in Figure 6. The tensile strength of the unmodified EAR binder (4.87 MPa) is lowered
with the inclusion of WCO, because WCO decreases the crosslink density of epoxy resin.
However, the tensile strength of the unmodified EAR binder is slightly improved with the
inclusion of 1–3% solid Sasobit [46]. The tensile strength of WCO-modified EAR binders
decreases in the oil concentration because of the lower crosslink density of epoxy. Accord-
ing to JTG/E3364-02 [62], the tensile strength of hot-mix epoxy asphalt binder is required
to be greater than 2 MPa, and all WCO-modified EAR binders meet this specification.
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Contrary to the tensile strength, the elongation at the break of the unmodified EAR
binder (187%) is enhanced with the inclusion of WCO because the waste oil lowers the
crosslink density of the cured binder. The modified EAR binder with 1% Sasobit exhibits
a similar improvement [46]. Therefore, the elongation at break of all WCO-modified
EAR binders is greater than 100%, which satisfies the specification of JTG/E3364-02 [62].
For WCO-modified EAR binders, the elongation at the break increases with the WCO
concentration at first. A maximum value (334%) appears at the concentration of 4%, which
is 79 higher than that of the unmodified EAR binder. As the WCO concentration increases,
the elongation at the break slightly decreases. The elongation at break of the modified EAR
binder with 6% WCO is 71% higher than that of the unmodified EAR binder.

The tensile toughness of the unmodified and WCO-modified EAR binders is depicted
in Figure 7. Like the tensile strength, the tensile toughness of the unmodified EAR binder
is lowered with the inclusion of WCO. Meanwhile, the tensile toughness of WCO-modified
EAR binders decreases in the oil concentration.
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2.5. Phase-Separated Morphology

Figure 8 illustrates the fluorescence laser confocal microscopy images of the unmodi-
fied and WCO-modified EAR binders. Phase-separated microstructures are observed in the
unmodified and WCO-modified EAR binders. The yellow continuous phase is cured epoxy
since the thermosetting polymer is excited by laser beam and emits strong fluorescence
with a longer wavelength [25], whereas the black dispersed phase is asphalt rubber. In com-
parison to the unmodified EAR binder, the shape of the dispersed phase is more spherical
and the dispersion of asphalt rubber particles is more uniform, as shown in Figure. 8b-d.
Generally, double phase separation often occurs in polymer-modified epoxy asphalt due
to the incompatibility among polymer, asphalt and cured epoxy resin [25]. Furthermore,
the added polymer can be dispersed in either the continuous or dispersed phase, which
depends on the compatibility between polymer and asphalt or epoxy resin. Due to its good
compatibility with asphalt, rubber particles are dispersed in the asphalt, rather than the
epoxy. However, different from SBS- and EVA-modified epoxy asphalt binders [31,63,64],
it is hard to use the fluorescence confocal microscopy to observe rubber particles in the
asphalt phase.
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It is important to note that crumb rubber obtained from end-of-life tires contains
45–47% vulcanized rubber [65], which absorbs lighter asphalt components and thus swells
in it. More importantly, the laser beam can excite swollen vulcanized rubber and emit
fluorescence such as cured epoxy resin. In this case, unlike thermoplastic polymers, such
as SBS and EVA, it is challenging to distinguish cured epoxy and vulcanized rubber from
the fluorescence confocal microscopy images due to their similar infinite molecular weight
networks. Fortunately, laser confocal microscopes collect confocal fluorescence and noncon-
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focal transmitted light simultaneously by using two detectors that collect fluorescent light
emitted by the sample through a confocal pinhole and the light passing through the sample
from the same scanning beam [66]. Figure 9 illustrates transmission confocal microscopy
images of the unmodified and WCO-modified EAR binders. Surprisingly, the separated
asphalt rubber particles in the fluorescence confocal microscopy image (Figure 8a) become
aggregates (co-continuous particles) along with several spherical particles of asphalt rubber
in the transmission confocal microscopy image (Figure 9a). With the inclusion of 2% WCO,
the degree of aggregation decreases and more spherical asphalt rubber particles form
(Figure 9b). With the further increase in WCO concentration, nearly all asphalt rubber co-
continuous particles of the unmodified EAR binder turn to be spherical (Figure 9c,d). The
aggregation of asphalt rubber particles is attributed to the high viscosity of the unmodified
EAR binder, which restricts asphalt rubber from forming individual particles during epoxy
curing. However, the inclusion of WCO declines the unmodified EAR binder’s viscosity
and improves the compatibility between vulcanized rubber and asphalt, which decreases
and eventually eliminates the aggregation of asphalt rubber particles.
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It needs to be mentioned that asphalt- or polymer-modified asphalt in epoxy asphalt
or epoxy polymer-modified asphalt rearranges during the formation of phase-separated
microstructures [31,67–69]. Figure 10 presents transmission confocal microscopy images of
the unmodified asphalt rubber binder and the modified one with 12% WCO. Unfortunately,
the phase-separated microstructures of rubber and asphalt are invisible, which may be
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due to the existence of large amounts of additives, such as carbon black [65]. Instead,
crumb rubber particles are observed in the confocal microscopy image of the unmodified
asphalt rubber binder (Figure 10a). With the incorporation of WCO, crumb rubber particles
disappear and aggregates of carbon black are observed due to the dilute and compatible
effect of the waste oil (Figure 10b). For the unmodified EAR binder, the existence of 50%
epoxy resin significantly lowers the viscosity of the unmodified asphalt rubber binder. In
this case, co-continuous particles caused by the aggregation of asphalt rubber, accompanied
by several spherical particles, form during the occurrence of phase separation. The inclusion
of WCO further dilutes the concentration of the unmodified asphalt rubber binder and
improves the compatibility between asphalt and vulcanized rubber and between asphalt
rubber and cured epoxy resin as proved by Cole-Cole plots. In this case, co-continuous
asphalt rubber particles become spherical ones, which are dispersed more uniformly in the
cured epoxy phase.
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The area fraction, average diameters and dispersity of asphalt rubber particles of
the unmodified and WCO-modified EAR binders are depicted in Table 4. The inclusion
of 2% WCO increases the number-average diameter (Dn) of the unmodified EAR binder,
while a contrary trend is shown in the 6% WCO. The incorporation of WCO decreases the
weight-average diameter (Dw) of the unmodified EAR binder. Besides, the Dw of WCO
modified EAR binders decreases in the oil concentration. The existence of WCO greatly
decreases the polydispersity index (PDI, the ratio of Dw to Dn). For WCO-modified EAR
binders, the PDI value decreases in the oil concentration. The above outcomes reveal
that asphalt rubber particles are dispersed more uniformly in the cured epoxy phase with
the existence of WCO. As proved by Cole-Cole plots, the compatibility between asphalt
and crumb rubber increases with the WCO concentration. Thus, the dispersion of asphalt
rubber particles becomes more uniform, as shown in Figure 9b–d.

Table 4. Average diameters, dispersity and area fraction of dispersed phase of the unmodified and
WCO-modified EAR binders.

WCO (%) Dn (µm) Dw (µm) PDI Area Fraction of Dispersed Phase (%)

0 32.8 210.4 6.41 58.4
2 37.8 128.2 3.40 59.3
4 32.9 62.7 1.91 42.5
6 24.5 38.1 1.56 47.9

The 2% WCO has little effect on the area fraction of asphalt rubber particles of the
unmodified EAR binder, as illustrated in Table 4. However, adding 4% and 6% WCO lowers
the area fraction of the dispersed phase. At the same time, the modified EAR binder with
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4% WCO has a lower area fraction than the binder with 6% WCO. It was reported that both
crumb rubber and asphalt binder interact with WCO, resulting in the swelling of vulcanized
rubber and the increase in light components of the binder [70]. Due to the rubber absorption
of both the oil and light components of asphalt, the area fraction of rubber particles in
the cure epoxy phase decreases when adding more than 4% WCO. Besides, a balance of
the rubber absorption levels out between 4% and 6% WCO. Therefore, the area fraction of
the dispersed phase for the modified EAR binder with 6% WCO increases. Noteworthily,
due to the rubber absorption, the phase-separated structure of the modified EAR binder
containing 6% WCO remains. Nevertheless, the phase inversion takes place in the epoxy
asphalt binder with the same WCO concentration because of the area fraction increase in
asphalt [15]. In other words, asphalt becomes the continuous phase. The epoxy asphalt
containing 60% SBS-modified asphalt demonstrates a similar phenomenon [63].

3. Materials and Methods
3.1. Materials

The industrial asphalt rubber binder containing 20% CR by weight and Pen 60/80
asphalt binder were obtained from China Offshore Bitumen (Taizhou) Co. Ltd. (Taizhou,
China). The physical properties of the asphalt rubber binder are summarized in Table 5.
The WCO collected from household kitchens was waste peanut oil. Table 6 lists the physical
property and chemical constitution of WCO. Figure 11 shows the asphalt rubber binder
and WCO used in this study. The epoxy resin was prepared in the laboratory. Table 7
presents the physical properties of epoxy oligomer and hardener. Figure 12 illustrates the
two components of epoxy resin used in this study.

Table 5. Physical property of industrial asphalt rubber binder.

Property Asphalt Rubber Binder

Penetration (25 ◦C, 0.1 mm) 50
Softening point (◦C) 68.0

Viscosity (170 ◦C, Pa·s) 4.0

Table 6. Physical property and chemical constitution of WCO.

Property Asphalt Rubber Binder

Color Light brown
Density (25 ◦C, g cm−3) 0.925
Viscosity (25 ◦C, mPa·s) 135
Acid value (mg KOH/g) 2.36

Iodine value (g I/g) 99
Saponification value (mg KOH/g) 190

Moisture content (%) 0.12
Palmitic acid (%) 3.6
Stearic acid (%) 20.2

Linoleic acid (%) 61.8
Oleic acid (%) 2.7

Table 7. Physical property of the epoxy resin for preparing epoxy asphalt binder.

Property Epoxy Oligomer Hardener

Viscosity (25 ◦C, mPa·s) 5800 65
Density (25 ◦C, g cm−3) 1.16 0.95

Color Yellow liquid Brown liquid
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3.2. Preparation of Asphalt Rubber Binder

Asphalt rubber binder containing 20% by weight CR was preheated at 190 ◦C and
mixed with pen 60/80 asphalt binder preheated at 150 ◦C in a beaker using a high-shear
mixer at 190 ◦C and a speed of 4000 min−1 for 1 h. The mass ratio of asphalt rubber binder
to virgin asphalt binder is 3:1.

3.3. Preparation of WCO-Modified Asphalt Rubber Binders

WCO was mixed with asphalt rubber binder containing 15% CR preheated at 160 ◦C
in a beaker using a mechanical mixer at 200 min−1 and a temperature of 160 ◦C for 30 min.
The mass fractions of WCO in WCO-modified asphalt rubber binders are 4, 8 and 12%,
respectively.

3.4. Preparation of WCO-Modified EAR Binders

WCO-modified asphalt rubber binder was mixed with the hardener in a beaker at
160 ◦C at 200 min−1 for 30 min. Then, epoxy oligomer was introduced and mixed at
200 min−1 for 5 min. Finally, the uncured WCO-modified EAR binder was poured into
a Teflon mold and cured at 150 ◦C for three hours and 60 ◦C for three days. The mass
ratio of the WCO-modified asphalt rubber binder, hardener and epoxy oligomer in a WCO-
modified EAR binder is 100:51:49. Due to the dilution effect of epoxy resin, the mass
fractions of WCO in WCO-modified EAR binders are 2, 4 and 6%, respectively. Figure 13
presents the preparation scheme of the WCO-modified EAR binder.
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3.5. Methods

The rotational viscosity-curing time behavior was determined using a Changji NDJ-1C
Brookfield rotational viscometer (Shanghai, China). The measurement was conducted with
the spindle of 28 at 160 ◦C. Rotational viscosity was recorded every 5 min until it reached
5000 mPa·s.

Thermogravimetric analysis (TGA) was conducted on a Mettler Toledo TGA/DSC1
system (Zurich, Switzerland). The sample was heated from 50 ◦C to 600 ◦C at 20 ◦C min−1

under the protection of nitrogen.
Dynamic mechanical properties were evaluated using a 01 dB-Metravib DMA + 450

dynamic mechanical analyzer (Limonest, France) with a tension mode. Cuboid samples
(20 × 20 × 3 mm3) were heated from −50 to 100 ◦C at a ramp rate of 3 ◦C min−1 and 1 Hz.

Tensile properties were determined using an Instron 4466 universal testing machine
(Norwood, MA, USA) with a 10 kN load cell. Five duplicates for every sample were tested
at a speed of 200 mm min−1 at room temperature according to ASTM D 638.

Phase-separated microstructures were observed using a Zeiss LSM710 laser confocal
microscope (Jena, Germany). The slide sample was prepared as follows: the mixture of
WCO-modified EAR binder was dissolved in toluene for 24 h. A drop of 2 g mL−1 solution
on a microscope slide was spin-coated at 3000 min−1 for 60 s. Then, the solvent of the slide
sample was removed at 115 ◦C for 3 min before covering a cover slide. At last, the sample
slide was cured at 150 ◦C for 3 h followed by 60 ◦C for 3 days. The sample slide of the
WCO-modified asphalt rubber was prepared by the same procedure except for the curing
step. The area fraction and average diameters of the dispersed phases of transmission
confocal microscopy images with the magnification of×100 were determined by Image-Pro
Plus software.

4. Conclusions

This paper investigates the impact of waste cooking oil on the properties and phase
separation of epoxy asphalt rubber binders. The incorporation of WCO declines the vis-
cosity and extends the time to both lower and upper viscosity limits of the unmodified
EAR binder. The viscosity and allowable construction time of the WCO-modified EAR
binders decrease in the oil concentration. With the inclusion of 6% WCO, the lower and
upper viscosity limits of the unmodified EAR binder increase by 82% and 50%, respec-
tively. The inclusion of WCO lowers the dynamic modulus of EAR at the rubbery region
and the Tgs of both epoxy and asphalt of the unmodified EAR binder. However, the
low-temperature properties and damping ability of the unmodified EAR binder and the
compatibility between asphalt and crumb rubber were improved with the addition of WCO.
Furthermore, the improvement effect increases in the WCO concentration. The existence of
WCO improves the elongation at the break of the unmodified EAR binder. The mechanical
properties of all modified EAR binders containing less than 6% WCO meet the specification
of hot-mix epoxy asphalt binders used on a highway steel bridge. Phase separation results
in the aggregation of asphalt rubber in the cured epoxy phase. The co-continuous asphalt
rubber particles in the unmodified EAR binder turn to be uniformly spherical with the
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inclusion of WCO. Overall, this study has successfully extended the allowable construction
time and improved the compatibility between asphalt rubber and cured epoxy with the
incorporation of WCO. Further studies on the performance of the WCO-modified EAR
mixture are left to be conducted. The combined use of these two wastes could help to
alleviate the environmental pollution of these disposals.
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