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Current antiretroviral therapy (ART) effectively suppresses Human Immunodeficiency
Virus type 1 (HIV-1) in infected individuals. However, even long term ART does not
eradicate HIV-1 infected cells and the virus persists in cellular reservoirs. Beside memory
CD4+ T cells, cells of the myeloid lineage, especially macrophages, are believed to
be an important sanctuary for HIV-1. Monocytes and macrophages are key players
in the innate immune response to pathogens and are recruited to sites of infection
and inflammation. Due to their long life span and ability to reside in virtually every
tissue, macrophages have been proposed to play a critical role in the establishment
and persistence of the HIV-1 reservoir. Current HIV-1 cure strategies mainly focus
on the concept of “shock and kill” to purge the viral reservoir. This approach aims
to reactivate viral protein production in latently infected cells, which subsequently
are eliminated as a consequence of viral replication, or recognized and killed by the
immune system. Macrophage susceptibility to HIV-1 infection is dependent on the
local microenvironment, suggesting that molecular pathways directing differentiation and
polarization are involved. Current latency reversing agents (LRA) are mainly designed
to reactivate the HIV-1 provirus in CD4+ T cells, while their ability to abolish viral
latency in macrophages is largely unknown. Moreover, the resistance of macrophages
to HIV-1 mediated kill and the presence of infected macrophages in immune privileged
regions including the central nervous system (CNS), may pose a barrier to elimination
of infected cells by current “shock and kill” strategies. This review focusses on the role
of monocytes/macrophages in HIV-1 persistence. We will discuss mechanisms of viral
latency and persistence in monocytes/macrophages. Furthermore, the role of these cells
in HIV-1 tissue distribution and pathogenesis will be discussed.
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INTRODUCTION

Antiretroviral therapy (ART) has dramatically improved the clinical outcome of Human
Immunodeficiency Virus type 1 (HIV-1) infection. However, eradication of HIV-1 is not achieved
due to persistence of a viral reservoir that harbors latent provirus that is reactivated upon
discontinuation of ART. This latent viral reservoir is a major hurdle in curative treatment of HIV-
1 infection and therefore new therapeutic approaches that aim to eliminate or reduce the viral
reservoir are explored.
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CD4+ T cells and cells from the monocyte/macrophage
lineage are considered as the most important target cells for
HIV-1, and play an important role in viral persistence and the
formation of the viral reservoir. While the major viral reservoir
in treated HIV-1 infection is comprised of CD4+ T cells, the
distribution and characteristics of the monocyte/macrophage
reservoir remain largely unknown.

Monocytes and macrophages are part of the innate
immune system and respond to different signals which will
direct macrophage differentiation, polarization and function.
Monocytes/macrophages sense and clear pathogens, serve as
antigen presenting cells priming the adaptive immune response,
are involved in both pro- and anti-inflammatory responses, and
tissue repair. Macrophages are found in all lymphoid as well as
non-lymphoid tissues and their origin was originally described to
be dependent on circulating monocytes, which would replenish
the tissue-resident macrophage pool if needed. Recent studies in
mice showed that the majority of tissue-resident macrophages
are embryonically derived and have been implicated to be
self-renewing, with the exception of the mucosal/border tissues
like the intestine, the dermis and the heart, where bone marrow-
derived circulating monocytes constantly replenish the aging
tissue-resident macrophage pool (Ginhoux et al., 2010; Schulz
et al., 2012; Hashimoto et al., 2013; Yona et al., 2013; Bain et al.,
2014; Hoeffel et al., 2015; Mass et al., 2016). The proportion
between the pool of tissue-resident macrophages and the pool
of monocytes-derived macrophages vary during a state of
homeostasis or inflammation (Wang and Kubes, 2016).

Upon differentiation of monocytes into macrophages, these
cells become susceptible to HIV-1 infection and due to their
ability to migrate into tissues, they contribute to the spread of
viral infection to nearly every tissue of the body including gut,
semen, lung, gut-associated lymphoid tissue, brain, liver, urethra,
and lymph nodes (Zhang et al., 1998; Mayer et al., 1999; Lambotte
et al., 2005; Guadalupe et al., 2006; Poles et al., 2006; Chun et al.,
2008; Zalar et al., 2010; Deleage et al., 2011; Abbas et al., 2014;
Yukl et al., 2014; Cribbs et al., 2015; Hansen et al., 2016; Rose
et al., 2016; Kandathil et al., 2018; Tso et al., 2018; Ganor et al.,
2019; Ko et al., 2019). Furthermore, macrophages are considered
long lived, resistant to virally induced cytopathic effects, and can
reside in anatomical sanctuaries with restricted penetration of
ART, which will support viral persistent even during ART (Ho
et al., 1986; Nicholson et al., 1986; Lafeuillade et al., 1998; Solas
et al., 2003; Estes et al., 2017; Clayton et al., 2018).

In this review we will discuss the role of
monocytes/macrophages in HIV-1 pathogenesis, HIV-1
persistence and viral reservoir.

MONOCYTES AND MACROPHAGES IN
HIV-1 PATHOGENESIS

HIV-1 Transmission
Human Immunodeficiency Virus type 1 enters the body mostly
through mucosal surfaces of the genital or gastrointestinal
tract. The underlying lamina propria is populated with high
populations of lymphocytes and macrophages, which express

CD4 in combination with the coreceptor C-C chemokine
receptor type 5 (CCR5) and serve as targets for HIV-1 infection.
Although the CD4+ T cells in the lamina propria are considered
the major target for HIV-1 (Zhang et al., 1999; Greenhead et al.,
2000; Gupta et al., 2002; Guadalupe et al., 2003; Brenchley et al.,
2004; Hladik et al., 2007), infection of macrophages located in
the lamina propria of the intestinal, penile urethral and vaginal
mucosa has been described (Shen et al., 2009; Zalar et al., 2010;
Ganor et al., 2013; Josefsson et al., 2013; Yukl et al., 2014).
This confirms a role for macrophages during the early phases
of infection, however, it remains under debate whether these
mucosal macrophages support HIV-1 replication and spread the
infection. Indeed, HIV-1 RNA has been demonstrated to be
present in macrophages located in the vagina (Shen et al., 2009),
but not in the gut, indicating that local environmental signals
required for efficient viral replication in macrophages can be
lacking in local mucosal tissues under homeostatic conditions.

Monocytes in HIV-1 Infection
Human Immunodeficiency Virus type 1 infection is characterized
by high immune activation and inflammation, caused by high
levels of HIV-1 replication, bacterial translocation, coinfection
with other viruses (e.g., CMV, HCV, HBV) and, immune
dysregulation (Brenchley and Douek, 2008; Deeks, 2011).
ART strongly reduces HIV-1 associated inflammation and
immune activation, however, residual immune activation and
inflammation is still observed even in effectively treated
individuals (Brenchley and Douek, 2008; Deeks, 2011). During
HIV-1 infection, increased activation and differentiation of
peripheral blood monocytes is also observed (Allen et al., 1990;
Thieblemont et al., 1995; Pulliam et al., 1997; Ancuta et al., 2008;
Hearps et al., 2012; Williams et al., 2012; Westhorpe et al., 2014;
Booiman et al., 2017), which may affect their susceptibility to
HIV-1 infection and their ability to migrate into the tissues, thus
contributing to HIV-1 pathogenesis.

In the peripheral blood, three monocyte subpopulations can
be distinguished based on the expression of the LPS receptor
CD14 and the FcγIII receptor CD16. The majority of the
peripheral blood monocytes (>85%) are classical monocytes
that express high levels of CD14 (CD14++CD16-), whereas
CD16 is co-expressed on the intermediate (CD14++CD16+)
and non-classical monocytes (CD14+CD16+) (Passlick et al.,
1989; Ziegler-Heitbrock et al., 2010; Wong et al., 2011). Murine
studies and more recently a humanized mouse study showed that
monocyte precursors differentiate first into classical monocytes
in bone marrow for a maturation phase of ∼ 38 h. This
classical monocyte population is retained in the bone marrow
and can respond to acute systemic inflammation. Most classical
monocytes remain in the circulation for approximately 1–
3 day before migration into the tissues. However, a small
proportion matures further into intermediate monocytes within
the circulation and most of these cells finally mature into non-
classical monocytes before leaving the circulation (Sunderkotter
et al., 2004; Varol et al., 2007; Yona et al., 2013; Gamrekelashvili
et al., 2016; Patel et al., 2017). In HIV-1 infected individuals,
an expansion of CD16 expressing monocytes or intermediate
monocytes (CD14+CD16+) is evident during all phases of
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infection, especially in viremic individuals, which is normalized
after initiation of ART in at least part of the patients (Allen
et al., 1990; Thieblemont et al., 1995; Pulliam et al., 1997; Ancuta
et al., 2008; Hearps et al., 2012; Williams et al., 2012; Westhorpe
et al., 2014; Booiman et al., 2017). Moreover, monocytes express
increased levels of activation markers (e.g., CD163, HLA-DR,
CD69), T-cell costimulatory molecules (e.g., CD40 and CD86),
adhesion molecules (e.g., CD11b, CD11c, CD91, CX3CR1), and
chemokine receptors (e.g., C-C chemokine receptor type 2
(CCR2), CCR5), which is also observed during ART (Pulliam
et al., 1997; Ancuta et al., 2008; Hearps et al., 2012; Westhorpe
et al., 2014; Booiman et al., 2017).

In the peripheral blood, a small population (<0.1%) of
the monocytes harbor replication competent HIV-1 provirus
(Furtado et al., 1999; Crowe and Sonza, 2000; Sonza et al.,
2001; Shiramizu et al., 2005; Ellery et al., 2007). While classical
monocytes are relatively resistant to HIV-1 infection most
likely due to low CCR5 expression, CD16+ or intermediate
monocytes express higher levels of CCR5 and can be infected
by HIV-1 (Ellery et al., 2007; Ancuta et al., 2008). Indeed,
CD16+ or intermediate monocytes have been demonstrated to
harbor proviral DNA in untreated as well as treated HIV-1
infection (Shiramizu et al., 2005; Jaworowski et al., 2006, 2007;
Ellery et al., 2007).

Tissue Macrophages as HIV-1 Reservoirs
Macrophages can be found in all lymphoid as well as non-
lymphoid tissues and could therefore serve as a tissue reservoir
for HIV-1 (Figure 1). In the lamina propria of mucosal tissues
like the gastro intestinal tract, penile urethra and vagina, HIV-1
infection of local macrophages has been demonstrated in tissues
from healthy individuals in vitro (Shen et al., 2009; Ganor et al.,
2013), and in vivo in HIV-1 infected untreated (Josefsson et al.,
2013) and ART treated individuals (Zalar et al., 2010; Josefsson
et al., 2013; Yukl et al., 2014; Ganor et al., 2019). Although,
HIV-1 DNA has been readily detected in these mucosal tissues,
viral RNA has been demonstrated only in vaginal and urethral
macrophages (Shen et al., 2009; Ganor et al., 2019). Moreover,
replication competent HIV-1 could be isolated from urethral
macrophages (Ganor et al., 2019). In contrast, HIV-1 proviral
integration could not be detected in macrophages from colon
of ART treated HIV-1 infected individuals (Cattin et al., 2019),
and therefore it seems unlikely that these cells contribute to the
replication competent HIV-1 reservoir (Shen et al., 2011).

In lymphoid tissues like spleen and lymph node, CD4+ T cells
(resting memory cells) are the predominant reservoir, however,
latently infected resident macrophages have been detected at low
frequencies in lymph nodes (Embretson et al., 1993; Orenstein
et al., 1997). HIV-1 residing in lymphoid tissues does not
genetically differ from variants circulating in the blood, which
suggest that there is no compartmentalization of HIV-1 in
lymphoid tissue (Ball et al., 1994; van’t Wout et al., 1998).
However, genetic diversity of HIV-1 and independent viral
evolution in monocytes and CD4+ T cells during the course
of infection in treated and untreated patients suggests cellular
compartmentalization (Fulcher et al., 2004; Llewellyn et al., 2006).

Tissue resident macrophages like Kupffer cells in the liver
have been demonstrated to be susceptible to HIV-1 infection,
and persistence of HIV-1 in Kupffer cells has been demonstrated
in HIV-1 infected individuals on ART (Schmitt et al., 1990;
Hufert et al., 1993; Mosoian et al., 2017; Kandathil et al.,
2018). However, virus particles produced by Kupffer cells could
not be propagated in vitro using CEMx174 cells (Kandathil
et al., 2018). Phylogenetic analysis of the viral quasi-species
showed distinct clustering of viral variants in the liver, evident
of compartmentalization of HIV-1 in the liver (Penton and
Blackard, 2014). Also alveolar macrophages in the lung have
been identified as HIV-1 targets, and HIV-1 persistence as
determined by the presence of HIV-1 DNA and HIV-1 RNA
has been demonstrated in patients, even during effective
ART (Sierra-Madero et al., 1994; Jambo et al., 2014; Cribbs
et al., 2015). Analysis of the HIV quasi-species also suggested
compartmentalization of macrophage tropic HIV-1 variants in
the lung (van’t Wout et al., 1998).

The central nervous system (CNS) has been identified as
an important viral reservoir. HIV-1 enters the CNS through
trafficking of infected cells across the blood brain barrier (BBB)
which occurs already shortly after primary infection. Indeed,
HIV-1 associated monocyte activation increases migratory
abilities of peripheral monocytes by the upregulation of adhesion
molecules and chemokine receptors, in response to for instance
the monocyte chemoattractant protein 1 (MCP1) (Ancuta et al.,
2004; Williams et al., 2013, 2014). In the CNS, HIV-1 persists
predominantly in resident macrophages, like microglial cells and
perivascular macrophages (Stoler et al., 1986; Wiley et al., 1986;
Neuen-Jacob et al., 1993; Fischer-Smith et al., 2001; Cosenza et al.,
2002; Ko et al., 2019). Genetic analysis of the viral quasi-species
revealed compartmentalized viral replication in the CNS (Korber
et al., 1994; van’t Wout et al., 1998; Schnell et al., 2009).

Although HIV-1 infection of macrophages has been
demonstrated in different tissue, their role as a replication-
competent reservoir remains under debate (Figure 1).
Macrophages are terminally differentiated and their contribution
to the viral reservoir is mainly dependent on their lifespan,
whereas latently infected resting CD4+ memory T cells which
are also long lived cells, contribute to the viral reservoir
through homeostatic or antigen specific proliferation. However,
recent reports have clearly demonstrated that macrophages
can be infected in vivo and contribute to the viral reservoir
(Figure 1; Micci et al., 2014; Clayton et al., 2017; DiNapoli
et al., 2017). In SHIV infected rhesus macaques, in vivo viral
replication was sustained by tissue macrophages upon CD4
T cell depletion (Igarashi et al., 2001). Moreover, HIV-1
persistence in macrophages was confirmed in HIV-1 infected
humanized myeloid only mice in which viral rebound was
observed in 33% of the animals following treatment interruption
(Honeycutt et al., 2017).

Macrophages in HIV-1 Related
Comorbidities
Monocytes and macrophages play a crucial role in several
HIV-1 related comorbidities including neurological disorders,
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FIGURE 1 | Tissue distribution and anatomical sanctuaries of latently infected macrophages. Macrophages can be found in all lymphoid as well as non-lymphoid
tissues and could therefore serve as a tissue reservoir for Human Immunodeficiency Virus type 1(HIV-1). This figure summarizes findings on HIV-1 latency in
monocytes/macrophages in vivo, showing anatomical sanctuaries, the presence of HV-1 DNA and RNA and whether the virus was replication competent or not.

atherosclerosis and cardiovascular disease (CVD). HIV-1
associated neurocognitive disorders (HAND) describe a
broad range of neurocognitive disorders from asymptomatic
neurocognitive impairment, mild neurocognitive disorders
(MND), and HIV-1 associated dementia (HAD). Although the
use of ART has dramatically reduced development of HAD,
milder forms of HAND are still highly prevalent amongst
effectively treated HIV-1 infected individuals (Robertson et al.,
2007; Heaton et al., 2010; Simioni et al., 2010). In HIV-1 infection,
activated peripheral blood monocytes have increased migratory
ability (Ancuta et al., 2004; Williams et al., 2013, 2014) and can
cross the BBB, and therefore it is generally believed that HIV-1
infected peripheral monocytes are the main source of HIV-1

infection in the brain. Increased monocyte activation, expansion
of the activated monocyte population as well as the level of HIV-1
DNA positive monocytes (CD14+/CD16+) have been associated
with HIV-1 associated neuroinflammation and HAND (Pulliam
et al., 1997, 2004; Shiramizu et al., 2005; Williams et al., 2014;
Booiman et al., 2017). The ongoing neuroinflammation caused
by monocyte activation and migration, is considered a strong
mediator of neuronal damage in HAND. Moreover, persistent
HIV-1 replication in resident macrophages and microglial cells
of the brain, contributes to the ongoing neuroinflammation
and neuronal damage. In particular the viral envelope protein
gp120 (Giulian et al., 1993; Meucci et al., 1998; Kaul and
Lipton, 1999; Ohagen et al., 1999), the HIV-1 accessory protein
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Vpr (Piller et al., 1998; Patel et al., 2000) and the HIV-1
transcriptional activator Tat (Liu et al., 2000; Park et al., 2001;
Andras et al., 2003; Song et al., 2003) have been identified to
contribute directly or indirectly to neurotoxicity.

HIV-1 associated inflammation and immune activation, both
risk factors in the onset of atherosclerosis and CVD, likely
contribute to the increased risk of CVD in the HIV-1 infected
population (Nou et al., 2016; Triant and Grinspoon, 2017).
In early stages of atherosclerosis development, hyperlipidemia
[(cholesterol, triglyceride, and low-density lipoprotein (LDL)]
promotes the retention and uptake of LDL in the sub-endothelial
space (Fogelstrand and Boren, 2012), which results in activation
of endothelial cells and smooth muscle cells by the upregulation
of adhesion molecules [intercellular adhesion molecule 1 (ICAM-
1) and vascular cell adhesion protein 1 (VCAM-1)] and secretion
of chemokines [MCP-1 and macrophage colony-stimulating
factor (M-CSF)] in the arterial wall (Frostegard et al., 1991).
Cells of the immune system expressing the MCP-1 receptor
CCR2, are recruited and can infiltrate the lesion (Frostegard
et al., 1991). During HIV-1 infection, circulating activated
monocytes express increased levels of CCR2, and have an
increased ability to migrate in response to MCP1 into the arterial
wall (Ancuta et al., 2004; Williams et al., 2013, 2014). These
infiltrating monocytes further increase arterial inflammation
by cytokine production [interleukin 1ß (IL-1ß) and IL-6]
and uptake of (modified) lipoproteins, thereby accelerating
atherosclerosis and CVD progression (Hansson, 2005). Indeed,
it has been shown that aortic inflammation as measured by
18fluorodeoxyglucose uptake (18F-fluorodexoyglucose Positron
Emission Tomography – Computed Tomography: 18F-FDG
PET-CT) was increased in effectively treated HIV-1 infected
patients to a degree resembling that of uninfected individuals
with known CVD. Furthermore, 18F-FDG PET-CT activity
was associated with serum levels of soluble CD163 (sCD163),
a marker of monocyte/macrophage activation (Subramanian
et al., 2012; Tawakol et al., 2017), clearly indicating a role of
these cells in accelerated onset of atherosclerosis and CVD in
HIV-1 infection.

MECHANISMS OF HIV-1 LATENCY

Macrophage Differentiation and
Polarization
Human Immunodeficiency Virus type 1 infection in
macrophages and their role in the viral reservoir are difficult
to study in vivo and therefore in vitro culture models have
been developed. In these models, monocytes are isolated from
peripheral blood and differentiated in an in vitro culture system
toward monocyte derived macrophages. In addition, different
stimuli or cytokines can be added to the cultures in order to
obtain phenotypically and functionally distinct macrophages.
An advantage of this in vitro culture system is that large number
of cells are available for analysis and macrophage activation,
differentiation, polarization and function can easily be directed.
A major disadvantage is that conditions in the culture system
are not representative of the local environment in the different

tissues, as tissue resident macrophages continuously respond
to local signals influencing their function and phenotype
resulting in a heterogeneous resident macrophage population.
Recently, macrophages isolated from tissues of HIV-1 infected
individuals have provided a better insight in the in vivo
relevance and the state of the viral reservoir (latent, activated)
(Zalar et al., 2010; Yukl et al., 2014; Cribbs et al., 2015;
Kandathil et al., 2018; Ganor et al., 2019; Ko et al., 2019).
However, these materials are difficult to obtain and invasive
for the patient.

In vitro, monocytes become highly susceptible to HIV-1
infection upon differentiation into macrophages (Rich et al.,
1992; Schuitemaker et al., 1992; Sonza et al., 1996; Peng et al.,
2007; Wang et al., 2009; Cobos Jimenez et al., 2012). Macrophages
respond to different stimuli in their environment which will
shape their physiology and function. Interferon-γ (IFN-γ) and
tumor necrosis factor-α (TNF-α) polarize macrophages into
an M1 or pro-inflammatory phenotype (Mosser, 2003). M2
or alternatively activated macrophages are generated upon
exposure to IL-4 or IL-13 (M2a), immunoglobulin G (IgG)
immune complexes and toll-like receptor (TLR) agonists (M2b)
or IL-10 or glucocorticoids (M2c) (Mosser, 2003; Mantovani
et al., 2004; Mosser and Edwards, 2008; Martinez et al., 2009).
Polarization toward a M2a phenotype results in resistance to
HIV-1 infection due to restrictions at the level of reverse
transcription (Schuitemaker et al., 1992; Montaner et al., 1997;
Wang et al., 1998; Cobos Jimenez et al., 2012), whereas
polarization toward M1 or M2c inhibits viral replication at a
transcriptional or post-transcriptional level (Kootstra et al., 1994;
Montaner et al., 1994; Naif et al., 1996; Perez-Bercoff et al.,
2003; David et al., 2006; Cassol et al., 2009, 2010; Cobos Jimenez
et al., 2012). This data suggests that polarizing signals can induce
viral latency in macrophages at both a pre- or post-integration
level (Table 1).

Mechanisms of Pre-integration Latency
Integration of HIV-1 proviral DNA into the host genome
is essential for viral replication. Upon entry into the cell,
HIV-1 RNA is reverse transcribed, and subsequently the
pre-integration complex (PIC), consisting of viral proteins
(integrase, matrix, Vpr, capsid) and double stranded DNA
(dsDNA) is assembled (Greene and Peterlin, 2002). The
PIC is transported into the nucleus and where the proviral
DNA integrates into the host cell genome. Pre-integration
latency results when the viral replication cycle is partially or
completely blocked at steps prior to integration (Table 1).
Pre-integration latency is frequently observed in CD4+ T
cells but was assumed not to be clinically relevant, because
in vitro studies demonstrated that the unintegrated proviral
DNA only persists for 1 day in these cells (Pierson et al.,
2002; Zhou et al., 2005). However, in patients treated with
ART, including an integrase inhibitor, unintegrated HIV-
1 DNA subspecies where shown to persist in CD4+ T
cells and can potentially integrate when integrase inhibitor
medication is discontinued (Murray et al., 2014). Moreover,
metabolically active macrophages can contain large quantities of
unintegrated viral DNA, which remains stable and biologically
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TABLE 1 | Cellular/viral factors involved in pre- and post-integration latency.

Latency level Block in viral replication cycle Cellular/viral factor involved Cell type References

Pre-integration Reverse transcription APOBEC3A Monocytes/macrophages,
monocytic cell line

Peng et al., 2007; Miyagi et al.,
2008; Berger G. et al., 2011

Low dNTPs pool Macrophages, monocytic cell
line;

Kootstra et al., 2000; Lahouassa
et al., 2012

CD4+ T cells Korin and Zack, 1999

SAMHD1 Macrophages, monocytic cell
lines;

Berger A. et al., 2011; Hrecka
et al., 2011; Laguette et al., 2011;
Lahouassa et al., 2012

CD4+ T cells Baldauf et al., 2012; Descours
et al., 2012

PAF1 Monocytes/macrophages; Liu et al., 2011; Tyagi and
Kashanchi, 2012

CD4+ T cells Liu et al., 2011; Tyagi and
Kashanchi, 2012

Nuclear import MX2 Macrophages, monocytic cell
lines;

Goujon et al., 2013; Kane et al.,
2013; Wang et al., 2017; Buffone
et al., 2019

CD4+ T cells Goujon et al., 2013; Kane et al.,
2013

Post-integration Transcriptional regulation SP1, CTIP2, SUV39H1,
HDACs, c-myc, and HP1 in
complex

Monocytes/macrophages,
monocytic cell lines

Rohr et al., 2003; Marban et al.,
2005, 2007; du Chene et al., 2007;
Desplats et al., 2013; Gray et al.,
2016

CD4+ T cells, T cell lines du Chene et al., 2007; Jiang et al.,
2007

HDACs, CTIP2, YY1, CBF-1
and LSF in complex

Monocytes/macrophages,
monocytic cell line

Buescher et al., 2009

T cell lines Margolis et al., 1994; Coull et al.,
2000; He and Margolis, 2002; Tyagi
and Karn, 2007

CTIP2, LSD1, and
hSET1/WDR5 in complex

Monocytes/macrophages
monocytic cell line

Le Douce et al., 2012

DYRK1A and NFAT Macrophages Bol et al., 2011

CD4+ T cells, T cell line Booiman et al., 2015; Heffern et al.,
2019

TCF-4, β-catenin, and SMAR1
complex

Monocytes/macrophages,
monocytic cell line, PBMCs

Kumar et al., 2008; Henderson
et al., 2012; Aljawai et al., 2014

CTIP2, Tat, and P-TEFb Monocytes/macrophages,
monocytic T cells

Herrmann et al., 1998; Liou et al.,
2002; Rice and Herrmann, 2003;
Cherrier et al., 2013

CD4+ T cells Herrmann et al., 1998; Rice and
Herrmann, 2003

Transcription/Translation miRNAs (miR-17/92, miR-28,
miR-150, miR-223 and
miR-382)

Monocytes/macrophages,
monocytic cell line

Sung and Rice, 2009; Wang et al.,
2009; Lodge et al., 2017

CD4+ T cells, T cell line,
PBMCs

Huang et al., 2007; Triboulet et al.,
2007

Nuclear export MATR3, PSF and Rev CD4+ T cells Sarracino et al., 2018

Translation G3BP1 Monocytes/macrophages Cobos Jimenez et al., 2015

CD4+ T cell Cobos Jimenez et al., 2015

active in non-dividing macrophages for up to 2 months
(Gillim-Ross et al., 2005; Kelly et al., 2008). Therefore,
unintegrated HIV-1 DNA in macrophages may contribute
to the viral reservoir in HIV-1 pathogenesis. Indeed, some
studies have reported detection of unintegrated HIV-1 DNA
in macrophages from patients, mostly in the brain (Pang

et al., 1990; Teo et al., 1997). In monocytes/macrophages pre-
integration latency could be a consequence of poor reverse
transcription efficiency due to a reduced deoxynucleotide
triphosphates (dNTP) pool or inhibition of nuclear transport
of the PIC as a consequence of low adenosine triphosphate
(ATP) levels (Bukrinsky et al., 1992; Kootstra et al., 2000;

Frontiers in Microbiology | www.frontiersin.org 6 December 2019 | Volume 10 | Article 2828

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-02828 December 3, 2019 Time: 17:25 # 7

Kruize and Kootstra Macrophages in HIV-1 Persistence

Kennedy et al., 2010; Lahouassa et al., 2012). Several cellular
factors have been implicated to play a role in the observed
restriction in monocytes/macrophages: apolipoprotein B mRNA
editing enzyme catalytic subunit 3G (APOBEC3G) and subunit
3A (APOBEC3A), a cellular deoxycytidine deaminases which
induces G to A hypermutation and degradation of the HIV-
1 genome (Peng et al., 2007; Miyagi et al., 2008; Berger
G. et al., 2011); Sterile α-motif/histidine-aspartate domain-
containing protein 1 (SAMHD1) which hydrolyses dNTPs
into their precursors (nucleosides and triphosphates), in turn
reducing the dNTPs pool and thereby limiting the reverse
transcriptase activity (Berger A. et al., 2011; Hrecka et al.,
2011; Laguette et al., 2011; Lahouassa et al., 2012); Myxovirus-
resistance protein 2 (MX2) which inhibits HIV-1 replication post
entry by hindering the nuclear accumulation and integration of
proviral DNA into host chromatin (Goujon et al., 2013; Kane
et al., 2013; Wang et al., 2017; Buffone et al., 2019); and members
of the RNA polymerase II-associated factor 1 (PAF1) family,
which are expressed in monocytes/macrophages and repress
HIV-1 reverse transcription and proviral DNA integration (Liu
et al., 2011; Tyagi and Kashanchi, 2012).

Mechanisms of Post-integration Latency
Post-integration latency, which is established after integration
of the HIV-1 proviral DNA into the host chromatin, is in
contrast to pre-integration latency very stable and only limited
by the lifespan of the infected cell. Mechanisms underlying
HIV-1 latency in vivo are incompletely understood, however,
it is a multifactorial phenomenon. Post-integration viral
latency may be maintained at a transcriptional or a post-
transcriptional level inhibiting HIV-1 protein production and
virus formation. Several mechanisms acting at transcriptional
and post-transcriptional level inducing HIV-1 latency in
CD4+ T cells are well described. However, it is unknown
whether these mechanism are also effective in cells of
the monocyte/macrophage lineage. Nevertheless, several
mechanisms inducing HIV-1 post-integration latency have
been described in monocytes/macrophages, including
chromatin environment, the absence of transcriptional
activation, presence of transcriptional repressors and
host antiviral processes. However, not all of these
mechanisms are specific for post-integration latency in
monocytes/macrophages (Table 1).

Site of Integration and Chromatin Remodeling
The host chromatin is organized into heterochromatin which
is densely packed and transcriptionally silent and euchromatin
which is loosely packed and transcriptionally active (Demeret
et al., 2001). After nuclear import a transcriptional co-activator,
lens epithelium-derived growth factor (LEDGF)/p75, which
interacts with HIV-1 integrase (Vandegraaff et al., 2006; Meehan
et al., 2009), targets the PIC mainly to intronic regions of
actively transcribed genes (Schroder et al., 2002; Lewinski et al.,
2006). The majority of silent HIV-1 provirus is integrated into
the euchromatin, which seems paradoxical considering the fact
that euchromatin is transcriptionally active (Han et al., 2004).
Different mechanisms of transcriptional interference (e.g., steric

hindrance, promotor occlusion and enhancer trapping) have
been suggested as possible explanation for integrated proviral
DNA expression suppression (Lassen et al., 2004; Bisgrove et al.,
2005; Taube and Peterlin, 2013). Most of the data on HIV-
1 integration and latency has been derived from CD4+ T
cells. However, the integration of HIV-1 proviruses has also
been studied in primary macrophages. Barr et al., for instance,
studied HIV-1 DNA integration sites in primary macrophages
by sequencing 754 unique integration sites and found that,
similar to CD4+ T cells, HIV-1 also integrates preferentially
into the transcriptionally active regions in macrophages (Mack
et al., 2003; Barr et al., 2006; Wellensiek et al., 2009). In
CD4+ T cells transcription gene silencing is the most favored
mechanism for the establishment and maintenance of HIV-1
latency, whether this is also the case in monocytes/macrophages
still has to be determined. However, it is well established
that chromatin organization and reorganization influences the
gene expression and that HIV-1 proviral DNA follows the
same rules that apply to host genes. The role of histone
H3 lysine 9 trimethylation (H3K9me3) in heterochromatin
formation and the transcriptional silencing of integrated HIV-
1 has been described (Grewal and Moazed, 2003; Stewart
et al., 2005; du Chene et al., 2007; Marban et al., 2007). In
addition, there are two nucleosomes, nuc-0 and nuc-1, that
interact with the HIV-1 promoter irrespective of the HIV-1
integration site in the host genome. HIV-1 gene transcription
from proviral DNA is only possible with the displacement
of nuc-1 (Verdin et al., 1993). These studies were performed
in the monocytic U1 cell line and collectively suggest that
chromatin remodeling is an essential mechanism of HIV-1
latency establishment and regulation in monocytes/macrophages,
however, these observations have not yet been confirmed in
primary monocytes/macrophages.

Transcriptional Regulation
The integrated HIV-1 proviral DNA is flanked by the long
terminal repeats (LTR). The 5′LTR has binding sites for
several transcription factors including specificity protein 1 (Sp1),
activator protein 1 (AP1), nuclear factor of activated T-cells
(NFAT), nuclear factor-κB (NF-κB), c-myc, chicken ovalbumin
upstream promoter (COUP), upstream stimulatory factor (USF),
CCAAT box transcription factor/nuclear factor 1 (CTF/NF1), T
cell factor 1α (TCF-1α) and the glucocorticoid receptor (Verdin
et al., 1993). These transcription factors act together to regulate
HIV-1 proviral DNA expression (Table 1). Sp1, for instance,
recruits c-myc to the 5′LTR of proviral DNA, which in turn
recruits histone deacetylase 1 (HDAC1). HDAC1 then induces
chromatin remodeling, which results in the suppression of HIV-1
gene expression (Jiang et al., 2007; Gray et al., 2016). In addition,
HDACs were also shown to be recruited to the proviral promoter
by COUP transcription factor interacting protein 2 (CTIP2),
Ying Yang 1 (YY1), C-promoter binding factor-1 (CBF-1) and
Late SV40 Factor (LSF), thereby promoting the establishment of
latency (Coull et al., 2000; He and Margolis, 2002; Tyagi and Karn,
2007; Buescher et al., 2009; Le Douce et al., 2010). Similar results
were observed in microglial cells, where CTIP2 has been shown to
recruit both HDAC1 and HDAC2 to the 5′LTR of HIV-1 proviral
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DNA (Marban et al., 2007). Moreover, CTIP2 also interacts
with suppressor of variegation 3–9 homolog 1 (SUV39H1), a
methyl transferase for H3K9me3 which subsequently promotes
the recruitment of heterochromatin protein 1 (HP1) leading
to local heterochromatization and induction of viral latency
(Rohr et al., 2003; Marban et al., 2005; du Chene et al., 2007).
The role of CTIP2 was further confirmed by Desplats et al.
(2013) who analyzed the expression of CTIP2 in postmortem
brain tissue of HIV-1 infected patients with HIV-1 encephalitis
(HIV-1 DNA and RNA positive) and HIV-1 positive patients
with latent HIV-1 (HIV-1 DNA positive and HIV-1 RNA
negative) and no detectable HIV-1 (HIV-1 DNA negative) in
the CNS. Higher amounts of CTIP2 were observed in the HIV-
1 patients with latent HIV-1 in the CNS as compared to the
other groups. Notably, CTIP2 was detected in microglial cells of
patients with latent HIV-1, indicating that CTIP2 may play an
important role in the regulation of viral latency in microglial cells
(Desplats et al., 2013). Furthermore, lysine-specific demethylase
1 (LSD1) was found to regulate HIV-1 gene expression in
a synergistic way with CTIP2 in microglial cells (Le Douce
et al., 2012). LSD1 also assists in the recruitment of CTIP2
and human SET1/WD40-repeat protein 5 (hSET1/WDR5) at the
Sp-1 binding sites of the HIV-1 proximal promoter, resulting
in increased H3K4 trimethylation (H3K4me3), which in turn
represses viral gene expression (Le Douce et al., 2012). This
property of LSD1 seems to be highly specific for cells of the
monocyte/macrophage lineage.

Recently, the host factor dual specificity tyrosine-
phosphorylation-regulated kinase 1A (DYRK1A) was shown
to control HIV-1 replication by regulating HIV-1 provirus
transcription in macrophages and CD4+ T cells (Bol et al.,
2011; Booiman et al., 2015). DYRK1A was shown to regulate
HIV-1 transcription via phosphorylation of the NFAT, thereby
promoting NFAT translocation from the nucleus to the cytoplasm
resulting in decreased viral transcription and latency. Chemical
inhibition of DYRK1A resulted in an increased NFAT binding to
the viral LTR and reactivating latent provirus (Bol et al., 2011;
Booiman et al., 2015).

Furthermore, it has been reported the 5′LTR of the HIV-
1 provirus contains multiple T cell factor 4 (TCF-4) binding
sites. TCF-4 interacts with β-catenin and the scaffold matrix
attachment region-binding protein 1 (SMAR1) at the 5′LTR
and this complex has been shown to repress HIV-1 proviral
gene expression in different cell types including lymphocytes
and astrocytes (Kumar et al., 2008; Henderson et al., 2012).
β-catenin/TCF4 signaling has also been demonstrated to regulate
HIV-1 replication in cells of the monocyte/macrophage lineage
(Aljawai et al., 2014), which makes it plausible that these proteins
also play a role in viral latency in these cells (Kumar et al., 2008).

Apart from cellular factors, HIV-1 latency is also influenced
by viral factors. HIV-1 replication requires the viral trans-
activator protein Tat for efficient transcription and virus
production. In the absence of Tat, only low level of HIV-1
transcription of mostly short abortive transcripts is observed
(Karn, 2011). These short RNA transcripts contain a trans-
activation response (TAR) element which is the binding site
for the Tat protein (Berkhout et al., 1989). The positive

transcription elongation factor (P-TEFb) is a critical cellular
cofactor of Tat, that favors the generation of complete transcripts
from HIV-1 proviral DNA (Price, 2000; Karn, 2011). P-TEFb
is composed of a catalytic subunit, cyclin-dependent kinase
9 (CDK9), and a regulatory subunit, cyclin T1 (CycT1)
(Herrmann et al., 1998; Rice and Herrmann, 2003; Bres et al.,
2008). Tat binds to the TAR region of the RNA transcript
and directs P-TEFb to the RNA polymerase II resulting
in transcription of full-length HIV-1 RNA (Berkhout et al.,
1989; Karn, 2011; Cherrier et al., 2013). The CDK2 can
phosphorylate Ser90 on CDK9, thereby assisting in HIV-1
transcription (Ammosova et al., 2005; Breuer et al., 2012).
Monocytes express very low levels of CycT1, which transiently
increases during differentiation into macrophages. In contrast
CDK9 expression levels remain constant in monocytes and
macrophages (Liou et al., 2002). The low levels of CycT1 in
monocytes result in low functional levels of P-TEFb, resulting
in low HIV-1 transcription and thus viral latency in monocytes
(Liou et al., 2002).

Post-transcriptional Regulation
Human Immunodeficiency Virus type 1 latency can also be
regulated at a post-transcriptional level (Table 1). miRNAs
are small single stranded non-coding RNAs that can regulate
host gene expression at a post-transcriptional level. miRNAs
have also been reported to influence HIV-1 gene expression
(Huang et al., 2007; Sung and Rice, 2009; Haasnoot and
Berkhout, 2011; Narayanan et al., 2011; Lodge et al., 2017). For
instance, the miRNA cluster miR-17/92 is actively inhibited
by HIV-1 to support efficient replication in different cell
types including lymphocytes, monocytes and macrophages
(Triboulet et al., 2007). Furthermore, miR-28; miR-150; miR-
223; and miR-382 have been demonstrated to target HIV-1
and play a role in HIV-1 susceptibility of monocytes and
macrophages. Inhibition of these miRNAs in monocytes
results in increased HIV-1 replication, while increased
expression of these miRNAs in macrophages decrease of
HIV-1 replication (Huang et al., 2007; Wang et al., 2009). These
data indicate that miRNAs can play an important role in viral
latency in macrophages.

RNA binding host proteins like GTPase-activating protein-
(SH3 domain)-binding protein 1 (G3BP1) and the matrix-
associated RNA binding protein Matrin 3 (MATR3), have been
shown to play a role in the post-transcriptional regulation of
HIV-1 latency. G3BP1 is a single-strand-specific endonuclease
that binds mRNA transcripts at the 3′UTR inside stress granules
to control mRNA translation during cellular stress (Tourriere
et al., 2001; Ortega et al., 2010). G3BP1 was shown to interact
with HIV-1 mRNA transcripts thus preventing viral protein
translation and restricting HIV-1 replication in T cells and
macrophages (Cobos Jimenez et al., 2015). Resting T cells and
IFNγ and TNFα polarized macrophages, express high levels of
G3BP1 indicating a role of this host factor in HIV-1 latency
(Cobos Jimenez et al., 2015). MATR3 is a nuclear matrix
protein that has the ability to bind DNA and RNA, and is
involved in the regulation of gene expression and controls mRNA
export from the nucleus. MATR3 also plays an essential role
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in Rev-mediated export of HIV-1 mRNA transcript from the
nucleus (Kula et al., 2011; Yedavalli and Jeang, 2011), through
the interaction with the polypyrimidine tract binding protein
and associated splicing factor (PSF) and the viral protein Rev
(Zolotukhin et al., 2003). Depletion of MATR3 was demonstrated
to inhibit nuclear export of Rev responsive element (RRE)-
containing viral RNAs resulting in decreased HIV-1 replication
(Sarracino et al., 2018). Resting T cells only express low levels
of MATR3 which increases upon activation, indicating a role
of this protein in the establishment of latency in resting cells
(Sarracino et al., 2018). Since MATR3 is also expressed in
monocytes (Ancuta et al., 2009), it can be expected that it
is also involved in the posttranscriptional regulation of HIV-
1 in these cells.

ERADICATION STRATEGIES TARGETING
THE TRANSCRIPTIONALLY LATENT
RESERVOIR

Even though ART has significantly increased life expectancy of
HIV-1 infected individuals, complete eradication of the virus
is not achievable without targeting the HIV-1 latent reservoirs.
Currently, several therapeutic strategies are explored and early
findings suggest that different strategies may be required to
eliminate the different cellular viral reservoirs: memory CD4+
T cells which importantly maintain the viral reservoir through
homeostatic- or antigen specific proliferation, and long lived cells
like macrophages residing in the tissue.

Latency Reversal
The latent viral reservoir is not recognized by the immune system
and therefore these cells are not eliminated. The “shock and kill”
strategy aims to induce viral protein production by reactivation of
the latent HIV-1 provirus to prompt elimination of the infected
cells through recognition by the immune system or cell death as a
result of viral replication (Matalon et al., 2011; Badley et al., 2013).
The “shock and kill” strategy has been investigated primarily
using CD4+ T cells and T cell lines. Histone deacetylases
(HDACs), for instance, are important for suppression of HIV-1
proviral DNA expression, and several HDAC inhibitors including
SAHA, vorinostat, oxamflatin, metacept-1, and metacept-3
(Shehu-Xhilaga et al., 2009; Badley et al., 2013) have been studied
for their ability to reactivate and eliminate latently infected cells.
Although HDAC inhibitors have shown activity to reactivate
HIV-1 from latent reservoirs in patients on ART, no decline in
HIV-1 proviral DNA in CD4+ T cells was observed (Archin
et al., 2009a,b, 2012, 2017). In contrast, in vitro studies in both
the monocytic U1 cell line and monocyte-derived macrophages
show that HDAC inhibitors not only reactivate and decrease
HIV-1 release, but also degrades the viral particles through
the canonical autophagy pathway (Shehu-Xhilaga et al., 2009;
Rasmussen et al., 2013; Campbell et al., 2015). Moreover, several
other compounds targeting different pathways have also been
shown to effectively reactivate latent HIV-1, these include protein
kinase C agonists (in vitro in both monocytic and T cell lines)
(e.g., prostratin and ingenols) (Gulakowski et al., 1997; Korin

and Zack, 1999; Warrilow et al., 2006; Colin and Van Lint,
2009; Abreu et al., 2014; Jiang et al., 2014, 2015; Darcis et al.,
2015), histone methyltransferases inhibitors (in vitro in T cell
lines and primary monocytes/macrophages and CD4+ T cells
from HIV-1 infected ART treated patients) (Greiner et al., 2005;
Miranda et al., 2009; Bernhard et al., 2011; Bouchat et al.,
2012), anti-miRNA inhibitors (Zhang, 2009), NF-κB activators
(Fernandez et al., 2013; Kumar et al., 2013), and cytokine therapy
in vitro and in vivo in CD4+ T cells as well as in cells of
the monocyte/macrophage lineage (Chun et al., 1999; Scripture-
Adams et al., 2002; Oguariri et al., 2007). Although the efficacy
of the majority of these latency reversing agents (LRAs) has
been demonstrated, a major hurdle in this treatment approach
is that HIV-1 reactivation only occurs in a small subset of the
latently infected cells, which might be overcome at least in
part by the use of combinations of these LRAs. Furthermore,
targeting of cellular factors and pathways identified to be
involved in the regulation of HIV-1 latency at a transcription or
post-transcription level, such as DYRK1A, β-catenin/TCF4 and
Tat/pTEFb (Kumar et al., 2008; Aljawai et al., 2014; Booiman
et al., 2015; Wu et al., 2017; Abner et al., 2018; Table 1) may
improve the efficacy of latency reversal. Moreover, LRAs alone
are mostly not sufficient to induce cell death and therefore an
effective immune response is essential for the elimination of the
reactivated cells and this is lacking in the majority of HIV-1
infected patients. Furthermore, HIV-1 infected macrophages can
reside in immune privileged compartments like the CNS and can
therefore not be reached by cytotoxic T cells (Shan et al., 2012;
Badley et al., 2013).

Apoptosis Inducing Agents
Recently more research is done into the “Prime, Shock, and
Kill” method, where latent reservoirs are made sensitive to
apoptosis (Prime), followed by reactivation of HIV-1 (Shock)
and subsequently leading to cell death of the infected cell
(Kill) (Badley et al., 2013). HIV-1 infection of CD4+ T
cells and macrophages have been shown to induce an anti-
apoptotic gene profile and resistance to apoptosis (Olivares
et al., 2009). Several viral proteins have been associated with
the resistance to apoptosis (Tanaka et al., 1999; Fernandez
Larrosa et al., 2008): Vpr upregulates expression of anti-
apoptotic proteins like B-cell lymphoma 2 (Bcl-2) in T cells
only, thereby promoting cell survival (Conti et al., 1998).
In monocytes/macrophages vpr facilitates HIV-1 replication
(Connor et al., 1995). Tat, however, does upregulate Bcl-2
and X-linked inhibitor of apoptosis protein (XIAP) in both
monocytes/macrophages and CD4+ T cells (Zhang et al.,
2002; Lopez-Huertas et al., 2013); Nef upregulates the anti-
apoptotic protein B-cell lymphoma-extra large (Bcl-Xl) in
macrophages (Choi and Smithgall, 2004), while nef inactivates
the Bcl-2-associated death promoter protein (BAD), a pro-
apoptotic Bcl-2 family member, in a phosphoinositide 3-
kinase (PI3K)– and p21-activated kinase (PAK)-dependent
manner in T cells (Wolf et al., 2001); Furthermore, gp120
has been demonstrated to increase in expression of M-CSF
in HIV-1 infected macrophages resulting in the upregulation
of anti-apoptotic proteins [e.g., induced myeloid leukemia cell
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differentiation protein 1 (Mcl-1) and Bcl-2-related protein A1
(Bfl-1)] (Swingler et al., 2007). Therefore, targeting of the HIV-
1 induced anti-apoptotic pathways during proviral reactivation
strategies may promote cell death of the latently infected cells.
Multiple agents targeting the anti-apoptotic pathways including
PI3K/Protein kinase B (AKT) inhibitors, Bcl2 inhibitors and
second mitochondria-derived activator of caspase (SMAC)
mimetics/XIAP inhibitors, are explored for their ability to
clear latently infected cells (Busca et al., 2012; Badley et al.,
2013; Kim et al., 2018). SMAC mimetics/XIAP inhibitors, for
instance, function by sensitizing macrophages to Vpr-induced
cell death (Busca et al., 2012). In addition, SMAC mimetics/XIAP
inhibitors can trigger transcription of latent proviruses via the
non-canonical NF-κB pathway. Furthermore, in vitro studies
showed that combinations of HDAC inhibitors and SMAC/XIAP
mimetics have synergistic activities in T cells (Pache et al., 2015).
However, all these compounds do not specifically target the viral
reservoir, and targeting of non-HIV-1 infected bystander cells will
likely occur especially in ART-treated individuals with increased
levels of immune activation, inflammation, and high prevalence
of coinfections.

Indeed, an apoptosis resistant gene expression signature was
observed in monocytes from HIV-1 infected individuals (Giri
et al., 2009). The circulating monocyte population is largely
uninfected, which indicates that the anti-apoptotic expression
profile may not be due to direct effects of viral infection.
Moreover, in vitro infection of monocytes/macrophages
demonstrated that HIV-1 infection, as well as exposure to
HIV-1 or immune modulators increased apoptosis resistance
(Giri et al., 2009).

CONCLUDING REMARKS

Despite effective treatment, HIV-1 infected patients are not cured
because the virus is not eradicated and latently infected cells
persist. The latent viral reservoir mainly resides in resting CD4+
T cells, however, latent HIV-1 proviruses have also been detected
in cells of the monocyte/macrophage lineage. HIV-1 infected

macrophages can be found in virtually every tissue including
the CNS. Viral latency in cells of the monocyte/macrophage
lineage can be regulated by diverse molecular mechanisms
either at a transcriptional or post-transcriptional level and this
is most likely dependent on the activation and differentiation
state of these cells. Current eradication strategies rely on
reactivation of the latent virus and subsequent kill of the
infected cell. The majority of LRAs under study, have been
shown to reactivate only small proportions of the latent
HIV-1 reservoir, and therefore there is an urgent need for
the development of new compounds that target different
mechanisms of viral latency both in CD4+ T cells and
monocytes/macrophages. Another hurdle is the lack of kill
of latently infected cells upon reactivation, which is mainly
due to an inefficient antiviral immune response and HIV-1
induced resistance to apoptosis. Apoptosis inducing compounds
have been developed for cancer therapy, and their efficacy
to specifically induce apoptosis in HIV-1 infected cells is
currently under study.

Cure research has mainly focused on CD4+ T cells, because
these cells contribute to maintenance pf the viral reservoir
through their long lifespan as well as their ability to proliferate
under homeostatic conditions or in response to antigens. In
contrast, macrophages are terminally differentiated and their
contribution to the viral reservoir is mainly dependent on their
lifespan and distribution to immune privileged tissues like the
CNS. Although, these terminally differentiated latently infected
macrophages cannot proliferate, they could be able to spread
HIV-1 infection to CD4+ T cells upon reactivation of the
virus by LRAs. Therefore, development of eradication strategies
combining both novel LRAs and apoptosis inducing agents,
targeting either specific cell types or ideally target both latently
infected CD4+ T cells and monocytes/macrophages are needed.
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