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Abstract

Synaptic morphology is tightly related to synaptic efficacy, and in many cases morphological synapse defects ultimately lead to synaptic
malfunction. The Drosophila larval neuromuscular junction (NMJ), a well-established model for glutamatergic synapses, has been extensively
studied for decades. Identification of mutations causing NMJ morphological defects revealed a repertoire of genes that regulate synapse
development and function. Many of these were identified in large-scale studies that focused on qualitative approaches to detect morphological
abnormalities of the Drosophila NMJ. A drawback of qualitative analyses is that many subtle players contributing to NMJ morphology
likely remain unnoticed. Whereas quantitative analyses are required to detect the subtler morphological differences, such analyses are
not yet commonly performed because they are laborious. This protocol describes in detail two image analysis algorithms "Drosophila NMJ
Morphometrics" and "Drosophila NMJ Bouton Morphometrics", available as Fiji-compatible macros, for quantitative, accurate and objective
morphometric analysis of the Drosophila NMJ. This methodology is developed to analyze NMJ terminals immunolabeled with the commonly used
markers Dlg-1 and Brp. Additionally, its wider application to other markers such as Hrp, Csp and Syt is presented in this protocol. The macros
are able to assess nine morphological NMJ features: NMJ area, NMJ perimeter, number of boutons, NMJ length, NMJ longest branch length,
number of islands, number of branches, number of branching points and number of active zones in the NMJ terminal.

Video Link

The video component of this article can be found at https://www.jove.com/video/55395/

Introduction

Cognitive disorders such as intellectual disability, autism spectrum disorder and schizophrenia are often characterized by abnormal synaptic
function1,2,3. Synapse morphology and function are tightly intertwined; morphological defects can cause synaptic malfunction and, reversely,
aberrant synaptic transmission will impact synaptic maturation and morphology4,5,6.

A number of model organisms have been employed in order to better understand synapse biology and shed light on how synaptic changes
affect brain function in health and disease7,8,9. The Drosophila NMJ is an extensively studied and well-established in vivo model for glutamatergic
synapse biology10,11. In the past decades, this model has been used for physiological and gene-focused studies, as well as for large scale
genetic screens, with the aim to detect morphological differences between NMJs. In particular, forward genetic screens have identified
many crucial regulators and mechanisms underlying synapse development and function12,13,14,15,16. However, most of these screens relied
on visual assessment of NMJ terminal morphology and on qualitative detection of the synaptic abnormalities or semi-quantitative scoring
of few morphological features. As a consequence, rather subtle synaptic morphological abnormalities that are non-obvious to the human
eye are easily missed. In order to be able to comprehensively detect quantitative differences, the NMJ has to be accurately evaluated by
systematic quantification of the morphological parameters of interest. Measuring NMJ features manually is laborious, especially when there are
several NMJ features of interest and/or when performing large-scale genetic screenings. In order to support multiparametric, high-throughput
morphological analysis and to achieve objective quantification, two macros "Drosophila NMJ Morphometrics" and "Drosophila NMJ Bouton
Morphometrics" were developed17. Both macros run in the open source image analysis software Fiji18, and enable quantification of both confocal
and nonconfocal images.
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"Drosophila NMJ Morphometrics" measures NMJ terminals immunostained with the postsynaptic marker disc large-1 (Dlg-1) or the presynaptic
horseradish peroxidase (Hrp), co-labeled with the active zone marker bruchpilot (Brp). It quantifies nine morphological parameters (further
described below): NMJ area, NMJ perimeter, number of boutons, NMJ length, NMJ longest branch length, number of islands, number of
branches, number of branching points and number of active zones in the synaptic terminal (Figure 1). Although an algorithm for determining
the number of boutons is present in this macro, it did not meet the criteria for accuracy17. To properly assess the number of boutons, it is
necessary to use the "Drosophila NMJ Bouton Morphometrics" macro, which is specifically designed to quantify boutons using NMJ preparations
immunostained by anti-Synaptotagmin (Syt) or anti-Cysteine string protein (Csp), and co-immunolabeled with Brp. The "Drosophila NMJ Bouton
Morphometrics" macro quantifies the following parameters: number of boutons, NMJ bouton area, NMJ length, NMJ longest branch length,
number of islands, number of branches, number of branching points and number of active zones (Figure 2).

The macros consist of 3 sub-macros: (I) "Convert to stack" identifies all available image files and creates Z-hyperstacks and maximum
intensity projections of both channels. As output, this macro will generate two new files per synapse called "stack_image_name" and
"flatstack_image_name". II) "Define ROI" will open all maximum projection images "flatstack_image_name" consecutively and present them with
the request to manually define the region of interest (ROI) in which the specific synaptic terminal of interest is present. This was implemented
to allow exclusion of synapses connecting to adjacent muscles and/or other types of synaptic terminals (such as 1s) that can be present in the
images11. (III) "Analyze" applies fully automated analysis to the image area within the borders of the ROI. As a result of this step, the user will
obtain two new files: "results.txt" where all the numerical measurement will be annotated and a "res_image_name.tif" where the underlying
image segmentations produced by the macro will be illustrated. During image analysis three structures are derived from each synaptic terminal:
the NMJ outline, the NMJ skeleton, and the number of Brp-positive active zones. The NMJ outline is used to determine the NMJ area and its
perimeter and a subsequent watershed separation provides the number of boutons. From the skeleton, five NMJ features are deduced: the
total NMJ length, the sum of the length of the longest continuous path connecting any two end points (longest branch length), the number of
unconnected compartments per NMJ (referred to as "islands"), the number of branches, and the number of branching points (one branching
point connects three or more branches). The number of active zones is determined in the Brp-channel by counting Brp-positive spots. The
annotated NMJ outline (yellow line), the NMJ skeleton (blue line), and the number of Brp-positive active zones (indicated by white foci) are
displayed in a results picture and the measurements of the parameters are processed to an (.txt) output file (Figure 3).

Drosophila NMJ Morphometrics" and "Drosophila NMJ Bouton Morphometrics" were first described and extensively validated by Nijhof et al.17.
This manuscript focuses on the methodology to analyze NMJ morphology using the macros "Drosophila NMJ Morphometrics" and "Drosophila
NMJ Bouton Morphometrics". Prior to macro-assisted analyses, NMJ dissections and immunostainings need to be performed. These are
crucial steps, and the combination of markers used for immunohistochemistry needs to be suitable for macro analyses. These steps are briefly
mentioned in section 1 of this protocol and direct the user to references describing in detail the protocols to execute these procedures.

Protocol

1. Requirements Prior to Image Processing

1. Perform Drosophila open book preparations of third instar wandering larvae (L3), as previously described19.
2. Co-immunolabel Drosophila NMJ terminals using a combination of two markers: Dlg-1 or Hrp together with Brp for analysis with "Drosophila

NMJ Morphometrics", and Syt or Csp together with Brp for analysis with "Drosophila NMJ Bouton Morphometrics"20.
 

NOTE: Antibodies from the same species can be combined by pre-labeling one with an antibody-conjugation kit such as the Zenon Alexa
Labeling Kits17.

3. Image NMJ terminals using a microscope of choice, e.g., fluorescence (with or without ApoTome) or confocal microscopy.
1. Acquire a 2-channel image stack of the NMJ terminal.

1. Adjust the microscope settings in a manner that channel 1 acquires the NMJ terminal immunolabeled with Dlg-1 (or Hrp, Syt,
Csp) and channel 2 the NMJ terminal immunolabeled with Brp.

2. Optionally, analyze one-channel images (of synapses immunolabeled with a single antibody) with the macros. Image NMJs
immunolabeled uniquely with Dlg-1 or Hrp for analysis with "Drosophila NMJ Morphometrics", or Syt or Csp for "Drosophila NMJ
Bouton Morphometrics".
 

NOTE: It is not possible to analyze synapses immunostained with only anti-Brp.

2. Export the obtained images as individual '.tiff files. Invert the channel order prior to running the macros if not acquired as indicated.

2. Software Requirements and Installation

1. Download the macros: "Drosophila NMJ Morphometrics" and "Drosophila NMJ Bouton Morphometrics" from the following website: https://
doi.org/10.6084/m9.figshare.2077399.v121.

2. Move the cursor to the folder "Macros update 1", and click on the appearing option "view". A list with the content of this folder will appear. The
folder contains the macros "Drosophila NMJ Morphometrics" and "Drosophila NMJ Bouton Morphometrics".
 

NOTE: Both macros are compatible with Fiji versions 1.4, which is also provided in the same folder. The macros may not run on recent
versions. Please utilize the provided version 1.4. It is unproblematic to start this version, even on computers with a more recent Fiji version
available.

3. Click on "Download all". The folder content will be downloaded to the computer as a .zip file. Unzip the downloaded file.
4. Copy the Drosophila_NMJ_Morphometrics.ijm and Drosophila_NMJ_Bouton Morphometrics.ijm files to Fiji.app/plugins/ directory. When

restarting the program, the macros will appear at the bottom of the Plugins dropdown menu.
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3. Run Sub-macro "Convert to Stack" to Create Z-projections and Hyperstacks of the NMJ
Images

1. Start the graphical interface by selecting Plugins in the toolbar and choose "Drosophila NMJ Morphometrics" in the dropdown menu.
2. Define the "Unique File String" setting in the macro's graphical interface.

 

NOTE: The microscope software uses an identification signature to organize planes and channels when storing stacks as individual '.tiff files.
The entered unique file string setting needs to specify the signature assigned by the software to the first plane of the first channel (important:
lowest plane and channel number needs to be indicated).

3. Select only the sub-macro "Convert to stack" and click "ok" and select the folder where the images are located. If a main directory with
several subfolders is selected, all individual '.tiff files within the main directory and subfolder matching the unique file string criteria will be
processed.

1. If the z-stack only contains one channel, select the box "Channel 1 only".

4. Notice that two new files per NMJ image, by default termed as stack_image_name and flatstack_image_name will appear. Store only these
stack and flatstack for further analysis. The .tiff file series can be deleted at this point, minimizing the required storage capacities and avoiding
potential error sources.

4. Run Sub-macro "Define ROI" to Delineate the NMJ Terminal of Interest

1. Start the graphical interface of "Drosophila NMJ Morphometrics".
2. Select only the checkbox "Define ROI" and press "OK" and select the main directory where the images entitled flatstack_name are stored and

press "Select". The sub-macro "Define ROI" automatically searches through all subfolders within the selected main directory.
3. As the first projection opens, select the "Freehand selections" tool in the toolbar.
4. Using the mouse draw a selection that exclusively contains the complete NMJ terminal of interest and click "OK" in the window "Define

terminal". The macro will proceed with the next projection.
5. Delineate the next ROI and repeat until all ROIs are defined. The ROI image file, named "roi_image_name", will be stored in the same

directory as the previously generated stack and projection images for each of the processed images. The output of this sub-macro is a binary
image of the ROI in white on a black background.

5. Run Sub-macro "Analyze" to Quantify NMJ Terminal Features

1. Go to the toolbar, select "Plugins" and use:
 

"Drosophila_NMJ_Morphometrics" when analyzing synapses immunolabeled with anti-Dlg-1 or anti-Hrp (channel 1) together with anti-Brp
(channel 2), or "Drosophila_NMJ_Bouton_Morphometrics" when analyzing synapses immunolabeled with anti-Syt or anti-Csp (channel 1)
together with Brp (channel 2).

1. When one channel image stacks are to be analyzed (the structural channel Dlg-1 or HRP for "Drosophila_NMJ_Morphometrics", or Syt
or Csp for "Drosophila_NMJ__Bouton_Morphometrics"), select the box "Channel 1 only".

2. Adjust the scale corresponding to the images to be analyzed.
1. If one pixel in the image corresponds to 2.5 µm, indicate Scale-Pixels = 1, Scale-Distance in µm = 2.5. In case both settings are left at

0, the NMJ area, perimeter, length and longest branch length will be expressed in number of pixels.

3. If required, adjust the default analysis settings of the macro. Perform adjustments only if the sub-macro “Analyze” has previously been run
with unsatisfactory results (see end of this section, and section 6 for instructions how to optimize the settings).

4. Select the checkboxes "Analyze" and "Wait" and press "OK".
1. Select the "Wait" check box when running the sub-macro "Analyze" on 2 channel images. Otherwise errors in active zone counting can

occur due to limited computer capacities .

5. As a new window "Choose a Directory" opens, select the directory where the images are located and press "select". The macro will analyze
all images stored in the main directory and, if applicable, subsequent folders (using the three files from executing the previous sub-macros:
stack_image_name, flatstack_image_name and roi_image_name). The macro processes each image individually and consecutively. This can
take several minutes per image stack (depending on the computer capacity).

6. After running the macro, note that a new image file named res_image_name for each analyzed synapse stored will be created in the parental
folder. The quantitative measurements will be stored as "results.txt" file.

7. Inspect all result images to detect and exclude pictures with segmentation errors. Possible segmentation errors are described in Table 3,
along with advice how to adjust settings to circumvent these errors. Result images with such segmentation errors are provided as examples
in Figure 4.
 

NOTE: When running the macro with the default settings observed in the user interface, there was an accuracy of approximately 95% when
macro assessment was compared to manual evaluation17.

6. Adjust the Macro Settings to the Images

1. When more than 5% of images show segmentation errors, explore the different algorithms to define/choose the most suitable macro settings
for the images.

2. Adjust rolling ball radius value
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NOTE: The rolling ball radius function subtracts the background of the image. This function is of crucial importance when working with images
acquired on fluorescence microscopes and/or when images have high background noise. The subtraction of the background will help the
macro's auto-thresholding steps to produce adequate segmentation of the NMJ terminals.

1. Select three NMJ stack_image_name images generated by the sub-macro “Convert to stack”. Choose images which are representative
for the image dataset.

2. In the toolbar, select Image | Color | Split channels. Two image stacks will be created, one representing channel 1 and the other
channel 2, respectively and save them.

3. Open the image stack belonging to channel 1 open, corresponding to Dlg-1, Hrp, Syt or Csp immunolabeling.
4. Run the filter "Subtract background" by selecting "Process" in the toolbar followed by "Subtract Background…" in the dropdown menu.
5. Click on the preview checkbox in the pop-up window and adjust the rolling ball radius to the value most appropriate for the images. The

“Rolling ball radius” setting should be adjusted to values that increase the contrast between synapse and background (see Figure 5A’).
1. See Figure 5 for an example. In panel A, parts of the synapse show the same grey levels as the background, whereas in Figure

5 panel A’ a “Rolling ball radius” of 500 results in strong contrast between the synapse and the background.

6. Create a z-projection by selecting in the toolbar Image | Stack| Z-projection, chose Projection type = Max Intensity and save the
resulting image. When the appropriate value for the rolling ball radius is defined, run the “Subtract background” algorithm on the
remaining representative images with the same rolling ball radius value. Create the Z-projections and save them (in any directory).
 

NOTE: The rolling ball radius value for 8-bit or RGB images should be at least as large as the radius of the largest object in the image
that is not part of the background. For 16-bit and 32-bit images the radius should be inversely proportional to the pixel value range22.

3. Determine the different auto-thresholds that will be used
1. Open the Z-projections saved in the previous step (6.2.6) and Select Image | Adjust | AutoThreshold | Try all.
2. As a binary thresholded result image will appear with all different auto-threshold algorithms, determine the most suitable algorithm for

the images.
1. When running the macro later on, change the threshold in the macro settings accordingly.
2. Use more restrictive thresholds such as "RenyiEntrophy" or "Moments" as the NMJ outline threshold and more permissive

thresholds such as "Li" to determine the NMJ skeleton, and "Huang" to determine active zones. When images are very sharp
with little to no background, use "Huang" as" NMJ outline threshold. Otherwise parts of the synapse might be missing after image
segmentation.

3. See Figure 5B for an example. Appropriate segmentation of the synapse is obtained with auto-thresholds highlighted by green
boxes. Some examples of non-suitable thresholds are highlighted by red boxes (check synapses at high magnification). In the
latter, either parts of the synapse are missing or parts of the background are included. See reference 23 for more information.

4. Determine the maximum size of the small particles
 

NOTE: This function will exclude all particles detected by the NMJ outline threshold and Skeleton threshold that are smaller than the defined
value in the "small particles setting" from the analysis. This value is defined in pixels. This function serves as a noise filter and is very useful
when high rates of non-uniform background (such as crystals/dust) are present in the obtained images.

1. Open the Z-projections saved in step 6.2.6. and set the scale to detect number of pixels via Analyze | Set Scale. Apply the following
settings: distance in pixels=1, known distance=1, pixel aspect ratio=1, Unit of length=pixel and press "Ok". Click on the "Oval selection"
tool in the toolbar.

2. Using the mouse draw a selection closely surrounding single particles that are present in the immunostaining but do not belong to the
NMJ. Press Ctrl+m for a Windows user or cmd+m for Mac users. A result window will open, indicating the area of the particles selected
in number of pixels.

3. Repeat the previous step several times with several artifacts present in the images to determine the biggest contaminating particle/
artifact area. This will be the value to set in the setting when running the macro later on. When running the macro set the "Small
Particles Size" as the smallest particle size observed pus a margin of 25%.

4. See Figure 5D for an example. The biggest crystal detected has an area of 112 pixels. The "Small particles size" setting, when
processing this image with the macro, should be set to 125 - 150.

5. Determine minimum bouton size
 

NOTE: This function will exclude all boutons detected by the NMJ outline threshold that are smaller than the defined value from the analysis.
This value is defined in pixels.

1. Follow the same steps as described in section 6.4, but in this case draw a selection surrounding the smallest boutons present in the
NMJ terminal. Choose the smallest area corresponding to the smallest bouton of the measured ones. This is the value to set in the
minimum bouton size setting when running the macro later on.

6. Define "Maxima noise tolerance" value
1. To define the “Find maxima noise tolerance” value for the macro, open the channel 2 Z-stack saved in section 6.2.2.
2. Go to the plugins tab in the popup menu, select Process | Maximum(3D), and when the maximum_image_name appears (which can

take up a few minutes), close the original image stack.
3. Select the Maximum…_image_name (the newly obtained image stack) and select Plugins | Process | Minimum (3D), when the new

image Minimum of Maximum…_image_name apears close the Maximum … _image_name stack.
4. In the toolbar, select Process | Find maxima…. A new window "Find maxima…" will open. Click the checkbox "Preview point

selection…" and fill the "Noise tolerance" box with the default macro setting 50. The maxima points will be indicated in the image as
little crosses.

1. Increase the “Noise tolerance” value if observing an excess of annotated active zones, i.e. crosses that are not on top of active
zones that are not in focus on the selected stack plane, or false active zones that are detected in the background.
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1. On the other hand, if observing incompletely annotated active zones, i.e. active zones in focus not being recognized,
decrease the “Maxima noise tolerance” value. Keep trying different values following this procedure till the crosses are
appropriately labeling active zones in focus. Fill the “Find maxima noise tolerance” with this value.

2. See Figure 5C for an example. Too many active zones are detected. In Figure 5C’ only the active zones in focus are
detected when increasing the “Maxima noise tolerance” value.

5. Run the sub-macro "Analyze" for the representative images selected in step 5.1, with the settings defined in the all the previous steps.

7. Adjust Brp-puncta lower and upper threshold
1. Notice that a new file will be appearing after running the macro according to step 6.6, called 2_active_zone_stack_image_name. In this

image stack the active zones detected by the "Find maxima" function are indicated by white dots in each plane.
2. Open this file by dragging and dropping it into the toolbar and select Image | Stack | Z-project | Projection type = Sum slices. A

projection of the 2_active_zone_stack_image_name will be obtained.
3. Select Image | Adjust | Threshold. A new window "Threshold" will open. Slide the upper bar to choose a threshold value where, all

desired foci/Brp-positive spots are visualized in red.
 

NOTE: If the threshold is set too low, an excess of active zones will be counted. If set too high, a fraction of the active zones will be
missed.

1. See Figure 5E for an example. When threshold is set to 400, most of the active zones (symbolized as a 1 pixel foci) are not
included in the segmentation, since they are not highlighted in red (Figure 5E). When threshold is set to a value of 50 all the
active zones are highlighted in red (Figure 5E’).

4. Define this value as minimum threshold. Leave “Upper puncta threshold” on the maximum value.
5. Re-run the sub-macro “Analyze” for the representative images with the settings defined in all the previous steps of this section.

Critically evaluate the resulting image files and make sure that the segmentation is done properly. If this is not the case readjust the
settings according to the nature of the segmentation errors (Figure 4, Table 3).

Representative Results

The text results file will appear in the main directory. It summarizes all the measured parameters per image. The results are linked to the file
name and the parameters are subsequently summarized in the order indicated in Tables 1 and 2.

Res_image_name is a three-image stack. The first image highlights the outline and skeleton of the NMJ terminal determined by the macro based
on channel 1 (immunolabeling Dlg-1, Hrp, Syt, or Csp). The second image is a copy of the first image and additionally shows the identified Brp-
positive spots that are detected in channel 2 as schematized foci. The third image provides the maximum projection of the second channel
together with identified Brp-positive foci.

The NMJ outline threshold is represented in yellow in the macro output result image. NMJ area, perimeter and number of boutons are deduced
from this threshold.

The NMJ skeleton threshold is represented in blue in the macro output result image. NMJ length, longest branch length, number of branches,
branching points and islands are deduced from this threshold.

The NMJ Active zones threshold is not represented in the macro output result image. This threshold determines the area where the Brp-positive
foci potentially could be encountered by the macro. It is meant to create an NMJ area that is slightly bigger than the one defined by the NMJ
outline threshold. When a too restrictive threshold is selected, Brp-positive foci located at the margin of the synapse may be excluded. When the
threshold is too permissive, background noise may be counted as Brp-positive spots (Figures 1 - 2).

To validate the performance of the "Drosophila NMJ Morphometrics" macro, three mutant conditions that were already described to present
synaptic defects in different NMJ parameters were tested. Each defect was detected by a different image segmentation procedure performed by
the macro (NMJ outline, skeleton or active zones, respectively17). After targeting the three genes of interest by inducible RNAi and performing
dissections and NMJ immunostaining of L3 larvae, the macro was run. The obtained NMJ morphological measurements were then pairwise
(RNAi versus its control) compared using a t-test. In all three cases, statistical differences were found between mutants and controls affecting
parameters that are in agreement with the previously reported morphological defects. This confirms that the macros are indeed able to
adequately identify previously described defects at the Drosophila NMJ.

Ankyrin 2 (Ank2, CG42734) mutants are known to show synaptic morphology defects, including fused boutons and smaller NMJs. These defects
were observed for Ank2 mutants24,25 and Ank2 knockdown flies26. NMJ terminals of pan-neuronal Ank2-RNAi knockdown flies (w;UAS-Dicer-2/
UAS-Ank2 RNAi KK107238;elav-Gal4/+) showed significantly smaller NMJ area (mean = 339.25 µm2; t-test p = 2.18 x 10-8) and perimeter (mean
= 238.24 µm; t-test p = 1.82 x 10-3), compared to the genetic background control dataset (w;UAS-Dicer-2/UAS-KK60100;elav-Gal4/+) (mean =
451.95 µm2 and mean = 288.62 µm, respectively) after running "Drosophila NMJ Morphometrics" (Figures 6A & 4B).

The GTPase Rab3 (CG7576) is required for proper bruchpilot distribution and the rup mutant presents with a significantly reduced number of
active zones27. A significant decrease in the number of active zones was observed when measuring Brp-positive foci by the "Drosophila NMJ
Morphometrics" macro in NMJ terminals of pan-neuronal Rab3 knockdown flies (w;UAS-Dicer-2/UAS-RNAi KK100787;elav-Gal4) . The average
number of active zones per NMJ terminal in Rab3-RNAi was 138 in contrast to 290 detected in the control dataset (/+) t-test p = 4.43 x 10-29)
(Figures 6A & 4C).

https://www.jove.com
https://www.jove.com
https://www.jove.com


Journal of Visualized Experiments www.jove.com

Copyright © 2017  Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

May 2017 |  123  | e55395 | Page 6 of 13

Highwire (hiw, CG32592) is an important regulator of NMJ growth; mutations in hiw gene lead to overgrow and extended branching of the
NMJ terminals28. Measuring NMJ terminals of pan-neuronal Hiw-RNAi knockdown line (w;UAS-Dicer-2/UAS-RNAi-GD36085;elav-Gal4/+) with
"Drosophila NMJ Morphometrics", significant differences were observed in the skeleton-derived parameters: length (mean = 147.36 µm; control
mean = 122.07 µm; t-test p = 7.31 x 10-7), longest branch length (mean = 122.19 µm; control mean = 105.65 µm; t-test p=4.62 x 10-4) number of
branches (mean = 7.69; control mean = 5.74; t-test p = 2.52 x 10-2) and number of branching points (mean = 2.73; control mean = 1.79; t-test p =
3.31 x 10-2). All these parameters were significantly increased (120 - 180%) compared to the genetic background controls (w;UAS-Dicer-2/UAS-
GD60000;elav-Gal4/+) (Figures 6A & 4D).

 

Figure 1: Drosophila_NMJ_Morphometrics Measures 9 Parameters of the Drosophila NMJ. On the left are Dlg-1 and Brp immunolabeled
NMJ terminals, imaged on a fluorescence microscope with ApoTome. On the right are result images after running "Drosophila NMJ
Morphometrics". Parameters area, perimeter and boutons are represented by the macro-annotated yellow outline indicated. Parameters length,
longest branch length (LBL), branches, branching points, and islands are presented by the macro-annotated blue outline. Brp-immunolabeled
foci (active zones) are represented by the macro as white spots in the result images. Please click here to view a larger version of this figure.

 

Figure 2: Drosophila NMJ Bouton Morphometrics Measures 8 Parameters of the Drosophila NMJ. On the left are Syt-1 and Brp
immunolabeled NMJ terminal, imaged on a fluorescence microscope with ApoTome. On the right are result images after running "Drosophila
NMJ Bouton Morphometrics". Parameters boutons and bouton area are represented by the macro-annotated yellow outline. Parameters length,
longest branch length (LBL), branches, branching points, and islands are presented by the macro-annotated blue outline. Brp-immunolabeled
foci (active zones) are represented by the macro as white spots in the result images. Please click here to view a larger version of this figure.
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Figure 3: Flow Chart Representing Drosophila NMJ Morphometrics and Drosophila NMJ Bouton Morphometrics Macros. The first
sub-macro "Convert to stack" creates projections and hyperstacks of the imaged NMJs. The second sub-macro "Define ROI" requires manual
input defining the location of the NMJ terminal of interest. Sub-macro three, "Analyze", measures all NMJ parameters. A text file containing the
quantitative values and a result image file depicting the parameter delineation are created to assist the user's evaluation of macro performance.
When images are acquired under different conditions, the macro settings have to be tested and adjusted to ensure accurate analysis. Please
click here to view a larger version of this figure.

 

Figure 4: Examples of Inappropriate Macro Segmentation Results. Result images after running "Drosophila NMJ Morphometrics" or
"Drosophila NMJ Bouton Morphometrics". Parts of the synaptic terminal are not included in the yellow outline (A). Parts of the background are
included in the synaptic terminal by the yellow outline (B). Blue skeleton line extends beyond the synaptic terminal (C - D). Too many active
zones are detected (E - E'). Some Active zones remain undetected by the analysis (G - G'). Active zones are detected outside the synapse (F).
Incorrect bouton segmentation (Only applicable when running Drosophila NMJ Bouton Morphometrics), boutons are missed (H) or too many
boutons are detected by the segmentation (I). Particles such a crystals or dust that are part of the background are included in the segmentation
(J). Information how to change settings to avoid these errors are provided in Table 3. Please click here to view a larger version of this figure.
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Figure 5: Examples of Macro-setting Adjustments and Their Consequences for Image Segmentation. (A) Subtract background preview
of a Dlg-1 immunolabeled synapse, imaged on a fluorescence microscope with ApoTome, when "Rolling ball radius" is set to 20 (A) or 500
(A'). (B) Output images obtained after running Image | Adjust | Auto-Threshold | Try all the image illustrates image segmentations obtained
by the 16 different auto-threshold algorithms. (C) "Find Maxima" preview when setting up "Noise tolerance" at 50 (C) and 500 (C'); Active
zones that are detected by the segmentation are labeled by a small cross. (D) Measurement of the "small particles" appearing in the image
background of a synapse immunolabeled with anti-Hrp, imaged on a confocal microscope. (E) "Sum slices" projection obtained from the
2_active_zone_stack_ima-ge_name. Threshold is set at 400 (E) and at 50 (E'). Please click here to view a larger version of this figure.
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Figure 6: Macro Assessment and Quantification of NMJs on Muscle 4. (A) Result images after running "Drosophila NMJ Morphometrics"
macro on Dlg-1 and Brp immunolabeled NMJ terminals. Parameters area, perimeter and boutons are represented by the macro-annotated
yellow outline. Parameters length, longest branch length (LBL), branches, branching points, and islands are presented by the macro-annotated
blue outline. Brp-immunolabeled foci (active zones) are represented by the macro as white spots in the result images. The scale bar indicates 20
µm. (B) Ankyrin2 RNAi knockdown exhibit a smaller NMJ area and perimeter compared to genetic background controls. (C) Rab3 knockdown
resulted in NMJs with a lower number of Brp-positive active zones compared to genetic background controls. (D) Highwire knockdown resulted in
longer, higher longest branch length, more branched and with more branching points per NMJ terminals compared to genetic background control
NMJs. Error bars indicate SEM, ** p < 0.01, two tailed T-test. Please click here to view a larger version of this figure.

Parameter NMJ structure Explanation

Area (µm2) NMJ outline The area of the complete labelled NMJ

Perimeter (µm) NMJ outline The perimeter belonging to the area

#Boutons NMJ outline The number of synaptic boutons ('pearls on a
string') of the NMJ

Length (µm) Skeleton The total length of the complete NMJ terminal

Longest branch length (µm) Skeleton The sum of the length of the longest continuous
path connecting any two endpoints of the NMJ

#Branches Skeleton The total number of branches

#Branching points Skeleton The number of branching points (several
branches can derive from one branching point)

#Islands Skeleton The number of non-connected Dlg1-positive
synaptic compartments (or any other staining)

#Active zones Brp-positive spots The number of active zones, based on Brp
staining

Table 1: NMJ Parameters Measured by "Drosophila NMJ Morphometrics". The NMJ parameters measured by the "Drosophila NMJ
Morphometrics" macro will appear as a list in the obtained text file, following the order described in this table. This table is reprinted from Nijhof et
al.17
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Parameter NMJ structure Explanation

Boutons NMJ outline The number of synaptic boutons ('pearls on a
string') of the NMJ

Bouton area NMJ outline The total area of all boutons

Length (µm) Skeleton The total length of the complete NMJ terminal

Longest branch length (µm) Skeleton The sum of the length of the longest continuous
path connecting any two end points of the NMJ

#Branches Skeleton The total number of branches

#Branching points Skeleton The number of branching points (several
branches can derive from one branching point)

#Islands Skeleton The number of non-connected Dlg1-positive
synaptic compartments (or any other staining)

#Active zones Brp-positive spots The number of active zones, based on Brp
staining

Table 2: NMJ Parameters Measured by "Drosophila NMJ Bouton Morphometrics". The NMJ parameters measured by the
"Drosophila_Bouton_NMJ_Morphometrics" macro will appear as a list in the obtained text file, following the order described in this table. This
table is reprinted from Nijhof et al.17

Segmentation Observed errors Example Required adjustments

NMJ Area and perimeter
(Represented by yellow
outline in result image)

Parts of the synaptic
terminal are either not
included in the yellow
outline or parts of the
background are included
in the synaptic terminal
outlined in yellow.

Figure 5A-B Adjust 'Rolling Ball Radius'
value. See section 6.1.

Adjust 'NMJ outline
threshold'. See section 6.2.

NMJ length related
parameters (Represented
by blue skeleton line in the
results image)

Blue skeleton line either
extends beyond or is not
present along the entire
synaptic terminal.

Figure 5C-D Adjust 'Rolling Ball Radius'
value. See section 6.1.

Adjust 'NMJ outline
threshold'. See section 6.2.

Brp-positive puncta
(Represented by dots in
results image)

Too many active zones are
detected.

Figure 5E-E' Decrease the 'Find maxima
noise tolerance' value. See
section 6.5.

Brp-positive puncta
(Represented by dots in
results image)

Active zones are missed by
the analysis.

Figure 5G-G' Increase the 'Find maxima
noise tolerance' value. See
section 6.5.

Decrease 'Brp-puncta lower
threshold'. See section 6.6.

Brp-positive puncta
(Represented by dots in
results image)

Active zone artifacts are
detected outside of the
synaptic terminal. 

Figure 5F Adjust 'Active Zone
threshold' section 6.2.

Increase 'Brp-puncta lower
threshold'. See section 6.6. 

Small particles Particles such a crystals
or dust that are part of
the background appear
to be included in the
segmentation.

Figure 5J Select the box 'Remove
small particles'. See section
6.3.

Determine small particles
maximum size. See section
6.3.

Bouton segmentation Incorrect bouton
segmentation
(Only applicable to
Drosophila NMJ Bouton
Morphometrics; do not
use Drosophila NMJ
Morphometrics for bouton
segmentation).

Figure 5H-I Adjust 'NMJ outline
threshold'. See section 6.1.

Determine 'minimum
bouton size'. See section
6.4.

Table 3: Troubleshooting Guide for the Different Kinds of Errors in Image Segmentation that can be Produced by the Macros. This table
describes different kinds of image segmentation errors produced by the macros. These can easily be detected in the results images. Examples
of each error type are shown in Figure 4. In the "adjustments section" of the table, the settings that need to be adjusted are highlighted, and the
user is referred to the critical sub-step of section 6, which describe how to adjust these settings.

https://www.jove.com
https://www.jove.com
https://www.jove.com


Journal of Visualized Experiments www.jove.com

Copyright © 2017  Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

May 2017 |  123  | e55395 | Page 12 of 13

Discussion

"Drosophila NMJ Morphometrics" and "Drosophila NMJ bouton Morphometrics" are powerful tools for researchers interested in evaluating
synapse morphology. Manual assessment of NMJ parameters is laborious; it is estimated that the macros would save an experienced researcher
up to 15 min/NMJ spent on manual image segmentation. With one to two dozens of synapses evaluated per condition or genotype, this quickly
sums up to considerable amounts of saved time, even in small scale studies. When performing large screens, the gain of using high throughput
analysis, compared to manual assessment and quantification, can be immense. In addition to increased throughput, the macros readily provide
objective analysis; they exclude personal biases that otherwise require blinded experiments as well as interpersonal differences that occur
when multiple researchers are involved in the analysis. Finally, the macros provide a sensitive and accurate analysis of NMJ features, allowing
the identification of synaptic regulators that cause rather subtle than dramatic NMJ defects and have so far remained unappreciated by the
researcher's eye. Detailed information about validation procedures and the algorithms utilized in the macros are found in the publication Nijhof et
al.17.

The functionality of the macros has been validated to appropriately measure morphological features of Drosophila melanogaster NMJs at muscle
4. Subsequently, it was demonstrated that the macros were also suitable to analyze synapses at other muscles in this organism. It is likely that
the macros can also be used to measure morphological parameters of NMJ with similar structure in other species, including other Drosophila
species and further insects. Even NMJs very distant in evolution, e.g., NMJs of mice, show a quite similar structural conformation29. The macros
have not been tested on NMJ preparations from other species but potential users are encouraged to test the macros for such purposes.

It is very important that the user explores the different auto-thresholds and algorithms to define/choose the most suitable macro settings for
the images. With these settings, an accuracy of approximately 95% is achieved when macro assessment was compared to manual evaluation.
Adjusting the macro settings to properly segment 100% of the images can be a very laborious or even impossible procedure. Therefore,
exclusion of images not properly segmented is recommended if their numbers are below 5%. Evidently, if the quality of the images is low, the
macros will generate higher ratios of unsatisfactory image segmentations. Low quality images will similarly influence manual evaluation and can
therefore not be linked to the performance of the macros. Nonetheless the macros are rather robust as they were designed for images generated
on a high content microscope (an automated fluorescence microscope that allows imaging of large numbers of samples)17.

A critical point is that the user visually inspects all result images generated by the macros. This will allow to detect and exclude pictures with
unsatisfying segmentation. In section 6 of this protocol, the user is guided how to adjust the settings for correct image segmentation when
running the sub-macro "Analyze". To quickly familiarize with the requirements of the macros and how to adjust the macro settings a folder
called "Examples_adjusting macro settings" is included in the macro repository https://doi.org/10.6084/m9.figshare.2077399.v1. Thirteen
subfolders, each with examples images obtained at different microscope platforms (high content/confocal/fluorescence microscopes) and
different immunostainings, are provided. A PDF entitled “Examples guide” is included in the same folder where the settings required for each
example are provided, along with a text document providing the expected results and results images.

The macros were designed to process images saved as .tiff separated files, nonetheless some users might have saved their images in a different
format. The following website https://doi.org/10.6084/m9.figshare.2077399.v121 contains a folder named "Drosophila NMJ" where three example
files (Example 1 - 3) and the document "Examples Guide" with detailed instructions how to import images into the macro if not stored as .tiff
separated files can also be found in the same folder.

Together, "Drosophila NMJ Morphometrics" and "Drosophila NMJ bouton Morphometrics" macros quantify ten different NMJ features: NMJ area,
NMJ perimeter, number of boutons, NMJ bouton area, NMJ length, NMJ longest branch length, number of islands, number of branches, number
of branching points and number of active zones. This provides a great advantage over so far available tools that can assess only one or a few
synaptic features30,31. Multiparametric quantitative analysis bears great potential for new discoveries, e.g., to identify novel regulators that control
one up to numerous aspects of synapse biology. It also provides the required resolution to determine genes that coregulate exactly the same
or overlapping NMJ features and thus are likely to operate in common molecular pathways. Finally, it opens the possibility to investigate how
different synaptic parameters correlate with one another in undisturbed conditions17 and which genes ensure such coordinated morphometric
correlations.

Taken together, this protocol illustrates how to use the two macros "Drosophila NMJ Morphometrics" and "Drosophila NMJ Bouton
Morphometrics", which perform objective and sensitive quantification of ten morphological NMJ features in a high-throughput manner.
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