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Background: The effects of fatty acid metabolism in many tumors have been

widely reported. Due to the diversity of lipid synthesis, uptake, and

transformation in clear cell renal cell carcinoma (ccRCC) cells, many studies

have shown that ccRCC is associated with fatty acid metabolism. The study

aimed was to explore the impact of fatty acid metabolism genes on the

prognosis and immunotherapy of ccRCC.

Methods: Two subtypes were distinguished by unsupervised clustering analysis

based on the expression of 309 fatty acid metabolism genes. A prognostic

model was constructed by lasso algorithm and multivariate COX regression

analysis using fatty acid metabolism genes as the signatures. The tumor

microenvironment between subtypes and between risk groups was further

analyzed. The International Cancer Genome Consortium cohort was used for

external validation of the model.

Results: The analysis showed that subtype B had a poorer prognosis and a

higher degree of immune infiltration. The high-risk group had a poorer

prognosis and higher tumor microenvironment scores. The nomogram

could accurately predict patient survival.

Conclusion: Fatty acid metabolism may affect the prognosis and immune

infiltration of patients with ccRCC. The analysis was performed to

understand the potential role of fatty acid metabolism genes in the immune

infiltration and prognosis of patients. These findings have implications for

individualized treatment, prognosis, and immunization for patients with ccRCC.
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Introduction

Renal cell carcinoma (RCC) is one of the top 10 tumors

recorded globally (Siegel et al., 2018), and according to theWorld

Health Organization, more than 140,000 renal cell carcinoma

patients die each year (Ferlay et al., 2015). The main pathological

types of renal cell carcinoma include ccRCC, papillary renal cell

carcinoma, and chromophobe cell renal cell carcinoma (Shuch

et al., 2015; Hsieh et al., 2017), with ccRCC being the most

common pathological subtype worldwide (Shen and Kaelin,

2013). Given the dangers of ccRCC, the identification of

effective predictive tools and potential therapeutic targets

remains of current interest.

It is well known that metabolic imbalance is one of the main

characteristics of tumors, and existing scientific studies confirm that

metabolic reprogramming plays a very critical role in the

development of tumors (Hanahan and Weinberg, 2011; Rosario

et al., 2018; Crunkhorn, 2019). Energy metabolic reprogramming, a

new hallmark of tumors, enables accelerated cell growth and

proliferation (Veglia et al., 2019; Corn et al., 2020). The first

typical metabolic change is the Warburg effect, i.e. aerobic

glycolysis. Next, there is glutamine metabolism (Wise and

Thompson, 2010). Previously, studies related to abnormal fatty

acid metabolism (FA) have not received much attention, but in

recent years it has gradually attracted more attention as one of the

features of metabolic reprogramming in tumors (Li and Zhang,

2016; Qi et al., 2019; Li et al., 2020). In many cancers, lipid uptake

and storage are increased to meet cancer cell energy requirements,

and fatty acids provide energy to tumor cells via β-oxidation (Cheng
et al., 2018). Renal cell carcinoma has significant changes in cellular

metabolism, such as FA metabolism, and RCC characterized by

metabolic imbalance is considered to be ametabolic disease (Massari

et al., 2015; Wettersten et al., 2017; Akhtar et al., 2018). Fatty acid

synthesis is dependent on acetyl-CoA. Mutations in stearoyl-CoA

desaturase 1, fatty acid synthase and acetyl-CoA carboxylase in

ccRCC can lead to the substantial synthesis of acetyl-CoA, thus

causing an abnormal pathway of fatty acid synthesis in ccRCC

(Sajnani et al., 2017; Maan et al., 2018). Zhao et al. (2019) confirmed

that multiple fatty acid metabolizing enzymes are potential

prognostic markers for ccRCC, which suggests that abnormalities

in fatty acidmetabolismmight influence the development of ccRCC.

Therefore, further analysis of the impact of fatty acid metabolism-

related genes (FRGs) in ccRCC may provide some reference for

patient prognosis and individualized treatment.

In our analysis, we aimed to construct a prognostic signature

based on TCGA (The Cancer Genome Atlas) database in

conjunction with the GEO (Gene Expression Omnibus)

database, using FRGs as a predictor. Patients were then

distinguished into two different subtypes based on FRGs

expression by unsupervised cluster analysis and, finally, the

tumor microenvironment was studied in different risk groups

and different subtypes. In this analysis, our results identified

FRGs as a potential target for ccRCC as well as a prognostic

marker. Furthermore, an attempt was made to explain the

alteration of FA metabolism in the prognostic-immune-tumor

microenvironment in ccRCC.

Materials and methods

Data collation and acquisition

To date, many sequencing data are publicly available

online; therefore, we acquired the relevant data of ccRCC

from TCGA (The Cancer Genome Atlas) database. There were

539 tumor samples and 79 normal samples in this dataset.

Similarly, the data set GSE29609, which contains 39 tumor

tissues, was obtained from the GEO (Gene Expression

Omnibus) database. We also obtained clinically relevant

information on the samples, and samples with incomplete

clinical information were excluded from further analysis. We

converted the downloaded FPKM data to TPM format. We

background the adjusted and quantile the normalized TCGA

data before performing the analysis. Batch effects were

removed by a combat algorithm thus merging the two data

sets TCGA-KIRC and GSE29609 (The log2 transform is used

to normalize the data, and the combat algorithm is performed

using the sva function). After excluding patients with no

clinical information, a total of 569 patients were included

for analysis. The independent dataset from the International

Cancer Genome Consortium (ICGC) database (https://dcc.

icgc.org/) was used for subsequent external validation. After

excluding patients with incomplete clinical information,

90 patients were included in the ICGC cohort.

The gene collections of the KEGG fatty acid metabolic

pathway, Hallmark fatty acid metabolic genes, and Reactome

fatty acid metabolic genes were obtained from the Molecular

Signature Database (MSigDB V7.2), and 309 FRGs were obtained

after removing the overlapping parts of the three gene collections,

and the specific genes are shown in Supplementary Table S1 (He

et al., 2021).

Prognosis-related differential genes of
clear cell renal cell carcinoma

Differential analysis was performed on TCGA dataset. We

extracted the DEGs (differential genes) of FRGs using “limma”

with a fold change of 1.5; p < 0.05. Further univariate cox analysis

of the “merged” cohort was performed to obtain genes associated
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with survival time. The prognosis-related genes intersected with

the differential genes of FRGs to obtain the prognosis-related

DEGs (Supplementary Table S2).

Prognostic models associated with fatty
acid metabolism-related genes

The “merge” cohort was randomly assigned equally to obtain

the train group and the test group. Using the train group as the

base sample, the prognosis-related DEGs was analyzed using the

lasso analysis and multivariate cox analysis to obtain the

prognosis model.

The median FRG score in the train group can distinguish

patients in the train group into low risk and high-risk groups.

Survival analysis and PCA analysis were performed for the

different risk groups. ROC (receiver operating characteristic)

curves were plotted to verify the accuracy of the model. Finally,

the correlation between clinical indicators and risk scores was

assessed.

Producing a nomogram

The nomogramwas created using the “rms” package. Clinical

information and risk scores are used as predictors. Each patient

has a different score for different indicators. Each total score has a

corresponding 1-year, 3-year and 5-year survival rate.

Unsupervised consensus cluster analysis
for fatty acid metabolism-related genes

We performed unsupervised clustering analysis with the

“ConsensusClusterPlus” package. We classified the “merge”

samples into different subtypes based on the expression of

FRGs. To observe the differences of FRGs in different

subtypes, we performed gene set variation analysis on

different subtypes to further identify the differences between

them. We also investigated the differences in immune infiltration

between the different subtypes.

Immune cell infiltration profile, somatic
mutation profile, and drug sensitivity
analysis

To further observe potential differences between different

risk groups of ccRCC patients, the association between

immune cells and modeled genes was studied using the

CIBERSORT algorithm. Mutation data from

TCGA.KIRC.varscan assessed mutations in different risk
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groups. The values of semi-inhibitory concentrations (IC50)

of ccRCC chemotherapeutic drugs were obtained using the

pRRophetic package and further observed for differences in

drug sensitivity between the groups.

Statistical

R software and Perl software were used to perform data

analysis (“*” = p< 0.05; “**” = p< 0.01; “***” = p< 0.001). Kaplan-

Meier analysis and log-rank test were used to compare OS

between subgroups. Immune cell infiltration and TME scores

were compared between high- and low-risk groups and between

subtypes using the Wilcoxon test. Spearman correlation analysis

was used to compare correlations between the degree of immune

cell infiltration and risk scores.

Results

Construction and validation of prognostic
models

We extracted DEGS of 151 fatty acid metabolism-related

genes using “limma,” of which 94 were down-regulated and

57 were up-regulated (Figures 1A,B). Univariate cox analysis was

used to obtain genes associated with survival time. The

intersection of prognosis-related genes with the differential

FIGURE 1
(A) Heat map of differential expression of the top 100 most significantly differentially expressed fatty acid metabolism genes. Red for high
expression, blue for low expression. (B) Volcano plot of 151 differentially expressed genes. Red dots indicate upregulated genes, black dots indicate
insignificant differences, and green dots indicate downregulated genes. (C) Cross-validation was performed to select the minimum lambda value to
obtain the modeled genes. (D) LASSO coefficient profiles of the 99 FRGS. (E,F) The Kaplan-Meier analysis in the test/train group.
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genes of FRGs was taken to obtain 99 prognosis-related DEGs

(Supplementary Table S2). The samples were equally divided into

the train group (n = 285) and the test group (n = 284). Based on

the 99 prognosis-related DEGs, we performed LASSO regression

(Figures 1C,D) and multivariate cox analysis to obtain a

prognostic model including 11 predictors (HSD17B3, HPGD,

CEL, PTGDS, SCD5, DPEP1, GAD2, ADH6, ALOX12B, IL4I1,

and ENO2). This model can be expressed by the formula:

Risk score = (0.2468 * HSD17B3) + (−0.1651 * HPGD) +

(0.3335 * CEL) + (0.1054 * PTGDS) + (−0.1180 * SCD5)

+ (−0.1239 * DPEP1) + (1.2038 * GAD2) + (−0.1880 *

ADH6) + (−0.5212 * ALOX12B) + (0.2610 * IL4I1) + (0.1566

* ENO2)

The median FRG score of the train group distinguished patients

in the train group into high and low risk groups. Similarly, the test

group was also distinguished into two different risk groups. The

Kaplan-Meier analysis are shown in Figures 1E,F; we observed

significantly lower os (overall survival) in patients with high risk

scores than in patients with low risk scores, which laterally reflects

the reliability of the risk scores. The risk curve results show a gradual

increase in the number of high-risk patients with increasing risk

scores and a higher number of deaths in patients with high risk

scores (Figures 2A,B). The PCA analysis showed us the excellent

discriminatory ability of the model (Figures 2C,D). The area under

the ROC curvewas greater than 0.7 for both the train and test groups

(Figures 2E,F). This can indicate the high accuracy of the model

FIGURE 2
(A,B) Risk curves for the train and test groups. These include scatter plots showing risk scores and patient survival status, and ranked plots in
order of increasing risk scores. (C,D) PCA results for the train/test groups. Each dot represents a patient. (E,F) The area under the ROC curve for the
train/test group. The area under the ROC curve represents the accuracy of the model in predicting patient survival, where the larger the area, the
higher the accuracy. (G) Risk curves for the ICGC cohort. (H) The Kaplan-Meier analysis in the ICGC cohort. (I) The area under the ROC curve for
the ICGC cohort.
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prediction ability. To further determine the predictive power of the

model, we externally validated the model using the ICGC cohort.

The risk curve and survival curve also demonstrated the superior

performance of the model (Figures 2G,H). We found that the ROC

curves at 1, 3, and 5 years exceeded 0.65 (Figure 2I).

Independent prognostic analysis

We performed the independent prognostic analysis of

clinical indicators and risk scores. We found that age, grade,

stage, and risk score could be used as prognostic factors

independently of other factors (Figures 3A,B). As shown in

Figure 3C, we observed that the risk score had the largest area

under the roc curve, which implies that the risk score was more

accurate than age, grade, and stage.

To assess the association between risk scores and clinical

parameters, we performed a clinical correlation analysis. The

findings are shown in Figures 3D–G. It can be seen that age and

gender have no significant effect on the risk score. The risk scores

increased with increasing grade and stage levels.

A new nomogram

To be able to use this model in a clinical setting, we used

risk score, stage, and age as predictors thus constructing a

Nomogram (Figure 4A). The results of the calibration plots

FIGURE 3
(A,B) Forest plot of univariate/multivariate independent prognostic analysis (p < 0.05 is statistically significant, the larger the hazard ratio, the
higher the correlation). (C) Area under the roc curve for risk scores and clinical information. (D–G) Results of the clinical correlation analysis.
Differences in risk scores by age, gender, stage, and grade.
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showed a good predictive effect of the nomogram

(Figure 4B).

Identification of fatty acid metabolism
subtypes in clear cell renal cell carcinoma

To understand the expression pattern of fatty acid

metabolism in ccRCC, all samples were classified into

different subtypes using cluster analysis based on the

expression of 309 FRGs. k = 2 was appropriate as seen in

Figures 5A–E. Therefore, we classified the patients into

subtypes A and B. PCA analysis showed a significant

difference in FRGs expression between subtypes A and B

(Figure 5F). Kaplan-Meier analysis showed higher os in

subtype A than in subtype B (Figure 5G). The comparison

of clinical indicators between the two subtypes is shown in

Figure 5H, which shows significant differences in FRGs

expression and clinical information between the two

subtypes. GSVA enrichment analysis showed enrichment

in multiple cancer pathways in subtype A, including non-

small cell lung cancer, endometrial cancer, and prostate

cancer. Tumor signaling pathways were also significantly

enriched in subtype A (Figure 5I). The difference in

immune cell content between the two subtypes was

calculated using the CIBERSORT algorithm. In tcga

cohort, we observed that 17 of the 23 immune cells

differed significantly between subtypes A and B, and the

majority of immune cells were more infiltrated in subtype B

than in subtype A (Figure 5J). Some immune cells show a

higher degree of infiltration in A than in B. This might be

since these immune cells have different roles from other

immune cells in both subtypes. In addition, there are

significant differences in the risk scores of the different

clusters, and it can be seen that the cluster A has a

significantly lower risk score than B (Figure 5K).

Furthermore, the majority of patients in cluster A

belonged to the low risk group and the majority of

patients in cluster B belonged to the high-risk group

(Figure 5L). Finally, we used multiple platforms to verify

the immune infiltration between fatty acid metabolism

subtypes. We found an enrichment of immune cells in

subtype B, which further suggests a higher degree of

immune infiltration in subtype B (Figure 5M).

Risk scores and tumor microenvironment

The CIBERSORT algorithm was further used to explore the

relationship between risk score and immune cells. In tcga cohort,

we found that the risk score was positively correlated with Tregs,

CD8+ T cells,T follicular helper cells, memory B cells, and

activated memory CD4+ T cells (Figures 6A–E). Resting mast

cells, M2 macrophages, and resting memory CD4+ T cells were

negatively correlated with the risk score (Figures 6F–H). We

observed the connection between the 11 genes that constitute the

model and immune cell infiltration. These genes could be found

to be significantly associated with immune cells (Figure 6I).

There were also significant differences in immune scores

between risk groups (Figure 6J). In addition, we show the

protein expression of model genes in normal and tumor

tissues (Supplementary Figure S8). These results were

FIGURE 4
(A) Nomogram for predicting 1-, 3-, and 5-year survival for ccRCC. The figure shows the predicted results for the 17th patient in the train
group. This patient belongs to the high-risk group of patients, age 90, and at stage I. The scores of each index were 40, 70, and 40, total scores of 150,
1-year, 3-year, and 5-year survival rates were 0.834, 0.601 and 0.414. (B) Calibration chart for the evaluation of nomogram accuracy.
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FIGURE 5
(A–E) Results of unsupervised consensus clustering analysis. Defined as two, three, four, five, and six subtypes and their areas. (F) The results of
PCA analysis between the two subtypes. The figure shows significant differences in fatty acid metabolism-related genes between the two subtypes.
(G) Survival curves between the two subtypes. (H) Comparison between clinical indicators and the two subtypes. (I) Differences in biological
pathways analyzed by GSVA (gene set variation analysis) in two subtypes. Red for pathways of activation and blue for pathways of inhibition. (J)
Differences in the level of immune cell infiltration in the two subtypes. (K) Association of different subtypes with risk scores. Each point represents a
patient. (L) Sankey diagram showing the distribution of patients. (M) Multiple methods to calculate the immune cell content of two fatty acid
metabolic subtypes.
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obtained from the HPA (Human Protein Atlas, https://www.

proteinatlas.org/) database.

Mutation status and drug sensitivity
analysis

Themutation data fromTCGA. KIRC.varscan revealed the same

top twenty mutated genes between the two groups and a higher

number of mutated samples in the low-risk group than in the high-

risk group (Figures 7A,B). To observe the differences in drug

sensitivity of commonly used chemotherapeutic agents between

the different risk groups, using the “pRRophetic” package for drug

sensitivity analysis, we observed that patients in the high-risk group

were more sensitive to paclitaxel, sunitinib, and rapamycin, while

patients in the low-risk group were more sensitive to sorafenib

(Figures 7C–F). Subtype B were more sensitive to Paclitaxel,

sunitinib, and rapamycin (Supplementary Figure S9).

Discussion

In the current situation, the mortality rate of ccRCC has still

not decreased. As a tumor with metabolic disease nature, the

effect of fatty acid metabolism on ccRCC is unknown. To

understand the impact of fatty acid metabolic patterns, we

distinguished two subtypes with different TME and prognosis

by the expression of FRGs and identified the gene signature

associated with the prognosis of ccRCC.

Some research tables have demonstrated that the TME has a

significant impact on the development of tumors (Hinshaw and

Shevde, 2019). The immune cell component of the TME contains

lymphocytes, granulocytes, and macrophages. These immune cells

play different roles in various immune responses that promote or

inhibit tumor survival (Seager et al., 2017). Previous studies have

found that CD4+ T cells have a positive impact on tumor immunity

(Saito et al., 2016). Macrophages, on the other hand, have a complex

role (Dehne et al., 2017). Among them, M1 macrophages have an

FIGURE 6
(A–H) Correlation between risk scores and various immune cells. (I) Correlation of 11 genes and immune cell content. Red means positive
association, and purple means negative association. The shade of the color indicates the strength of the correlation. (J) Violin plot indicating
differences in tumor microenvironment scoring for different risk groups.

Frontiers in Genetics frontiersin.org09

Nie et al. 10.3389/fgene.2022.1013178

https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1013178


anti-tumor immune role and M2 suppress tumor immunity and

promote tumor growth (Sica et al., 2006; Jeannin et al., 2018; Chen

et al., 2019). Fatty acids influence the function of immune cells in

TME (Tanaka and Sakaguchi, 2017), so it is worth exploring the

differences in the degree of immune cell infiltration by different

subtypes in our analysis of fatty acid metabolism genes. Some

immune cells with antitumor properties can be seen to be

enriched in subtype B, yet the Kaplan-Meier analysis of subtype

B demonstrated a poor prognosis. We speculate that the effect of

fatty acids on immune cell function produced these results. Tanaka

and Sakaguchi (2017) found that Tregs infiltration was associated

with a poor prognosis, and the amount of Tregs in our analysis was

positively correlated with the risk score, which implies that the

higher the infiltration of Tregs, the higher the risk, which is

consistent with previous reports. We found from the analysis

that different subtypes represent different prognoses. Thus,

subtype A can try to predict a good prognosis for ccRCC

patients. Likewise, subtype B can predict a poor prognosis in

patients. The different levels of immune cell infiltration in the

two subtypes may also cause patients to show different outcomes

when receiving immunotherapy.

We constructed a prognostic model based on fatty acid

metabolism-related genes, which included 11 fatty acid

metabolism genes (HSD17B3, HPGD, CEL, PTGDS, SCD5,

DPEP1, GAD2, ADH6, ALOX12B, IL4I1, ENO2). Some of these

11 fatty acid metabolism genes have been previously reported, and

the results of Song et al.’s analysis of selective splicing signals of more

than 10,000 genes in ccRCC demonstrated that SCD5 is one of the

potential markers of tumor prognosis (Song et al., 2019). Several

reports assessed the expression levels of DPEP1 in various tumor

FIGURE 7
(A,B) Waterfall plots of somatic mutation characteristics were created for high and low risk groups. Each column represents a patient. (C–F)
Differences in drug sensitivity of paclitaxel, sunitinib, rapamycin, and sorafenib between high- and low-risk groups.
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cells and revealed opposite patterns depending on the tumor type.

For example, DPEP1 expression deficiency was associated with

breast cancer and Wilms’s tumor (Austruy et al., 1993; Green

et al., 2009). Antwi et al. (2018) confirmed that mutations in

ADH6 are closely associated with the risk of renal cell

carcinoma. ALOX12B has been reported to be associated with a

variety of cancers, including renal cell carcinoma, lung cancer, breast

cancer, and vulvar epidermoid carcinoma (Agarwal et al., 2009; Lee

et al., 2009; Shen et al., 2009; Rooney et al., 2015). ALOX12B inhibits

immune cytolytic activity in breast and renal cell carcinoma (Rooney

et al., 2015), and inhibition of ALOX12B reduces the proliferation of

vulvar epidermoid carcinoma cells (Agarwal et al., 2009). IL4I1 is a

fatty acid metabolism-related immune checkpoint that activates

AHR and accelerates tumor growth (Sadik et al., 2020). The

above genes have already been reported and the currently

unreported genes could provide leads for further related studies.

In addition, compared to previous work, Chen et al. (2021)

performed a series of analyses based on metabolic genes in

ccRCC, but metabolic alterations encompass multiple pathways.

We performed studies in individual pathways (fatty acid metabolic

pathway).Wei et al. (2022) constructed a prognosticmodel based on

fatty acid metabolic genes, and the prognostic model we constructed

and the identified fatty acid metabolic subtypes can be

complementary to it.

The present research has some limitations and a large sample

of ccRCC patients is needed to validate the accuracy of the model

and the stability of the stratification. Furthermore, in vivo or

in vitro experimental validation would better and more fully

confirm the results of our analysis. In addition, treated patients

may affect the expression of FRGs, which may have some impact

on the results of our analysis.

Conclusion

In summary, we obtained two subtypes of ccRCC associated

with fatty acid metabolism. The two subtypes represent two

different prognoses and have different immune infiltration

outcomes. We developed 11 FRGs as prognostic models for

the signature and established a nomogram to demonstrate the

specific prognosis more precisely. These have implications for the

individualized treatment, prognosis, and tumor

microenvironment of ccRCC patients.
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