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Abstract: Hepatocyte growth factor (HGF) is the ligand for the tyrosine kinase receptor c-Met
(Mesenchymal Epithelial Transition Factor also known as Hepatocyte Growth Factor Receptor,
HGFR), a receptor with expression throughout epithelial and endothelial cell types. Activation of
c-Met enhances cell proliferation, invasion, survival, angiogenesis, and motility. The c-Met pathway
also stimulates tissue repair in normal cells. A body of past research shows that increased levels of
HGF and/or overexpression of c-Met are associated with poor prognosis in several solid tumors,
including lung cancer, as well as cancers of the head and neck, gastro-intestinal tract, breast,
ovary and cervix. The HGF/c-Met signaling network is complex; both ligand-dependent and
ligand-independent signaling occur. This article will provide an update on signaling through
the HGF/c-Met axis, the mechanism of action of HGF/c-Met inhibitors, the lung cancer patient
populations most likely to benefit, and possible mechanisms of resistance to these inhibitors.
Although c-Met as a target in non-small cell lung cancer (NSCLC) showed promise based on
preclinical data, clinical responses in NSCLC patients have been disappointing in the absence of MET
mutation or MET gene amplification. New therapeutics that selectively target c-Met or HGF, or that
target c-Met and a wider spectrum of interacting tyrosine kinases, will be discussed.

Keywords: hepatocyte growth factor (HGF); c-Met (mesenchymal epithelial transition factor or
hepatocyte growth factor receptor); targeted therapy; lung cancer

1. Biology of c-Met and Its Ligand, HGF 24pt

The c-Met oncogene was first isolated from a human osteosarcoma cell line, which contained
a DNA rearrangement: the translocated promoter region (TPR) locus on chromosome 1 was fused
to the MET gene on chromosome 7 [1]. The MET gene produces a protein that is a tyrosine kinase
receptor. The c-Met receptor, whose only known ligand is hepatocyte growth factor (HGF) [2], exists as
a disulfide-linked heterodimer of the α and β chains, which forms upon proteolytic cleavage of the
c-Met precursor [1]. The protein contains an extracellular domain for ligand binding, a membrane
spanning domain, a juxtamembrane portion, the catalytic kinase domain, and a C-terminal docking
site [3]. In the tumor microenvironment, growth factors and cytokines are frequently secreted that
are capable of activating or further enhancing metastasis by developing motility and invasiveness to
the tumor cells. Hepatocyte growth factor (HGF), the ligand for c-Met, was identified as a secreted
factor responsible for enhancement of motility and invasion, that also caused cell scattering [2]. HGF in
the tumor microenvironment can be derived from either the tumor cells or the tumor-associated
stromal cells [2], and in lung cancer is mainly produced by the mesenchymal cells in the stroma.
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HGF is primarily a paracrine factor produced by mesenchymal cells and fibroblasts. Under special
circumstances, such as hypoxia, cancer epithelial cells can secrete HGF [3].

HGF, such as the c-Met receptor, is produced in an inactive state and then converted into
its active form via proteolysis. The active state of HGF consists of four Kringle domains (K1–K4),
an amino (N) domain and a serine protease homology domain (SPH), whose interactions facilitate
receptor dimerization [4]. The binding of active HGF to c-Met leads to oligomerization of receptor,
activation of the catalytic portion, tyrosine residue autophosphorylation, and docking of substrates,
causing activation of downstream signaling processes [5,6].

Binding of HGF to c-Met leads to autophosphorylation on the tyrosine residues Y1234 and Y1235
at the tyrosine kinase domain, activating further autophosphorylation of Y1349 and Y1356 residues near
the COOH terminus. This activates the phosphotyrosine multifunctional docking site, which recruits
intracellular adapters through Src and activates downstream signaling events [7]. Another important
effect of HGF-mediated activation of c-Met is the stimulation of downstream effectors through the
RAS/mitogen-activated protein kinase (MAPK) signaling pathway [8]. The HGF/c-Met pathway
is also modulated by other proteins such as integrins which work as a platform that promotes the
activation of RAS and PI3K, plexin B1, semaphorin and the death receptor Fas [9]. A number of
biological activities such as cell proliferation, cell survival, motility function and morphogenesis are
triggered by c-Met downstream signaling through these second messengers [6,7].

It is also well-established that activation of other tyrosine kinases participate in maximizing
HGF/c-Met effects. The epidermal growth factor receptor (EGFR) plays a paramount role in
potentiating c-Met–mediated cell proliferation, cell invasion and cell survival [10]. EGFR activation
can cause a Src-dependent activation of c-Met that is ligand independent [11]. Likewise, downstream
of c-Met activation, PGE2 release occurring after COX2 induction can increase activity of matrix
metalloproteinases that release EGFR ligands such as amphiregulin [12]. EGFR and c-Met can have
a synergistic effect to advance the malignant phenotype [13,14]. Other oncogenic mechanisms work
to enhance c-Met action. For example, c-Met along with insulin-like growth factor 1 receptor can
synergistically increase cell invasion and cell migration in cancer cells [15]. RAS protein in its activated
form induces c-Met expression through a positive feedback mechanism [16]. Hypoxia is also known
to positively regulate c-Met activity via tumor angiogenesis [17]. A complex system of reinforcing
interactions modulate and govern the magnitude and duration of c-Met signaling in the cell.

2. HGF/c-MET Axis in Non-Small Cell Lung Cancer

Generally, activation of c-Met by HGF is controlled through release of ligand by a paracrine
process in which mesenchymal cells and cells of the innate immune system secrete HGF, followed
by ligand activation on the cell surface and internalization of the activated receptor. In embryonic
development, the HGF/c-Met system is active as organs are forming, but is largely silent in the adult,
unless triggered during wound healing. In a variety of cancers however, the HGF/c-Met pathway is
constitutively activated. The mechanism of activation include gene amplification, over-expression of
the c-Met and/or HGF proteins, increased cross-signaling between c-Met and other tyrosine kinases,
and MET gene mutation. Amplification of the MET gene has been found in a number of solid tumor
types, including gastric cancer, where sensitivity to a c-Met tyrosine kinase inhibitor was high, and the
c-Met pathway was important in maintaining cell survival [18]. Cancer cells containing MET gene
amplification were highly dependent on c-Met signaling for both proliferation and cell survival.

c-Met overexpression often occurs in the absence of gene amplification. In breast cancer,
c-Met overexpression was an independent predictor of aggressive malignancy with poor patient
survival [19]. Overexpression of c-Met protein is also commonly found in NSCLC tissues [20]; several
comparative studies detected c-Met overexpression in 60% of cases, while phospho- c-Met was elevated
in 40–100% cases [21,22]. Increased protein expression, as compared to the level measured in normal
tissues, has been observed in multiple neoplasms, and the degree of protein overexpression is often
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related to stage and extent of tumor progression [21,22]. c-Met overexpression was associated with
advanced stage of disease, poor outcome and poor survival rates in lung and breast cancer [23–25].

A rare mechanism that leads to c-Met activation is activating mutations. Both missense germ line
mutations in the tyrosine kinase domain and rare sporadic mutations have been detected in less than 1%
of renal carcinoma, melanoma, small-cell lung carcinoma and mesothelioma [26]. Oncogenic mutations
are found outside the kinase domain, such as mutations in the semaphorin domain (E168D, L229F,
S323G, and N375S) and the juxtamembrane domain (R988C, T1010I, S1058P, and exon 14 deletions) of
NSCLC cells [26]. The phosphorylation of Y1003, located in the juxtamembrane domain, is responsible
for internalization of the c-Met receptor by association with the CBL (Casitas B-lineage Lymphoma)
ubiquitin ligase. When there is a deletion of exon 14, the loss of Y1003 leads to c-Met accumulation on
the cell surface and high HGF stimulation contributes to cancer progression [26]. Although semaphorin
domain and juxtamembrane domain c-Met mutations develop at a low frequency (about 4% of
NSCLCs) they provide proof of the oncogenic capacity of this axis.

3. HGT/c-Met Axis in Small Cell Lung Cancer (SCLC)

Accumulating evidence shows that activation of the HGF/c-Met pathway in SCLC cells also leads
to increased tumor growth and survival. Many small cell tumors have increased plasma levels of
HGF and SCLC can also contain MET amplification. In an in vivo model, c-Met inhibitors such as
crizotinib and golvatinib arrested the cell cycle and led to decreased SCLC cell growth and metastasis.
This indicates that some SCLC may be sensitive to inhibition of the c-Met pathway. MET amplification
was also shown to promote resistance towards anti-cancer drugs in SCLC [27]. In an orthotopic
model, c-Met inhibitors arrested metastasis in SCLC cells with elevated HGF levels [28]. A recent
report found activation of the c-Met pathway in chemoresistant or chemorelapsed SCLC cell lines,
which occurred through increased HGF levels and increased MET gene amplification. Inhibition of
c-Met caused anti-tumor effects on these chemoresistant SCLC cell lines both in vitro and in vivo.
Thus HGF/c-MET-mediated signaling may be important in growth and progression of SCLC [29].

4. Therapeutics to Inhibit the HGF/c-Met Axis

The HGF/c-Met axis has been targeted in several ways for potential cancer treatment, including
targeting receptor activation and ligand binding. Multiple agents (small molecule tyrosine kinase
inhibitors [TKIs] of c-Met and antibodies directed against either the c-Met protein or HGF) have
completed or are currently in clinical trials. Active clinical trials targeting this pathway, including new
investigational agents, are summarized in Table 1. Despite the common finding that the HGF/c-Met
axis is overactive in many NSCLC, results of most completed clinical trials in patients without genetic
alterations in the MET gene were disappointing, with few objective responses, even in combination
therapy trials. Patients with amplification or mutation of the MET gene showed high response rates to
HGF or c-Met targeting, suggesting these genetic changes are associated with c-Met pathway addiction,
which is needed for clinical response to agents tested to date. Results of completed trials and ongoing
clinical testing of the agents in Table 1 will be discussed by the mechanism of action below.
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Table 1. Active or Recent Clinical Trials of hepatocyte growth factor (HGF)-MET Inhibitors in Lung Cancer or in Solid Tumors.

Agent(s) and Mechanism Trial Phase Endpoints Patient
Population/Indication Study Design Clinical Trial Identifier and Status

Source: www.Clinicaltrials.gov

Capmatinib (INCB28060)c-Met
ATP-competitive inhibitor 1 Safety, tolerability, PK c-MET-dysregulated

advanced solid tumors
Open Label, Dose Escalation
Study of Tablet Formulation

NCT02925104
Status: Recruiting

Capmatinib 1 Safety
Malignant NSCLC with
MET exon 14 skipping

alteration

Capmatinib oral daily
(50–740 mg/m2) 21-day cycles

NCT02750215
Status: Active, not recruiting

Cabozantinib (XL184)
c-Met, VEGFR2, and RET
ATP-competitive inhibitor

2 Efficacy Advanced or metastatic
solid tumors

All subjects start cabozantinib
at 40 mg. Those who tolerate 40
mg for 2 cycles will escalate to

60 mg

NCT02101736
Status: Active, not recruiting

Cabozantinib (XL184) 2 Safety/efficacy
Advanced NSCLC, RET,

ROS1, or NTRK
fusion-positive

Initial dose of 60 mg orally
daily for 28-day cycles

NCT01639508
Status: Recruiting

BMS-777607 (ASLAN002)
RON and c-Met ATP-competitive

inhibitor
1 Safety Advanced or metastatic

solid tumors

Oral daily doses of
100 mg, 200 mg, 300 mg, 450

mg, or 600 mg

NCT01721148
Status: Completed

Safety profile acceptable
Down-modulation of a RON
biomarker (CTX) found [30]

Volitinib (HMPL-504)
c-Met ATP-competitive inhibitor 1 Safety/efficacy Advanced solid tumors

Oral tablet of 25 mg, 100 mg
and 200 mg, once daily or

2 times a day

NCT01985555
Status: Active

Patients with c-Met dysregulation
showed responses [31]

Volitinib 1 Safety, PK, Efficacy

EGFR mutation-positive
NSCLC patients who
progressed on EGFR

tyrosine kinase inhibitor

Volitinib at 600 or 800 mg orally
once daily

Gefitinib at 250 mg orally
once daily

NCT02374645
Status: Active, not recruiting

Tepotinib (EMD1214063)
c-Met ATP-competitive inhibitor

plus Gefitinib (EGFR TKI)
2 Efficacy Advanced NSCLC

Tepotinib at 300 or 500 mg
orally once daily over a

21-day cycle
Gefitinib at 250 mg orally once

daily over a 21-day cycle

NCT01982955
Status: Active, not recruiting

www.Clinicaltrials.gov


Cancers 2018, 10, 280 5 of 18

Table 1. Cont.

Agent(s) and Mechanism Trial Phase Endpoints Patient
Population/Indication Study Design Clinical Trial Identifier and Status

Source: www.Clinicaltrials.gov

Tepotinib 2 Efficacy/Safety
Advanced NSCLC with
MET Exon 14 Skipping

Alterations

500 mg once orally daily in
21-day cycles

NCT02864992
Status: Recruiting

Foretinib (GSK1363089)
multi-kinase ATP-competitive
inhibitor of c-Met and VEGFRs

plus Erlotinib (EGFR TKI)

1 Safety

Previously treated
advanced NSCLC

unselected for EGFR
genotype

150 mg erlotinib once daily and
30–45 mg foretinib added on

day 15 of cycle 1

NCT01068587
Status: Completed Responses seen in
17.8% of evaluable patients. Baseline

c-Met expression associated with
response. Incremental toxicity

seen [32]

Glesatinib (MGCD265)
c-Met and multiple kinase
ATP-competitive inhibitor

plus Nivolumab (PD-1 blocker)

2 Safety/Efficacy

Advanced NSCLC,
previously treated with

platinum doublet
chemotherapy and a
checkpoint inhibitor

Twice daily oral glesatinib
(two doses tested)

Nivolumab 240 mg IV every
2 weeks

NCT02954991
Status: Recruiting

SAR125844
c-Met selective ATP-competitive

inhibitor
1 Safety, PK,

Preliminary Efficacy

Advanced solid tumors
with MET amplification or
phospho-c-Met expression

Escalating doses (50–740
mg/m2) given IV weekly for 6

weeks or until progression

NCT02435121
Status: Completed

Drug was well tolerated and
anti-tumor activity was observed

only in MET amplified patients [33]

Emibetuzumab (LY2875358)
anti-c-Met bivalent antibody

plus Ramucirumab (anti-VEGFR2
antibody)

1 Safety Advanced or metastatic
solid tumors

Dose escalation of IV
emibetuzumab, in combination

with a fixed dose of IV
ramucirumab on days 1 and 15

of every 28 day cycle

NCT02082210
Status: Active, not recruiting

Emibetuzumab
Plus Erlotinib 22 Efficacy NSCLC with activating

EGFR mutations

Lead In: 8 weeks of oral daily
Erlotinib, 150 mg
Randomization:

Emibetuzumab (20 mg) given
IV on Days 1 and 15 of 28-day

cycles, with and without
Erlotinib.

NCT01897480
Status: Active, not recruiting

www.Clinicaltrials.gov
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Table 1. Cont.

Agent(s) and Mechanism Trial Phase Endpoints Patient
Population/Indication Study Design Clinical Trial Identifier and Status

Source: www.Clinicaltrials.gov

Rilotumumab (AMG 102)
Human IgG2 monoclonal

neutralizing antibody to HGF
22 Efficacy Stage IV SCLC

Rilotumumab 15 mg/kg given
with etoposide and carboplatin

or cisplatin

NCT00791154
Status: Completed

Outcomes not improved although
low HGF levels associated with

improved survival [34]

YYB-101
Neutralizing humanized

monoclonal Ab against HGF
11 Safety/Efficacy Solid tumors

Increasing dose (0.3 mg/kg to 5
mg/kg), IV on Day 1 and Day
29, followed by every 2 weeks.
Dose-expansion cohort: MTD
(or RP2D), IV infusion every

2 weeks

NCT02499224
Status: Recruiting

Ficlatuzumab (AV-299)
humanized IgG1 monoclonal

antibody against HGFplus
Gefitinib

1b Safety/Efficacy
Asian NSCLC patients,

unselected for EGFR
mutation

Ficlatuzumab 10 mg/kg or
20 mg/kg

IV on days 1 and 15 of a
28 day cycle.

Gefitinb 250 mg orally daily

NCT
Status: Completed

Dose-related activity seen in patients
with no prior EGFR TKI treatment,

some in EGFR WT patients [35]

TAK-701
humanized monoclonal antibody

to HGF
11 Safety/Efficacy Advanced solid tumors

2, 5, 10, or 20 mg/kg IV. Cycle 1:
single dose at 2x the dose
assignment; Cycle 2 and
beyond: dose once every

two weeks

NCT00831896
Status: Completed

TAK-701 was well tolerated [36]

SAIT301
Monoclonal Ab against c-Met

that induces c-Met degradation
11 Safety/Efficacy Solid tumors

8 cohorts comprised of 3 to 6
subjects each. SAIT301 will be
administered according to a 3 +

3 design

NCT02296879
Status: Completed,
No results posted

LY3164530
c-Met/EGFR bispecific antibody 11 Safety/Efficacy Solid tumors

LY3164530 in escalating dose
cohorts given IV once on Days

1, 8, 15, and 22 of a 28-day cycle

NCT02221882
Status: Completed,
No results posted

JNJ-61186372
c-Met/EGFR bispecific antibody 11 Safety/Efficacy NSCLC

Increasing dose levels for 28
day cycles. The dose will be

escalated until the MDT

NCT02609776
Status: Recruiting

www.Clinicaltrials.gov


Cancers 2018, 10, 280 7 of 18

Table 1. Cont.

Agent(s) and Mechanism Trial Phase Endpoints Patient
Population/Indication Study Design Clinical Trial Identifier and Status

Source: www.Clinicaltrials.gov

ARGX-111
c-Met-targeting human

monoclonal Ab that activates
antibody-dependent cellular

cytotoxicity

11 Safety/Efficacy c-MET-overexpressing
cancer

Doses given were-0.3 mg/kg,
1.0 mg/kg, 3.0 mg/kg and

10 mg/kg

NCT02055066
Status: Completed

Good safety profile, some activity
in patients with

c-Met abnormalities [37]

MP0250
Dual anti-HGF/anti-VEGF

antibody mimetic
22 Safety/Efficacy Advanced solid tumors

IV infusion at up to six dose
levels, every other week for up

to 24 infusions

NCT02194426
Status: Active, Not recruiting

ABT-700
c-Met

monoclonal antibody
11 Safety/efficacy

Advanced solid tumors
with MET amplification or

overexpression

IV infusion at escalating doses
in 21-day cycles

ABT-700 will also be given in
combination with other
therapies in 3 cohorts

NCT01472016
Status: Completed
No results posted

www.Clinicaltrials.gov
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5. Crizotinib: First Generation c-Met Tyrosine Kinase Inhibitor

Synthetic small-molecule c-Met TKIs are low molecular weight molecules that compete for the
adenosine triphosphate (ATP) binding site of the c-Met tyrosine kinase domain [20]. This prevents
activation of the receptor and arrests downstream signaling. Several small molecules that target
c-Met show a lack of specificity and can also impede the ATP binding site in other kinases such as
vascular endothelial growth factor receptor (VEGFR) and the translocated EML4-anaplastic lymphoma
kinase (ALK). Crizotinib (PF-02341066) is a compound developed to target c-Met that also showed
a high affinity for the translocated ALK fusion protein. In preclinical studies, crizotinib successfully
suppressed NSCLC cell growth, migration and cell survival in models that expressed c-Met [13,20].
This compound has shown efficacy at well tolerated doses in NSCLC patients in patients with amplified
or mutated c-Met, and in those with ALK abnormalities, but had little activity in NSCLC without these
abnormalities [8]. In a phase III trial of first-line treatment in ALK (Anaplastic Lymphoma Kinase)
Positive East Asian NSCLC with an ALK translocation or inversion, crizotinib was found to improve
progression free survival (median 11.1 months), as compared to chemotherapy (median 6.8 months) [38]
which led to its rapid FDA approval for ALK positive disease.

6. Tyrosine Kinase Inhibitors with Selectivity for c-Met

Volitinib (Savolitinib) is a selective c-Met inhibitor that blocks c-Met activity in an ATP-dependent
manner. It has been shown to have anti-tumor activity in gastric and papillary renal carcinoma [39,40]
in xenograft models. More recently in preclinical studies, it has been reported to inhibit tumor
growth in NSCLC by blocking the PI3K/AKT, MAPK signaling and c-Myc down regulation [41].
Intravenous delivery of volitinib in gastric cancer models with amplification of the MET gene showed
dose-dependent tumor regression [39]. Volitinib is being tested in combination with gefitinb in EGFR
mutant NSCLC (Table 1).

SAR125844: This derivative of triazolopyridazine was first identified as a selective inhibitor of
both wild type c-Met and c-Met with kinase domain mutations in gastric cancer cell lines. Xenograft
studies with MET amplified gastric tumor cells showed significant tumor growth inhibition because
of antiproliferative and proapoptotic effects of the drug and down regulation of PI3K/AKT and
RAS/MAPK pathways [42]. Pharmacokinetics studies were performed and analyzed in several
species from mice to dog [43]. Phase I dose escalation and dose expansion study in patients with
advanced tumors showed modest antitumor response in patients with MET amplified gastric cancers at
570 mg/m2 and was well tolerated [44]. A first in human phase 1 clinical trial was performed in patients
with NSCLC (Table 1). The cohort included MET amplified, high c-Met, and high phospho-c-Met
patients. No response was observed in patients with high c-Met; however significant antitumor
response at 570 mg/m2 was observed in patients with MET amplification [33].

Tepotinib (EMD1214063) is a c-Met inhibitor with ≥1000 fold selectivity for c-Met as compared to
other kinases. It inhibited both HGF-dependent and HGF-independent c-Met phosphorylation in vitro
in lung and gastric cancer cell lines and showed tumor regression in xenografts model [45]. Tepotinib
has been shown to overcome the acquired resistance to first generation EGFR TKIs in NSCLC with
T790M mutation, displaying complete regression in xenograft studies when combined with rocelitinib,
a third generation EGFR TKI that targets the T790M mutation [46]. Phase 1b/2 trial of tepotinib
combined with gefitinib is on ongoing clinical study (NCT01982955) to evaluate the efficacy in terms
of progression-free survival in advanced lung cancer (Table 1). Tepotinib is also being evaluated in
a phase II single arm clinical trial in patients with advanced (stage III/IV) NSCLC harboring MET
exon 14 skipping mutation (NCT02864992, Table 1).

Capmatinib (INCB28060) was identified as a very potent selective competitive inhibitor for c-Met,
inhibiting activity at picomolar concentrations and displaying ≥10,000 selectivity for c-Met compared
to other kinases. Effective anti-proliferative and anti-apoptotic properties of capmatinib were observed
in c-Met driven mouse tumor models [47]. In NSCLC cell lines made resistant to erlotinib through the
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addition of HGF, capamitinib could re-sensitize cells to erlotinib [48]. Clinical studies are ongoing with
exon 14 mutation or MET amplification (Table 1) to establish safety and pharmacokinetics.

7. Multi-Kinase Targeting

An approach to improve responses to TKIs in patients lacking specific genetic alterations is to
broaden the kinases being targeted. A number of TKIs are being tested clinically with ability to
block multiple receptors (Table 1). Foretinib (XL-880) inhibits several kinases including c-Met, RON,
VEGFR2, KIT, TIE2 and PDGFR [32], suggesting it could block proliferation and be anti-angiogenic.
Foretinib was tested in a phase I trial given with erlotinib in NSCLC patients who progressed
after chemotherapy. Responses were seen in 17.8% of evaluable patients, including those without
EGFR mutation. Baseline c-Met expression was associated with response, suggesting combining this
multi-kinase inhibitor with an EGFR inhibitor could improve sensitivity to erlotinib in both EGFR
mutant and wild type patients. Cabozantinib (XL-184) is another multi-kinase inhibitor that targets
c-Met, VEGFR1, VEGFR2, VEGFR3, RET, TIE2, FLT-3 and KIT, so should block multiple pro-cancer
signaling pathways [49]. It has significant oral bioavailability and blood-brain barrier penetration.
It was found to be superior to erlotinib and to improve outcomes when combined with erlotinib in
patients who lacked EGFR mutations, with acceptable toxicity [49].

The multi-kinase inhibitor glesatinib (MGCD265) targets c-Met, VEGFR1, VEGFR2, VEGFR3,
TIE2 and RON [50]. It is currently being tested in clinical trials for NSCLC in combination with
erlotinib and docetaxel. A Phase 2 trial of glesatinib in combination with the checkpoint blocker
nivolumab in patients with advanced NSCLC previously treated with platinum doublet chemotherapy
and a checkpoint inhibitor is ongoing (Table 1). Another agent that targets both c-Met and RON,
BMS-777607, showed an acceptable safety profile in a phase 1 trial, and a RON biomarker, CTX,
was down-modulated by the drug [30].

8. Biological Antagonists of HGF or c-Met

Several types of biological antagonists have been developed that either neutralize HGF, c-Met,
or the HGF-c-Met interaction. These agents are in various stages of development and can be used as a
monotherapy or in combination with other targeted therapies. HGF-competitive analogs compete with
the ligand for receptor binding on the cell surface. They do not lead to c-Met signaling and cannot induce
c-Met dimerization, while HGF neutralizing antibodies bind to the fully processed HGF molecule,
preventing interaction of HGF with the receptor. c-Met competitive variants competitively displace
HGF and do not cause dimerization of the receptor. Decoys of c-Met have also been produced that bind
to intact c-Met or HGF to disrupt dimerization of native c-Met receptor [51].

The following biological antagonists have been, or are currently being, clinically evaluated:
Onartuzumab (MetMAb): Onartuzumab is a monoclonal antibody against c-Met that obstructs

the binding of the HGF α-chain to its c-Met ligand binding domain [52]. After safety evaluation [53],
a phase II trial showed increased efficacy of onartuzumab in combination with erlotinib compared
to erlotinib alone n patients positive for c-Met protein by immunohistochemical evaluation [54,55];
however further testing in a phase III trial was discontinued for lack of efficacy in this setting, in which
the combination with erlotinib showed shorter survival [56].

Emibetuzumab (LY2875358): Emibetuzumab is a bivalent antibody raised against c-Met that
blocks HGF binding to c-Met, preventing signaling. Unlike onartuzumab, it leads to internalization
and degradation of c-Met. In a study using mouse xenograft models, emibetuzumab blocked both
HGF-dependent and -independent tumor growth [57]. A phase I clinical trial with emibetuzumab
alone or in combination with erlotinib was carried out in patients with NSCLC [58]. 23 patients
received emibetuzumab alone, one patient experienced a partial response (4.3%) and five patients
(21.7%) experienced stable disease. Out of the 14 NSCLC patients receiving combination treatment,
two patients experienced a partial response (14.3%) and four (28.6%) had stable disease. Comparing
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emibetuzumb with and without erlotinib is now being tested in a phase 2 trial, and it is also currently
being tested in a phase 1 trial in combination with an anti-VEGFR2 antibody, ramucirumab (Table 1).

LY3164530 is a bispecific monoclonal antibody that binds and degrades both c-Met and EGFR,
which has shown strong ability to inhibit signaling from both receptors. In a xenograft model [59],
LY3164530 had more anti-tumor effect in comparison to emibetuzumab and cetuximab, and was
effective against NSCLC resistant to EGFR inhibitors [60]. It is now in phase 1 testing (Table 1).

JNJ-61186372: The anti-tumor activity of JNJ-61186372, a c-Met and EGFR bispecific antibody,
was investigated in in vitro and in vivo studies involving NSCLC tumor models, and showed strong
ability to reduce tumor growth [61,62]. The safety and efficacy of JNJ-61186372 are currently being
evaluated in a Phase 1 study in NSCLC (Table 1), to determine dosing for phase 2 studies and to
identify any dose limiting toxicities. The study is scheduled for completion in 2020.

SAIT301: This is a humanized monoclonal antibody that targets the alpha chain of the extracellular
domain of c-Met [63], preventing HGF binding. In addition, SAIT301 causes c-Met internalization that
leads to degradation, which enhances the blockade of c-Met signaling. [63]. There is an ongoing phase
I clinical study for patients with c-Met-positive solid tumors, using immunohistochemistry to detect
positive c-Met staining (Table 1).

ABT-700 (h224G11): The anti-c-Met monoclonal antibody ABT-700 has anti-tumor effects in lung
cancer xenografts with amplification of MET gene [64]. An ongoing phase I study of ABT-700 alone or
in combination with one of three standard-of-care regimens is comparing the efficacy of monotherapy
v/s combinational therapy in advanced solid tumors with MET gene amplification and/or c-Met
overexpression (Table 1).

Rilotumumab (AMG-102): Rilotumumab was the first HGF inhibitor to reach phase 3 clinical
testing. It binds to the HGF β-chain, inhibiting HGF binding to c-Met [65]. Rilotumumab showed
tolerability in the phase 1 clinical trial [66]. In the phase 2 study, addition of rilotumumab to
capecitabine, cisplatin and epirubicin led to an increase in progression free survival and overall
survival in MET-positive patients with adenocarcinoma [66]. However, there were two phase 3 clinical
trials that showed negative results. For example, the RILOMET-1 study was stopped early (in 2014)
because of lower efficacy, higher toxicity, shorter overall survival and lack of specific effects in NSCLC
patients with MET amplification [67]. Rilotumumab was evaluated in combination with chemotherapy
for small cell lung cancer. Overall survival was better with rilotumumab (10.8 months in placebo arm vs.
12.2 months in the rilotumumab arm) [34]. Rilotumumab was also tested in combination with erlotinib
in a phase 1/2 study in NSCLC patients unselected for EGFR mutations status; the combination was
found to have an acceptable safety profile. The disease control rate (DCR) for all patients was 60%.
Among patients with wild type EGFR, the DCR was 60.6% and median overall survival was 7.0 months
(90% CI, 5.6–13.4 months) [68], suggesting that blocking HGF in combination with an EGFR TKI might
improve efficacy in the EGFR wild-type population.

Ficlatuzumab (AV-299): Ficlatuzumab is a humanized anti-HGF neutralizing antibody. In a phase I
trial, ficlatuzumab alone had a maximum tolerance dose of 20 mg/kg in patients with NSCLC.
The toxicities observed were low grade [69]. There was an increase in circulating HGF observed in
patients after ficlatuzumab treatment, compared to the basal levels, suggesting a rebound effect occurs
that could limit efficacy [70]. Results from a phase II study compared the efficacy of ficlatuzumab and
gefitinib in combination versus gefitinib as monotherapy in Asian patients with lung adenocarcinoma.
There was no significant difference in response rate observed in monotherapy (40%) compared to
combination therapy (43%), or in progression-free survival (4.7 months in monotherapy vs. 5.6 months
in combinational therapy) [71]. However, patients who were classified as VeriStrat-poor (a test for
erlotinib sensitivity) had better outcomes with the combination, and might benefit from ficlatuzumab.

TAK-701: This humanized monoclonal antibody against HGF was active in overcoming gefitinib
resistance observed in EGFR-mutant human NSCLC cells [72]. During a phase I study in patients
with advanced solid malignancies, TAK-701 had a good safety profile, with only low grade adverse
effects [72]. YYB-101 is a neutralizing monoclonal antibody against HGF. It binds to the HGF α-chain
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and blocks c-Met activation and cell metastasis in vitro. It also has an anti-tumor effect in several
xenografts [73,74]. There is an ongoing phase I clinical study in patients with advanced solid tumors.

ARGX-111 is a c-Met targeting human monoclonal that elicits antibody-dependent cellular
cytotoxicity as part of its mechanism of action. A phase 1 study [37] showed a good safety profile and
some activity in patients with c-Met abnormalities. MP0250 is a dual-specific antibody mimetic
(a designed ankyrin repeat protein (DARPin®) that functions as a neutralizing protein for both
VEGF and HGF [75]. It contains two human serum albumin antibody mimic sequences that flank
an anti-HGF and an anti-VEGF sequence, producing a moiety that binds and neutralizes both VEGF
and HGF [75]. The rationale for dual targeting is the observation of up-regulation of the VEGF pathway
when c-Met is inhibited [75]. MP0250 has shown preclinical activity against human patient-derived
xenografts with HGF expression [75], and is being tested in a phase 2 clinical trial in solid tumors
(Table 1).

DN30: This c-Met antibody under development for clinical use acts through several novel
mechanisms to disrupt c-Met signaling, including causing degradation of the receptor. The mechanism
of action of DN30 involves down-regulation of c-Met, in which receptor bound to DN30 at the cell
surface is removed by proteolytic cleavage, resulting in shedding of the extracellular domain [76].
The cleaved c-Met fragment acts as a decoy receptor because a functional HGF binding site is still
present, and the cleaved portion is able to sequester free HGF, as well as dimerize with any intact active
c-Met receptors remaining on the cell surface. Both these actions render c-Met inactive by preventing
homodimerization of intact c-Met receptors, or by forming nonfunctional heterodimers [77,78]. By this
dual mechanism, DN30 efficiently blocks both HGF binding and c-Met phosphorylation, showing
activities found in both TKIs and neutralizing antibodies [79]. The combined effect is that DN30 can
block both the HGF-dependent and HGF-independent pathways. It showed anti-cancer effects in both
in vitro and in vivo models of tumors with addiction to the c-Met pathway [79].

9. Mechanisms of Resistance to Inhibitors of the HGF/c-Met Axis

Multiple gene mutations and mechanisms are known to contribute to resistance to HGF/c-Met
pathway blockade, such as HER, BRAF and KRAS pathways, or mutations in c-Met [80,81].
For example, in preclinical studies, there was maintenance of downstream PI3K and MAPK signaling
by emergence of a mutation in the c-Met activation loop (Y1230), avoiding an interaction with
a c-MET TKI; activation of the EGFR pathway through secretion of transforming growth factor α also
was a resistance mechanism [81]. NSCLC models showed that resistance to anti-MET agents was
accompanied by upregulation of the Wnt and mTOR pathways [82]. Increased HGF secreted into the
microenvironment can also overcome the action of anti-MET drugs and convert genetically altered
constitutively active c-Met tumors into ligand-dependent tumors [83]. Proposed strategies that can
be used to overcome acquired resistance in patients with basal sensitivity to HGF/c-Met pathway
inhibition include adding inhibitors at different upstream and downstream levels of the pathway,
adding an HGF neutralizing antibody to a c-Met targeting drug, and using upfront drug combinations
to circumvent bypass mechanisms.

10. Role of HGF-c-Met in Resistance to Other Therapies

The tumor microenvironment is engaged in resistance to molecular-targeted therapies. Stromal cells
influence the action of cancer therapeutics, and stromal changes such as release of HGF can provide
an alternate stimulus when other pathways are blocked. In a study using a RAF inhibitor, increased
HGF secretion was identified as a prime mechanism for resistance [84]. Although the T790M second
mutation in the mutant EGFR often occurs in NSCLC patients with acquired resistance to EGFR
TKIs [85], HGF-dependent c-Met activation and constitutive activation by amplification of the MET
gene are noted compensatory mechanisms that also are factors in acquired resistance in EGFR mutant
NSCLC patients [86,87]. Alectinib, a selective anaplastic lymphoma kinase (ALK) TKI that lacks
interaction with c-Met, has high activity in ALK mutant NSCLC patients; alcetinib treatment in
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ALK positive patients was associated with increased median progression free survival and high
response rate [88]. However, many NSCLC patients eventually became resistant to alectinib and
one common mechanism of acquired resistance to ALK TKIs is the secretion of HGF into the tumor
microenvironment, leading to HGF-dependent c-Met signaling [89]. This is another example of how
over-activity of the c-Met pathway is an important escape mechanism in targeted therapy resistance.

11. Conclusions

Although the c-Met pathway is frequently overactive in NSCLC, inhibiting either the c-Met
receptor itself or its ligand HGF has not proven effective as single therapy in unselected NSCLC
patients. Clinical response to these agents has to date been largely restricted to NSCLC patients
with genetic alterations in MET, such as amplification or exon 14 deletion. Some patients with
acquired EGFR TKI drug resistance that involves up-regulation of the c-Met pathway also have
responded. Acquired resistance that eventually develops after initial response to c-Met pathway
inhibitors often involves activation of parallel signaling pathways or induction of HGF secretion.
Several new classes of HGF/c-Met inhibitors may show expanded activity in patients with MET genetic
alterations, and might also prove effective in NSCLC with overexpressed c-Met in the absence of genetic
abnormality. These include the multi-kinase inhibitors that block c-Met as well as a range of other
kinases; the kinase inhibitors and monoclonal antibodies against c-Met that also cause degradation
of the c-Met protein; and the bivalent antibodies that can block several pathways simultaneously.
The newer c-Met TKIs with improved c-Met selectivity compared to earlier agents most likely will only
be active as single agents in the presence of MET oncogene addiction. Combinations of kinase inhibitors
that target both upstream and downstream in the signaling pathway, or reduce parallel kinase signaling
from other receptors, could improve clinical benefit, but toxicity has been a problem with these targeted
combinations in the past. Combining a c-Met TKI or antibody with an HGF neutralizing antibody may
improve efficacy. Other approaches to expand efficacy of HGF/c-Met targeting include combining these
agents with inhibitors of the viability or function of stromal cells such as tumor-associated fibroblasts,
endothelial cells, or macrophages, or using immunotherapy in combination with HGF/c-Met agents.
Such strategies might also increase activity of these drugs in a wider range of patients who lack MET
genetic abnormalities.
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