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Abstract: Investigation of brain changes in functional connectivity and functional network topology
from receiving 8-week selective serotonin reuptake inhibitor (SSRI) treatments is conducted in
12 unmedicated adolescents with major depressive disorder (MDD) by using wavelet-filtered resting-
state functional magnetic resonance imaging (fMRI). Changes are observed in frontal-limbic, temporal,
and default mode networks. In particular, topological analysis shows, at the global scale and in the
0.12–0.25 Hz band, that the normalized clustering coefficient and smallworldness of brain networks
decreased after treatment. Regional changes in clustering coefficient and efficiency were observed
in the bilateral caudal middle frontal gyrus, rostral middle frontal gyrus, superior temporal gyrus,
left pars triangularis, putamen, and right superior frontal gyrus. Furthermore, changes of nodal
centrality and changes of connectivity associated with these frontal and temporal regions confirm the
global topological alternations. Moreover, frequency dependence is observed from FDR-controlled
subnetworks for the limbic-cortical connectivity change. In the high-frequency band, the altered
connections involve mostly frontal regions, while the altered connections in the low-frequency
bands spread to parietal and temporal areas. Due to the limitation of small sample sizes and
lack of placebo control, these preliminary findings require confirmation with future work using
larger samples. Confirmation of biomarkers associated with treatment could suggest potential
avenues for clinical applications such as tracking treatment response and neurobiologically informed
treatment optimization.

Keywords: major depressive disorder (MDD); functional magnetic resonance imaging (fMRI); resting-
state functional connectivity (RSFC); frequency-dependent connectivity; network topology

1. Introduction

Major depressive disorder (MDD) is a highly debilitating condition that can result in
tragic outcomes such as chronic disability and suicide. The onset of depression is frequent
during the adolescent period [1], a time notable for significant brain development and phys-
ical and social changes [2,3]. According to the World Health Organization (WHO), more
than 10% of adolescents are affected by MDD in the US [4,5]. Moreover, early onset MDD
has been shown to increase the risk of developing adult depression [6]. However, current
evidence-based treatments including antidepressant medication and cognitive behavioral
therapy are only successful in reducing depression in about half to two-thirds of cases [7].
To design and optimize new and more effective treatments, a deeper understanding of the
neurobiological basis of existing treatments is needed.
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During the last decade, MRI has been extensively applied in studying neural un-
derpinnings of depression. Using structural MRI, previous studies have reported that
patients with depression show reduced volumes compared to healthy controls in the an-
terior cingulate cortex, orbitofrontal cortex, and hippocampus [8–10]. Based on diffusion
MRI, previous studies have shown disrupted white matter integrity in the limbic system,
dorsolateral prefrontal cortex, thalamic fibers, and corpus callosum [11–15]. Additionally,
numerous reports have shown disruptions of functional connectivity in the limbic system
using functional MRI (fMRI) [16–20]. Taken together, these findings suggest that MDD
involves a complex set of connectivity deficits in the fronto-limbic system as well as in
other brain networks.

Since MDD involves neural network abnormalities, a growing body of research has
been dedicated to understanding how such networks may change after antidepressant
treatments [21–26]. However, prior studies have largely focused on specific regions of
interest, i.e., regional functional activation and functional connections from them, such as
the amygdala. For example, in a prior report from the same dataset, as reported here, we
investigated treatment-related changes in resting-state functional connectivity between
the amygdala and all other voxels in the brain [21,22]. However, it is possible to examine
connectivity changes at a more global level in order to assess change in connections among
all brain regions. Furthermore, beyond functional connectivity analyses, a more advanced
approach to understanding brain networks is to characterize the topological character-
istics of the network. Brain network studies have recently shown the promising power
of graph-theory based analysis in examining topological properties for brain networks
considering cortical/subcortical regions as nodes and anatomical or functional connectivity
among regions as edges [27–31]. Using graphical analysis, the small-world property has
been discovered in both structural and functional networks for healthy brains [32–36].
A small-world network has the property of a high clustering coefficient and a low charac-
teristic path length. These features are associated with efficient local information delivery,
i.e., functional segregation, and effective collaboration for distributed information process-
ing, i.e., functional integration, respectively, of the brain network structure [27]. Graph
theory analysis has been extensively used to uncover brain network abnormalities in pa-
tients with schizophrenia [37–40], Alzheimer’s disease [41–44], and depression [14,45–47].
These promising results motivate the exploration of treatment-related topological patterns
in this work from the rapidly changing adolescent brain networks, which has not been
investigated in previous studies. Given the complexity of MDD symptoms and response
to treatment, knowledge about possible topographical disruptions in functional brain
networks could provide greater direction in treatment selection and development.

This study aims to discover treatment-related changes in brain functional network
topology and whole-brain connectivity for 12 unmedicated adolescents with MDD before
and after receiving an 8-week selective serotonin reuptake inhibitor (SSRI) medication
treatment. We specifically analyzed brain networks with frequency-selective resting-
state functional connectivity (RSFC) by using filtered fMRI signals in four frequency
bands. First, we examine treatment-related changes in a set of topological measurements.
Second, we examine treatment-related changes in functional connectivity between pairs
of all brain regions. Third, we examine treatment-related change in subnetworks that are
composed of the significantly altered connections. Finally, we examine correlations between
clinical assessment and brain network features (topological measures and connectivity).
The framework for data analysis is shown in Figure 1.
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Figure 1. Framework for data analysis.

2. Material and Methods
2.1. Participants

Participants of this study consisting of twelve adolescents aged 12 to 19 years di-
agnosed primarily with MDD were unmedicated before the baseline scan. They were
invited to return for a second neuroimaging scan after they completed 8 weeks of an-
tidepressant treatment under the care of their own provider. They represent a subset of
a larger, cross-sectional neuroimaging study [19]. After the informed consent process,
all participants completed a comprehensive diagnostic assessment. Interviews were con-
ducted separately with adolescents and parents, and included Kiddie Schedule for Affective
Disorders and Schizophrenia-Present and Lifetime Version [48] and the Children’s Depression
Rating Scales-Revised (CDRS-R) [49]. Self-report measures assessing symptoms in the past
two weeks included the Beck Depression Inventory II (BDI-II) [50,51] and the Inventory
of Depression and Anxiety Symptoms (IDAS) [52–54]. The IDAS provides a score for
the following symptom dimensions: general depression, dysphoria, lassitude, insomnia,
suicidality, appetite loss, appetite gain, ill temper, well-being, social anxiety, panic, and trau-
matic intrusion. Patients with any of the following exclusionary conditions were excluded:
current use of psychotropic medications, intellectual disability, pervasive developmental
disorder, substance use disorder, bipolar disorder, and schizophrenia. The demographic
information is summarized in Table 1. The experimental procedures involving human
subjects described in this paper were approved by the University of Minnesota Institutional
Review Board in 2008 (case number 0804S30542).

Table 1. Demographic Information.

Baseline Post Treatment

Gender 3 male, 9 female
Handedness 11 right, 1 left
IQ (mean ± SD) 104.58± 17.19
Age (years, mean ± SD) 15.68± 2.12 15.89± 2.12
BDI-II (mean ± SD) 30.33± 8.91 12.45± 14.14
Duration of illness ∗ (years, mean ± SD) 4.1± 2.58

SD: standard deviation; BDI: Beck Depression Inventory II [50]; * from the onset of the first episode, which may
not be the current episode.
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2.2. Pre- and Post-Treatment Clinical Assessment

Diagnosis is based on the Kiddie Schedule for Affective Disorders and Schizophrenia-Present
and Lifetime version (K-SADS-PL) [48] interviews completed separately with adolescents and
parents [21,22,55] and the Beck Depression Inventory-II (BDI-II) [50]. The BDI-II was also
administered on the day of the post-treatment scan. Change in depression symptoms was
calculated by subtracting the pre-treatment scores from the post-treatment BDI-II scores
(negative scores represent improvement as indexed by a drop in depressive symptoms).

2.3. Image Acquisition and Processing

MRI scans are conducted by using a Siemens 3 Tesla TIM Trio scanner located at the
Center for Magnetic Resonance Research, University of Minnesota. A T1-weighted high-
resolution magnetization prepared gradient echo sequence scan is obtained with following
parameters: repetition time = 2530 ms, echo time = 3.65 ms, inversion time = 1100 ms,
flip angle = 7 degrees, 1 mm slices, field of view = 256 mm, voxel size 1× 1× 1 mm3,
and GRAPPA = 2.5 min. For the resting-state fMRI (rsfMRI), functional data were acquired
by using an echo planar imaging sequence (EPI) with the following: 180 T2–weighted whole-
brain functional volumes with 34 interleaved slices of 4 mm thickness and no skip, tilted
to AC-PC alignment, repetition time = 2000 ms, echo time = 30 ms, flip angle = 90 degrees,
field of view = 220 mm, and 64× 64 matrix (voxel size 3.4375× 3.4375× 4 mm3). Partic-
ipants are asked to close their eyes and stay awake. Physiological data (respiration and
cardiac traces) are collected during the entire scan.

Brain parcellation is performed using Freesurfer (http://surfer.nmr.mgh.harvard.
edu, accessed 20 August 2018) following the Desikan–Killiany atlas to create 76 corti-
cal/subcortical regions listed in Table 2 [56]. FreeSurfer output was visually inspected;
identified errors were manually corrected on a slice-by-slice basis. The parcellation is
registered to the fMRI data using FLIRT and FNIRT tools in FSL (Functional Magnetic Res-
onance Imaging of the Brain Software Library; http://www.fmrib.ox.ac.uk/fsl, accessed
20 August 2018) [57–59]. Functional images are preprocessed for motion correction, brain
extraction, RETROICOR processing (regression of physiological signal, i.e., heart beat and
respiration, which were recorded during the scan [60]), geometric distortion correction
using the field map, and removing regression of signal from CSF and white matter. Data
scrubbing was performed following the method of Power and colleagues [61], excluding
any volume with a value for the temporal derivative of time courses’ root mean squared
head motion variance exceeding 8 and/or a framewise-dependent value exceeding 0.5,
along with the previous volume and the 2 following volumes.

Table 2. List of regions-of-interest (ROIs) from Desikan atlas.

No. Region of Interest Abbr. No. Region of Interest Abbr. No. Region of Interest Abbr.

1 Banks superior temporal sulcus BANK 14 Parahippocampal gyrus PHG 27 Superior parietal cortex SPC
2 Caudal anterior cingulate cortex CauACC 15 Paracentral lobule PCL 28 Superior temporal gyrus STG
3 Caudal middle frontal gyrus CauMFG 16 Pars opercularis ParsOPE 29 Supramarginal gyrus SMG
4 Cuneus cortex CUN 17 Pars orbitalis ParsORB 30 Transverse temporal cortex TTC
5 Fusiform gyrus FFG 18 Pars triangularis ParsTRI 31 Insula INS
6 Inferior parietal cortex IPC 19 Pericalcarine cortex PCAL 32 Thalamus THA
7 Inferior temporal gyrus ITG 20 Postcentral gyrus PoCG 33 Caudate CAU
8 Isthmus-cingulate cortex ICC 21 Posterior cingulate cortex PCC 34 Putamen PUT
9 Lateral occipital cortex LatOC 22 Precentral gyrus PreCG 35 Pallidum PAL
10 Lateral orbitalfrontal cortex LatOFC 23 Precuneus gyrus PCUN 36 Hippocampus HIP
11 Lingual gyrus LING 24 Rostral anterior cingulate cortex RosACC 37 Amygdala AMYG
12 Medial orbitalfrontal cortex MedOFC 25 Rostral middle frontal gyrus RosMFG 38 Accumbens ACCU
13 Middle temporal gyrus MTG 26 Superior frontal gyrus SFG

2.4. Resting-State Functional Connectivity and Network Construction

Previous studies have found that the functional connectivity between brain regions is
frequency dependent [32], and disease-related alterations in functional connectivity are
prone to specific frequency bands [44,62,63]. Therefore, in this study, the fMRI signal is

http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
http://www.fmrib.ox.ac.uk/fsl
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filtered using a 4-level stationary discrete wavelet transform (SDWT) [64,65] with ‘db4’
wavelet into different frequency bands. Unlike traditional decimated wavelet transform,
the SDWT satisfies translation-invariance. In SDWT, the downsamplers and upsamplers are
removed, and the filter coefficients are upsampled. The wavelet scales approximately corre-
spond to frequency ranges of 0.12–0.25 Hz, 0.06–0.12 Hz, 0.03–0.06 Hz, and 0.015–0.03 Hz,
respectively. After SDWT filtering, functional connectivity between brain regions is com-
puted based on the Pearson correlation between the average fMRI time courses at each
frequency band separately for each subject. A frequency-specific 76-by-76 undirected graph
is constructed based on the 2850 correlation coefficients for each frequency band.

2.5. Graph-Theoretic Analysis

Adaptive thresholding is employed to create a series of brain networks corresponding
to graph densities from 10% to 50% for network topology analysis. Individual bias is
eliminated, and the dynamic range of connectivity is normalized by adaptive thresholding.
The core network has the smallest density and contains the top 10% strongest connections;
by contrast, the most robust network has the largest density and contains the top 50%
strongest connections. The range of densities is chosen to ensure the capability of the
small-world measure [66].

2.5.1. Graph Measures

Graph structures are quantified by using graph-based measures including clustering
coefficient, characteristic path length, smallworldness, global/local efficiency, participa-
tion coefficient, within-module-degree z-score, degree, strength, and betweenness cen-
trality. A complete review of topological brain network measures can be found in the
literature [29,67]. Symbols are defined as the following:

• G = (N, E): an undirected graph where N is the set of nodes and E is the collection of
existing connections/links;

• l = (i, j) ∈ E: the connection between node i and j;
• aij: the existence of a connection l = (i, j). aij = 1 if the link is connected, otherwise

aij = 0;
• wij: the functional connectivity of a connection l = (i, j);
• M = {m|⋃m = N and m

⋂
m′ = ∅, ∀m 6= m′}: the collection of modules of the

graph where m is a module;
• mi: the module that node i belongs to.

Clustering Coefficient

The clustering coefficient, Ci, is a measure of the degree to which nodes in a neigh-
borhood tend to cluster together, and it is defined as the ratio of the number of closed
triangles to the number of connected triples of vertices in the two-hop neighborhood of
a node, i. The higher the clustering coefficient is, the more tightly the node is connected
to its neighbors. Therefore, a high local clustering coefficient potentially implies high
local efficiency.

Characteristic Path Length

The characteristic path length Lnet quantifies the integration ability of a network.
The definition of Lnet is the average distance between any two nodes in the network.
To avoid the disconnection problem, i.e., the distance between some nodes is infinity,
the harmonic mean version of the original definition is used in this study:

Lnet =
n(n− 1)

∑
i 6=j∈N

d−1
ij
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where n is the number of nodes in N and dij is the shortest path length between node i and
node j.

Smallworldness

The small-world properties of a network are quantified by the clustering coefficient
and the characteristic path length of the network. The clustering coefficient of the entire
network Cnet is the mean Ci of all nodes in the network. This global measure quantifies
the cliquishness of a network. In order to diagnose the small-world properties, global
clustering coefficients and characteristic path lengths are normalized by the same metrics
estimated from random networks with the same number of nodes, edges, and degree dis-
tribution. The normalized network clustering coefficient is defined as Cnorm = Cnet/Crand,
the normalized characteristic path length is defined as Lnorm = Lnet/Lrand, and the small-
worldness of the network is defined as Cnorm/Lnorm. A small-world network is expected
to have high local clustering and low mean path length; therefore, the smallworldness is
greater than 1 for a small-world network.

Degree

Degree, defined as ki = ∑
j∈N

aij, measures how well a node is connected to the other

nodes, which can also be interpreted as the (nodal) centrality of the node. The degree is
defined as the number of binary connections to the node. Therefore, a node with a large
nodal degree might be considered a hub.

Local Efficiency

Local efficiency, Ei, is a measure of how efficiently nodes exchange information in the
one-hop neighborhood of node i, and it is positively related to the clustering coefficient.

Modules

A module, M, also known as a cluster, is defined as a non-overlapping division of
a network that represents the structural segregation in the brain. In a cluster, nodes are
abundantly connected, and nodes in different clusters are connected through a few hub
regions (nodes). The interpretation of the module formation is that different structural
modules are segregated by biological and functional characteristics.

Participation Coefficient

Participation coefficient, yi = 1− ∑
m∈M

(
ki(m)

ki

)2
where ki(m) = ∑

j∈m
aij , assesses the

diversity of inter-modular interconnections of individual nodes. The parameter ki(m)
denotes the within-module degree of node i. In the brain network, a provincial hub,
which is an important part in the facilitation of modular segregation, will have a high
within-module degree but a low participation coefficient. Furthermore, nodes having both
high within-module degree and participation coefficient facilitate global inter-modular
integration as connector hubs.

Betweenness Centrality

The betweenness centrality is a measure of centrality defined by the fraction of all
shortest paths in the network that contain a given node. Nodes with high values of
betweenness centrality participate in a large number of shortest paths.

2.5.2. Graph Measure AUCs

For binary graph measures, we considered the area under curve (AUC) of the measure
across a range of graph densities. When the range of graph densities is uniformly sampled,
the AUC is just the average measure across graph densities.
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2.6. Statistical Analyses

In order to assess the significance of a change, D, in brain network measures from
baseline to post-treatment, we first estimated the empirical distribution of the null hy-
pothesis, H0: no significant change due to the treatment, by performing a random sign
permutation test. During the test, the feature differences between before and after treatment
are randomly assigned with a positive or negative sign to calculate the average difference,
D′, for a realization of the random process. To test the hypothesis, 1,000,000 realizations are
implemented. The probability that the average difference, D′, is greater or smaller (depend-
ing on the sign of D) than the original measured average difference, D, is the empirical tail
probability, i.e., p-value. With N realizations, the best achievable resolution of the p-value
is 1

N , which is 10−6 here. In other words, p-value differences smaller then 10−6 are not
distinguishable, i.e., estimation may be zero for any p-value less than 10−6. Although,
the best resolution for random sign permutation tests is set to 10−6, the resolution is still
limited by the sample size. In this study, 12 subjects yield 212 combinations and result in
the best p-value resolution of 2−12 = 0.0002441.

As an exploratory study, uncorrected p-values are reported, and minimal multiple-
comparison correction (corrected for direct comparisons, i.e., by number of regions for region-
related metrics and by number of connections for connection-related metrics) is performed
with Bonferroni correction to highlight potential changes for 5% false-discovery rate.

In addition to the p-value, effect size and power are also reported. The effect size
of the treatment-related change was measured using Cohen’s d with pooled standard
deviation [68]. The statistical power of the test with significance level 0.05 is calculated
based on the mean of changes, the standard deviation of changes, and sample size (N = 12),
and it is tested against the null hypothesis (µ0 = 0) [69,70].

In order to assess possible correlations between neural network changes and clinical
changes, we conduct regression analysis using ‘fitlm’ (Matlab) by taking the changes
in brain network measures as main regressors and change in total BDI-II scores as the
outcome variable. Additionally, to discover whether baseline network measures might
serve as predictors of treatment response, we also perform regression analysis using before-
treatment brain network measures as main regressors, again with the change in total BDI-II
scores as the outcome variable.

Previous research suggests that analyzing a subnetwork can effectively reduce the
number of hypothesis tests for controlling the false positive rate and increase statistical
power in connectomic analysis [71,72]. Here, we create a subnetwork consisting of signifi-
cantly changed connections selected with a false discovery rate (FDR) at level α = 5% using
Benjamini–Hochberg procedure [73] for each frequency band. In order to examine the
broadness of treatment effect to a region in communicating with the other regions, within-
subnetwork nodal degree is calculated, which is defined by the number of connections
connected to the node in the subnetwork.

3. Results
3.1. Treatment-Related Changes in Network Topology
3.1.1. Global Topological Metrics

Figure 2 shows normalized clustering coefficient and smallworldness in mean curves
across patients as functions of network densities for baseline and after treatment in all
four frequency bands. Curves show results similar to previous studies in the small-world
topology that the normalized clustering coefficient is greater than one and approaches
one when the network density increases and the smallworldness decreases when the
network density increases [32,33,35,38,42]. However, in addition to previous findings,
results indicate the clustering coefficient is increased after treatment in all frequency bands
for small network densities, i.e., core networks. Given no change in characteristic path
length, smallworldness shows consistent change with the clustering coefficient. Regular
networks have large clustering coefficient and low smallworldness, and random networks
have low clustering coefficient and low smallworldness. The increased clustering coefficient
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and smallworldness indicate that core network topology has changed toward a small world
network that is commonly observed from human brain networks. In terms of statistical
significance, the AUC of the normalized clustering coefficient differences has p-value
ranging from 0.083 to 0.47, and the smallest value is achieved in the 0.12–0.25 Hz band
with an effect size of 0.57. For the smallworldness, the p-value ranges from 0.143 to 0.431,
and the smallest value is achieved in the 0.12–0.25 Hz band with an effect size of 0.4765.

Figure 2. Mean global network measures, normalized clustering coefficient, and smallworldness across graph density in
4 frequency bands for before and after 8-week SSRI treatment.

3.1.2. Local Topological Metrics

Next, the local network measures associated with each brain region, i.e., network
nodes, are analyzed. The results show that treatment-induced topology changes are
frequency-specific. After treatment, MDD patients show (p-value < 0.00066 = 0.05/76,
Bonferroni correction for 76 regions) decreased local efficiency and clustering coefficient
in right caudal middle frontal gyrus in the 0.12–0.25 Hz band. In the 0.06–0.12 Hz band,
decreased participation coefficient is observed in left pars triangularis. In the 0.03–0.06 Hz
band, there are decreases in betweenness centrality in the right precentral gyrus and in
within-module-degree z-score in the left lateral occipital cortex. The corresponding p-
values, effect sizes, and power are listed in Table 3, and the boxplots of the changes and
measurements before and after treatment are shown in Figure 3. No significant differences
were found in the 0.015–0.03 Hz band. Boxplots in Figure 3 shows a remarkable separation
of the betweenness centrality at right precentral in the low-frequency band, 0.03–0.06Hz,
and of the local efficiency at right caudal middle frontal gyrus in the high-frequency band,
0.12–0.25 Hz, between baseline and after receiving the SSRI treatment.

The local efficiency of a brain region is characterized by efficiency of paths from it
to other regions, and efficiency of a path is defined by the reciprocal of its length [74].
The nodal clustering coefficient measures the possibility that any two neighbors of the
node are also connected. The clustering coefficient is also a measure of functional segrega-
tion, which is the ability for specialized processing to occur within densely interconnected
groups of brain regions [29]. Reduction in both local efficiency and clustering coefficient at
right caudal middle frontal gyrus indicates connectivity inhibition. Participation coefficient
and betweenness centrality quantify the hubness of a brain region where the participation
coefficient characterizes the diversity of intermodular connections of a node, and between-
ness centrality is the fraction (shortest paths passing through the node of interest) of all
shortest paths in the network. The raised participation coefficient implies the increase
in functional integration of left pars triangularis to the rest of the network. Reduced be-
tweenness centrality at the right precentral gyrus shows dwindling of functional integrity.
Within-module degree z-score is a localized, within-module version of degree centrality for
regions in a brain network heuristically classified into distinct functional groups. Decreased
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within-module-degree at the left lateral occipital cortex implies reduced connectivity to
other regions in the same functional group.

Table 3. Brain regions and altered topological measures (p-value < 0.05 with Bonferroni correction for 76 regions).

Frequency Band Brain Region Network Measure Uncorrected Effect Size Powerp-Value

0.12–0.25 Hz Right caudal middle frontal gyrus Local Efficiency 0 −1.2021 0.8376
Clustering Coefficient 0 −1.1443 0.8004

0.06–0.12 Hz Left pars triangularis Participation Coefficient 0 0.7271 0.4291
0.03–0.06 Hz Right precentral gyrus Betweenness Centrality 0.000244 −1.8910 0.9962

Left lateral occipital cortex Within-Module-Degree Z-score 0.000244 −0.8587 0.5571
0.015–0.03 Hz –None–

Figure 3. Boxplots for AUCs of topological brain network measures with significant change. The top
panel shows the distributions of AUCs before and after the treatment, and the bottom panel shows
the distributions of paired AUC changes.

Based on the finding of local efficiency and clustering coefficient change of right caudal
middle frontal gyrus in the 0.12–0.25 Hz network, other regions in the same network are
also investigated with a lower criteria (p-value ≤ 0.05). Results, summarized in Table 4,
show both decreased clustering coefficient and decreased local efficiency in bilateral caudal
middle frontal gyrus, rostral middle frontal gyrus, superior temporal gyrus, left pars
triangularis, putamen, and right superior frontal gyrus. No region is found with either
increased clustering coefficient or local efficiency.

Figure 4 shows the distribution of nodal centrality, degree, of brain regions in all four
networks corresponding to the four frequency bands. Node size represents the baseline
degree, and node color indicates the direction (increase/decrease) of changes (uncorrected
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p-value < 0.05) after treatment. The p-values, effect size, and power of the altered regions
are listed in Table 5. Results show the decreased degree spread over high-frequency to
low-frequency bands in regions: bilateral supramarginal gyrus, bilateral lateral occipital
cortex, bilateral superior parietal cortex, left inferior parietal cortex, left superior temporal
gyrus, right caudal anterior cingulate cortex, right pars opercularis, right caudal middle
frontal gyrus, right precentral gyrus, and right inferior temporal gyrus. Changes in the
right hemisphere distribute in anterior cortical regions for the high-frequency (0.03 to
0.25 Hz) bands, and posterior cortical regions in the low-frequency (0.015 to 0.03 Hz) band.
Regions found to have increased degree are the bilateral amygdala, bilateral paracentral
lobule, left pericalcarine cortex, left middle temporal gyrus, left medial orbital frontal
cortex, right lingual gyrus, right accumbens, and right isthmus-cingulate cortex. These
regions are all associated with emotion regulation, as reported in the previous studies.

Table 4. Brain regions showing (uncorrected p-value < 0.05) altered clustering coefficient and local efficiency in the
0.12–0.25 Hz network.

Brain Region
Clustering Coefficient Local Efficiency

p-Value Effect Size Power p-Value Effect Size Power

Right caudal middle frontal gyrus 0 −1.1443 0.8004 0 −1.2021 0.8376
Left caudal middle frontal gyrus 0.0371 −0.6342 0.3424 0.0247 −0.5485 0.2693
Right superior temporal gyrus 0.0037 −1.3222 0.8995 0.0081 −1.2372 0.8578
Left superior temporal gyrus 0.0161 −0.9318 0.6264 0.0105 −1.1316 0.7916
Right rostral middle frontal gyrus 0.0369 −0.7923 0.4924 0.0427 −0.8007 0.5006
Left rostral middle frontal gyrus 0.0271 −0.8621 0.5603 0.0437 −0.8181 0.5175
Left pars triangularis 0.0139 −0.7683 0.4690 0.0195 −0.7555 0.4565
Left Putamen 0.0269 −0.6604 0.3662 0.0078 −0.7819 0.4823
Right superior frontal gyrus 0.0427 −0.6444 0.3517 0.0151 −0.7948 0.4948

Table 5. Effect size, p-value, and power of brain regions that show changes in degree after treatment in at least one of the
frequency bands. (Shadowed values indicate uncorrected p-value < 0.05). Sign and magnitude of the effect size indicate the
direction and significance of changes.

0.12–0.25 Hz 0.06–0.12 Hz 0.03–0.06 Hz 0.015–0.03 Hz
Brain Region ∗ p-Value Effect Size Power p-Value Effect Size Power p-Value Effect Size Power p-Value Effect Size Power
Right AMYG 0.0229 0.9426 0.6364 0.0251 0.9588 0.6513 0.0471 0.8203 0.5197 0.0310 0.8350 0.5340
Right LING 0.0396 0.6730 0.3779 0.0093 0.9946 0.6830 0.0439 0.6990 0.4022 0.2832 0.2845 0.1072
Left IPC 0.0134 −0.7909 0.4910 0.0095 −0.8019 0.5017 0.0493 −0.6442 0.3514 0.1904 −0.3872 0.1577
Right CauACC 0.0195 −0.5995 0.3119 0.0061 −0.7787 0.4791 0.0750 −0.5659 0.2834 0.0764 −0.5485 0.2693
Right PCL 0.0134 1.0429 0.7240 0.0376 0.8733 0.5711 0.0732 0.5933 0.3066 0.1189 0.3374 0.1311
Right ACCU 0.0117 0.7705 0.4711 0.0364 0.4711 0.2110 0.2185 0.1645 0.0688 0.4985 0.0057 0.0500
Left PCAL 0.0098 0.6922 0.3958 0.0483 0.5589 0.2777 0.0942 0.5722 0.2887 0.1550 0.4514 0.1976
Left MTG 0.0435 0.7227 0.4249 0.0598 0.6256 0.3347 0.0962 0.5306 0.2551 0.1958 0.3376 0.1312
Left PCL 0.0273 0.8818 0.5792 0.0701 0.6791 0.3835 0.1899 0.3893 0.1589 0.2307 0.2698 0.1013
Left STG 0.0305 −0.5878 0.3018 0.0959 −0.4065 0.1690 0.4817 −0.0101 0.0501 0.0911 −0.3201 0.1228
Right SMG 0.2937 −0.1640 0.0687 0.0376 −0.5360 0.2594 0.0562 −0.5787 0.2941 0.1162 −0.4814 0.2183
Right ParsOPE 0.0581 −0.4317 0.1846 0.0259 −0.8706 0.5685 0.0474 −0.8409 0.5398 0.2766 −0.2684 0.1008
Right CauMFG 0.1460 −0.4486 0.1957 0.0713 −0.6097 0.3207 0.0154 −0.8278 0.5270 0.0735 −0.5341 0.2578
Left SMG 0.2910 −0.1788 0.0722 0.0596 −0.3989 0.1645 0.0439 −0.5430 0.2649 0.0854 −0.4743 0.2133
Right PreCG 0.0981 −0.5977 0.3103 0.0935 −0.5981 0.3107 0.0488 −0.7695 0.4702 0.0364 −0.8346 0.5336
Left AMYG 0.1047 0.4765 0.2149 0.0735 0.4982 0.2305 0.0425 0.5281 0.2531 0.0288 0.6769 0.3815
Right ICC 0.2344 0.2565 0.0963 0.1973 0.3520 0.1385 0.1230 0.4846 0.2206 0.0374 0.7931 0.4932
Right LatOC 0.4194 0.0826 0.0547 0.4849 0.0191 0.0503 0.2109 −0.2854 0.1076 0.0144 −0.6771 0.3817
Right SPC 0.1628 −0.4106 0.1715 0.0867 −0.4923 0.2262 0.0715 −0.5109 0.2399 0.0317 −0.6434 0.3507
Left LatOC 0.3459 −0.1780 0.0721 0.3745 −0.1399 0.0636 0.2603 −0.2623 0.0985 0.0188 −0.6102 0.3212
Left MedOFC 0.2705 0.1984 0.0775 0.1609 0.3556 0.1404 0.1006 0.3966 0.1632 0.0330 0.6721 0.3770
Left SPC 0.4883 0.0102 0.0501 0.3472 −0.1433 0.0642 0.1157 −0.4680 0.2089 0.0186 −0.7846 0.4849
Right ITG 0.0442 −0.5813 0.2963 −0.0867 0.3706 0.1484 −0.0696 0.4827 0.2193 0.0061 −0.7844 0.4847

* Abbreviations defined in Table 2.
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Figure 4. Treatment-induced changes in nodal degree for brain regions are presented. In the figure, before-treatment nodal
degree is represented in node size. Significance and direction of change are presented in node color: red nodes for brain
regions with (uncorrected p-value < 0.05) increased nodal degree after treatment, blue nodes for regions with decreased
degree, and green nodes for regions without changes. Statistics for changes of red and blue regions are summarized in
Table 5 and full name of brain regions are listed in Table 2.
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3.1.3. Clinical Correlations

To further understand the functional significance of the significant results listed in
Table 3, we conduct correlation analyses with clinical measures. We first investigate if
topological measures correlate with BDI scores, which would have suggested relevance
to the disease process. The module degree z-score of left lateral occipital cortex in the
0.03–0.06 Hz band show correlation with the BDI scores (both baseline and after treatment)
with p-value = 0.02, as shown in Figure 5. Second, we test if the pre-treatment topological
measures correlate with the BDI scores and pre-post treatment changes in BDI-II scores
to assess if these could serve as treatment outcome predictors. However, no significant
correlations were found. Finally, we test correlations between changes in topological mea-
surements and pre-post treatment changes in BDI-II scores, which would have suggested
this change as a treatment mechanism. However, no significant correlations were found.

Figure 5. Network measure, module degree z-score of left lateral occipital cortex in the 0.03–0.06 Hz
band, correlates with clinical BDI score for both baseline and after treatment with coefficient
R = 24.4683 and its p-value = 0.020227. Note that the dependence between baseline and post-
treatment measurements could cause the inflation of false positive rate. One subject who could not
finish the after-treatment clinical assessment is excluded from the regression.

3.2. Treatment-Related Changes in Functional Connectivity in Four Frequency Bands

The non-parametric sign permutation test identified (p-value < 0.05 with Bonferroni
correction for 2850 connections) decreased connectivity between right fusiform gyrus and
left superior temporal gyrus, between right rostral anterior cingulate cortex and right
pars opercularis, between right superior temporal gyrus and right medial orbitofrontal
cortex, and between right superior parietal cortex and left caudal anterior cingulate cortex
in the 0.12–0.25 Hz network; between right medial orbitofrontal cortex and right supra-
marginal gyrus and between right hippocampus and right rostral middle frontal gyrus
in the 0.06–0.12 Hz network; between right thalamus and right superior parietal cortex,
between right cuneus cortex and right precentral gyrus, and between right lateral occipital
cortex and right pars opercularis in the 0.03–0.06 Hz network; and between left caudal an-
terior cingulate cortex and right supramarginal gyrus, between left inferior temporal gyrus
and left pars opercularis, between left pars opercularis and right fusiform gyrus, and be-
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tween right caudal middle frontal gyrus and right pars triangularis in the 0.015–0.03 Hz
network. The corresponding p-value, effect size, and power are summarized in Table 6,
and the boxplots for the distribution of connectivity and its changes are shown in Figure 6.
The results show that all the changes involved decreases in connectivity following the
treatment. This implies desynchronization of brain activities at the end regions of the
listed connections.

Table 6. Functional connections having connectivity change with p-value less than 0.0005.

Frequency Band Connection Uncorrected Effect Size PowerRegion 1 Region 2 p-Value

0.12–0.25 Hz Right fusiform gyrus Left superior temporal gyrus 0 1 −1.3560 0.9133
Right rostral anterior cingulate cortex Right pars opercularis 0 1 −1.0312 0.7143
Right superior temporal gyrus Right medial orbitofrontal cortex 0 1 −0.8439 0.5427
Right superior parietal cortex Left caudal anterior cingulate cortex 0 1 −0.7088 0.4116
Right inferior temporal gyrus Left banks superior temporal sulcus 0.0002441 −1.0550 0.7338
Right rostral anterior cingulate cortex Left pars opercularis 0.0002441 −1.0415 0.7228

0.06–0.12 Hz Right medial orbitofrontal cortex Right supramarginal gyrus 0 1 −0.8198 0.5192
Right hippocampus Right rostral middle frontal gyrus 0 1 −0.5818 0.2968
Right fusiform gyrus Left superior temporal gyrus 0.0002441 −1.1454 0.8012
Right pars opercularis Right rostral anterior cingulate cortex 0.0002441 −0.9197 0.6151
Right rostral anterior cingulate cortex Left pars opercularis 0.0004883 −0.9616 0.6538
Right precentral gyrus Left caudal anterior cingulate cortex 0.0004883 −0.8591 0.5575

0.03–0.06 Hz Right thalamus Right superior parietal cortex 0 1 −1.5722 0.9707
Right cuneus cortex Right precentral gyrus 0 1 −0.8869 0.5841
Right lateral occipital cortex Right pars opercularis 0 1 −1.2856 0.8828
Right thalamus Left superior parietal cortex 0.0002441 −1.6582 0.9822

0.015–0.03 Hz Left caudal anterior cingulate cortex Right supramarginal gyrus 0 1 −0.9047 0.6010
Left inferior temporal gyrus Left pars opercularis 0 1 −1.2272 0.8522
Left pars opercularis Right fusiform gyrus 0 1 −0.8613 0.5595
Right caudal middle frontal gyrus Right pars triangularis 0 1 −0.8023 0.5021
Left fusiform gyrus Right precentral gyrus 0.0002441 −1.2953 0.8874

1 The threshold to be significant with Bonferroni correction for 2850 connections is 1.75× 10−5.

While considering loosening the correction to accept p-value < 0.0005, eight addi-
tional connections are included with decreased connectivity after treatment in Table 6.
Notably, most of these connections link regions that are known to be involved in emotional
processing and regulation, including hippocampus, thalamus, pars opercularis, fusiform,
and various cortical regions in the frontal and temporal lobes, respectively. Moreover,
the identified connections are mainly part of the ascending and descending serotonergic
pathways, which the SSRIs may affect [75].
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Figure 6. Boxplots for the functional connectivity of the altered connections. Top panel shows the distribution of the
functional connectivity before and after the treatment, and the bottom panel shows the distribution of connectivity changes.
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3.2.1. Subnetwork Analysis

In addition to identifying changes with Bonferroni correction, a false discovery rate
(FDR) approach is used as an alternative to identify altered subnetworks. FDR approach
controls for a low proportion of false positives in comparison to the Bonferroni cor-
rection, which controls the family wise error rate for the probability of making a false
positive conclusion.

Figure 7 shows the degree distributions, represented by the size of nodes, for sig-
nificantly changed subnetworks corresponding to the four frequency bands. The subnet-
works are formed by the significantly altered connections determined using the Benjamini–
Hochberg procedure for FDR control with α = 0.05. There are 80, 42, 210, and 259 connec-
tions in the 0.12–0.25 Hz subnetwork, 0.06–0.12 Hz subnetwork, 0.03–0.06 Hz subnetwork,
and 0.015–0.03 Hz subnetwork, respectively. Nodes in the subnetworks include regions
with significant topological or degree change presented in Section 3.1, such as the amyg-
dala, caudal middle frontal gyrus, pars triangularis, precentral gyrus, and lateral occipital
cortex. Many of the frontal regions including bilateral precentral gyrus, bilateral caudal
middle frontal gyrus, bilateral caudal anterior cingulate cortex, bilateral pars opercularis,
bilateral rostral middle frontal gyrus, bilateral pars orbitalis, and bilateral lateral orbital
frontal cortex are shown associated with numerous significant connectivity changes in
the two low-frequency bands. In the two high-frequency bands, changes associated with
these regions are more significant in the right hemisphere than in the left hemisphere. Left
bank superior temporal sulcus shows significant change across all four frequency bands,
and bilateral changes of the superior parietal cortex can be found in the two low-frequency
bands. Moreover, the degree of bilateral accumbens increases as the frequency decreases.
Additionally, Figure 7b shows minimal changes, Figure 7a shows some minor impacted
(medium node size) regions in frontal and temporal areas in the right hemisphere, and they
become most significant with the presence of parietal regions when frequency decreases as
shown in Figure 7c,d. In contrast, the degree (node size) of regions in the right temporal
lobe increases when the frequency decreases.
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Figure 7. Degree distribution presented in the node size for the significant changes subnetworks identified using Benjamini–
Hochberg procedure for FDR control with α = 0.05 from the 4 frequency band networks: (a) 0.12–0.25 Hz, (b) 0.06–0.12 Hz,
(c) 0.03–0.06 Hz, and (d) 0.015–0.03 Hz. Edges are connections associated with significantly (with FDR control α = 0.05)
changed connectivity.
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3.2.2. Clinical Correlation: Baseline Connectivity Predicts Treatment Changes

In Figure 8, the change in clinical assessment (BDI score) is to found correlate with
the baseline functional connectivity between right medial orbitalfrontal cortex and right
supramarginal gyrus in the 0.06–0.12 Hz band. In other words, higher connectivity in this
circuit at baseline was associated with greater clinical improvement.

Figure 8. Scatter plot shows correlation between improvement in BDI score and baseline functional
connectivity on connection between right medial orbitalfrontal cortex and right supramarginal gyrus
in the 0.06–0.12 Hz band (coefficient R = −82.2992 and its p-value = 0.0086528). Age, gender, and
IQ were partialed out. One subject who could not finish the after-treatment clinical assessment is
excluded from the regression.

4. Discussion
4.1. Treatment Impact on Network Topology and Functional Connectivity

This study investigates SSRI-induced changes in brain resting-state functional network
topology and connectivity using graph-theory-based network analysis. As hypothesized,
patients showed changes after treatment in both topological structures and functional
connectivity of brain networks. Additionally, the finding that before-treatment connectivity
between right medial orbital frontal cortex and right supramarginal gyrus was associated
with greater clinical improvement may suggest a promising avenue for research investigat-
ing brain predictors of treatment response that could eventually lead to new clinical tools
to help clinicians prescribe the most effective medicine for individual patients.

The graph-theory-based network analysis offers a mathematical schematic for charac-
terizing and quantifying the global and regional topological structure of a brain network.
To the best of our knowledge, no prior work has investigated treatment-related changes in
brain network structure depending on frequencies for MDD. The most relevant work we
can find is regarding the disruption of brain network regardless of frequency [46,76–79].
Furthermore, to our best knowledge, no prior work has investigated SSRIs-induced topo-
logical change in the brain network.
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4.1.1. Global Topology

Changes in the global measure of normalized clustering coefficient and smallworld-
ness after treatment are identified. Increased clustering coefficient and smallworldness
imply the construction of cliquishness in the network structure. Previous studies have re-
ported decreased clustering coefficient and decreased smallworldness in the MDD patients
versus healthy control, which indicates that the treatment change is in the correct direction
for improvement [80,81].

4.1.2. Regional Changes and Correlation to Literature

Although thechanges in global measures in Figure 2 are not statistically significant,
the changes in local topology support the observed global alterations. These local changes
have not yet been reported in any prior SSRI-related study. Therefore, in this section,
the changes will be related to previous findings in MDD (may or may not specifically
for adolescent).

The reduction in the local efficiency and clustering coefficient at the right caudal mid-
dle frontal gyrus in the 0.12–0.25 Hz band is the most significant according to the p-value
and effect size in Table 3. The finding is new and, to our best knowledge, no literature has
reported MDD-related change in this region for adolescents. The change of the betweenness
centrality at the right precentral gyrus in the 0.03–0.06 Hz band is the largest according to
the effect size in the table. In the region, in MDD patients, previous studies have reported
decreased activity, reduced task-related activation, and increased functional connectiv-
ity [82–84]. For left pars triangularis, previous studies have reported decreased cortical
thickness in depression patients, diminishing pars triangularis in functional networks for
depression patients, functional connectivity between pars triangularis and frontal eye field
as predictors of acute depression treatment outcome, and pars triangularis as a discriminat-
ing biomarker between depression patients and healthy controls [85–88]. For left lateral
occipital cortex, in MDD patients, previous studies have revealed abnormal local intrin-
sic gray-matter connectivity, decreased baseline blood-oxygen level dependent (BOLD)
signal, the correlation between suicidality and connectivity between lateral occipital cor-
tex and fusiform, elevated functional activation, and increased cortical surface [89–94].
Even though the previous study has discovered similar correlations in MDD patients
and correlation between gray matter thickness in areas of parietal and temporal cortices
and antidepressant treatments [95], no finding regarding the treatment-related functional
changes for regions in Table 3 has been reported before.

Local efficiency is related to the clustering coefficient [96]. The decrease in local
efficiency and clustering coefficient after treatment at the caudal middle frontal gyrus
suggests the dwindling of the local cliquishness. Table 4 lists brain regions associated
with clustering coefficient and local efficiency changes after treatment for uncorrected
p-value < 0.05 in the 0.12–0.25 Hz network. These regions include bilateral caudal middle
frontal gyrus, bilateral superior temporal gyrus, bilateral rostral middle frontal gyrus,
left pars triangularis, left putamen, and right superior frontal gyrus. They have been
frequently identified as regions correlating with structural and functional abnormalities in
depression [84,85,87–89,92,97–106].

In addition to network efficiency and clustering coefficient, we also investigated the
centrality of brain regions using the nodal degree, shown in Table 5, which characterizes the
importance of a node in the whole brain network. After treatment, decreased centrality is
found at the left inferior parietal cortex, right caudal anterior cingulate cortex, left superior
temporal gyrus, bilateral supramarginal gyrus, right pars opercularis, right caudal middle
frontal gyrus, right precentral gyrus, bilateral lateral occipital cortex, bilateral superior
parietal cortex, and right inferior temporal gyrus. Increased centrality is found at the
bilateral amygdala, right lingual gyrus, bilateral paracentral lobule, right accumbens, left
pericalcarine cortex, left middle temporal gyrus, right isthmus-cingulate cortex, and left
medial orbital frontal cortex. Notably, degree changes are frequency-dependent that some
regions tend to have changes in the high-frequency band and the other changes tend to be
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in the low-frequency band, except for the right amygdala, which has changes across all
the frequency bands. Brain regions that show altered clustering coefficient, local efficiency,
and nodal degree after treatment include the left amygdala, left medial orbitofrontal cortex,
and left paracentral lobule.

In the previous cortical thickness study using the same dataset, the increased thickness
of the left medial orbitofrontal cortex and the correlations between clinical improvement
and increased cortical thickness of the left lateral orbitofrontal cortex and superior frontal
cortex were found [107], which potentially relate to increased connectivity. The bilateral
middle temporal gyrus also shows a decreased clustering coefficient and local efficiency
but not the nodal centrality. All the regions with the topological change due to the antide-
pressant are in the frontal-limbic system and the default mode network (DMN), which
have been previously implicated in MDD [16,46,108–111].

The amygdala is known to play a large part in processing negative emotions, such
as the initiation of fear and stress responses [112,113], and is centrally implicated in
MDD [21,114–116]. In the amygdala, previous work has reported the volume increase in
some studies for patients with depression compared to controls [117], increased BOLD
response in unipolar depression [103], and reduced activation after treatment to masked
fearful faces [118]. The decreased clustering coefficient, local efficiency, and nodal central-
ity in the amygdala may reflect an improvement in neurocircuitry. Our previous study
using the same dataset but a different approach also discovered changes of resting-state
amygdala connectivity, including increased connectivity with the right frontal cortex, right
central opercular cortex, and Heschl’s gyrus and decreased connectivity with right pre-
cuneus, right posterior cingulate cortex, left supplementary motor area and with right
precentral gyrus [21,22]. The temporal lobe is implicated in the regulation of emotional
states [119,120] and abnormalities in the temporal cortex have been reported in major
depressive disorder in several studies [120–124]. For instance, fMRI studies show increased
response in the middle temporal gyrus in MDD patients using a paradigm of evoking effect
with picture–caption pairs [123] and using negative emotional scripts [119]. The finding in
this study shows decreased cliquishness in the clustering coefficient and local efficiency at
the middle temporal gyrus in resting-state functional brain networks after treatment.

4.1.3. Frequency Dependency in Regional Changes

From Tables 3 and 4 and Figure 4, locations of altered regions show a trend in fre-
quency: Changes in high-frequency bands (0.12–0.25 Hz and 0.06–0.25 Hz) are mainly lo-
cated in the frontal and temporal areas, and changes in low-frequency bands (0.015–0.03 Hz
and 0.03–0.06 Hz) spread into the parietal and occipital areas. This phenomenon is more
obvious in the result of FDR subnetworks showing in Figure 7.

In the FDR subnetworks, regions commonly affected across frequency bands are
left banks superior temporal sulcus, right pars opercularis, right precentral gyrus, right
pars orbitalis, right lateral orbital frontal cortex, bilateral paracentral lobule, and bilateral
superior parietal cortex. Changes at regions including bilateral superior temporal gyrus,
fusiform gyrus, inferior temporal gyrus, accumbens, supramarginal gyrus, pars triangularis,
rostral middle frontal gyrus, superior frontal gyrus, cuneus cortex, pericalcarine cortex,
lateral occipital cortex, and right banks superior temporal sulcus appear to be frequency-
dependent. In the high-frequency bands, i.e., 0.06–0.12 Hz and 0.12–0.25 Hz, the affected
regions are mostly frontal and temporal areas. In the low-frequency bands, i.e., 0.03–0.06 Hz
and 0.06–0.12 Hz, parietal and subcortical regions appear affected in addition to the areas
identified in the high-frequency networks.

Previous studies have reported subsets of frequency bands as follows: Frequencies
between 0.010 and 0.027 Hz may reflect cortical neuronal activity, frequencies between
0.027 and 0.073 Hz may reflect basal ganglia activity, and frequencies between 0.073 and
0.198 Hz and 0.198 and 0.250 Hz have been associated with physiologic noise and white
matter signal, respectively [125–129]. Even though there was a debate about whether
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resting-state fMRI can actually detect white matter activity [130], recent studies tend to
support that white matter activity is detectable with resting-state fMRI [131,132].

The frontal lobe is one of the regions that is most consistently identified as associ-
ated with MDD [97,133]. Changes in the frontal cortex across all frequency bands may
reflect anatomical changes related to white matter. Altered temporal, parietal, and occipital
regions in the 0.015–0.03 Hz band are not only primarily related to cortical activities in
sensory-motor processing but also participate in a series of higher cognitive functions.
The altered network topology in these regions may correspond to potential neural mecha-
nisms mediating the imbalance of these regions’ related functional networks.

4.1.4. Functional Connectivity

In order to expand on our past work where we had previously investigated treatment-
related changes in resting-state functional connectivity between amygdala and all other
voxels in the brain [22], we also examined functional connectivity between brain regions
in the networks at a global level. With Bonferroni correction, thirteen connections are
identified. All the connections in Table 6 (p-value to < 0.0005) show reduced connectivity,
and these connections are mostly between limbic, frontal, and temporal regions, as well as
the superior parietal cortex.

Moreover, a significant correlation, shown in Figure 8, was found between improve-
ment in clinical assessment and before treatment connectivity of the connection between
right medial orbitofrontal cortex and right supramarginal gyrus in the 0.06–0.12 Hz band.
Although these correlation analyses are exploratory and the results are not corrected for
multiple comparisons, the preliminary findings suggest that the baseline neurological
assessment may be used to predict treatment results. MDD is very heterogeneous in that
treatment plans have to be individually customized in order to achieve the best result.
By better characterizing the neural underpinnings of facts affecting treatment outcomes,
this research may pave the way for designing and optimizing treatment for each individual.
Taken together, these findings suggest that the network measures derived from graph
theory in this study are clinically meaningful, and they may shed light on the neurological
underpinnings for better treatment results.

Lastly, we would like to emphasize that this work should be considered as a first
and important exploratory study. Treatment-impacted regions, connections, and networks
identified in this work have overlap with those implicated in MDD [134]. However,
the findings of the SSRI-induced changes and relationships with the clinical assessment
reported in this paper require replication with larger data sets. Once validated, these
findings could serve as bases for longitudinal studies to answer important questions,
such as the following: (1) how network topology and functional connectivity evolve with
different lengths of the SSRI intervention; (2) how brain network status correlates with
the clinical outcome; (3) how the initial brain network status relates with the intervention
outcome; and (4) what and how factors (frequency, strength, etc.) of the intervention
contribute to the brain change and clinical improvement.

4.2. Methodological Considerations

For the generation of brain functional network and calculation of the network mea-
sures, thresholding is utilized to remove insignificant and weak connections that potentially
are spurious and could obscure the structure of the significant and strong portion of the
network [29]. The threshold is determined per subject in order to ensure the consistent
number of connections across subjects for each network density. Any connectivity with
a negative correlation coefficient is not considered during the topological analysis, as
suggested in the previous study [29].

In this paper, the topological measure-versus-density curves are compared based on
the area under curve to test statistical significance, which averages the measure and serves
as a scalar summary of the curve values across densities. However, averaging could reduce
statistical significance. Another approach is by performing massive comparisons at every
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single density, which will have higher significance but is also prone to the high type-I error
and high sensitivity to noise. To produce a better comprehensive examination of the entire
topological structure of the original weighted connectivity graph, in the future study, AUCs
for subdivided density ranges or AUCs calculated based on weighted averaging will be
investigated to achieve balance between significance and the control of type-I error.

In a connectomic study, type-I error control is necessary for multiple comparisons
in finding the changes from 2850 connections in a brain network. A previous study has
suggested that, in a connectomic analysis, ruling out unnecessary candidates for com-
parison using existing knowledge could result in a smaller type-I error and an improved
significance [72]. Therefore, in this study, we employed the traditional false-discovery
rate (FDR) control procedure to create a significantly impacted subnetwork. Unlike the more
restricted family wise error rate control procedure, the FDR procedure ensures the enclo-
sure of all the true positives and offers a guarantee on the ratio of false-positive to the
true positive [135]. By excluding the irrelevant part of the network, the preliminary result
shows the significantly affected connections between cortical and subcortical regions as
part of the ascending and descending pathways that are expected to respond to SSRIs and
highlights the subcortical regions associated to these connections. Future investigation will
result in a complete study of the topological structure of the subnetwork.

The parcellation of the brain directly determines the size of the brain network and
the number of fMRI signals being averaged while computing the seed-based functional
connectivity, i.e., Pearson correlation between the average (representative) signal between
a pair of regions. In this paper, the commonly used Desikan–Killiany atlas (82 cortical and
subcortical regions) is used to define nodes in the functional brain networks. The regions
are relatively large compared to the imaging resolution, which means that the advantage
of current advanced imaging technology is not fully utilized. Additionally, brain networks
derived using different parcellation schemes may show different topological structures.
Therefore, it will be interesting to perform similar studies using various atlases and to
compare the results.

Additionally, here, functional connectivity is defined based on Pearson correlation
coefficients that only characterizes the linear relationship between time series. Some other
types of connectivity measures, such as coherence and mutual information, could be uti-
lized to account for a more complicated relationship, such as timing-lag and predictability,
between two time series.

Lastly, recent fMRI studies have reported that resting-state functional brain connec-
tivity is highly dynamic [136,137]. In this study, the brain network is formulated as a
static network by considering an average representation for the entire period during the
resting-state fMRI acquisition, which is consistent with many of the current functional con-
nectomic studies [37,44,46]. However, investigation of the dynamical changes in functional
connectivity and network topology is necessary for future work.

Limitations

The small sample size, N = 12, is the major constraint for this study. Although the
statistical power for functional connectivity is acceptable, 0.2968–0.9822 (mean 0.6811,
SD 0.1838) in Table 6, the power is very limited for global network measures, 0.2834–0.9962
(mean 0.6820, SD 0.1804) in Tables 3 and 4, and for local measures, 0.2110–0.7240 (mean
0.4443, SD 0.1272) in Table 5. Insufficient power would downgrade the ability of discov-
ering a true effect and increase the chance that a significant result does not imply a true
effect [138].

In addition to the small sample size, the lack of placebo control that was scanned at
similar intervals prevents us from concluding that the changes observed in neural networks
are all necessarily due to the treatment, as opposed to spontaneous changes that would
have happened anyway. Therefore, the result should be considered preliminary and needs
to be validated on large samples in future works.
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The absolute values of effect size (Cohen’s d) for the five topology measures listed in
Table 3 range from 0.7271 to 1.8910 (mean 1.1646, SD 0.4036), indicating large to very large
effects [68,139]. Those for connectivity changes that listed in Table 6 range from 0.5818
to 1.6582 (mean 1.0389, SD 0.2697), which indicate medium to very large effects [68,139].
These effect sizes are comparable to the previously reported effect sizes in 26,841 statistical
records from 3801 cognitive neuroscience and psychology papers [140]. With the large
power for results in Tables 3 and 6, we can eliminate the concern that an effect size could
be overestimated by low statistical power [138]. Therefore, even though preliminary
findings in this study are promising and could be significant after suitable validation on a
large dataset.

5. Conclusions

In this paper, graph-theory-based complex network analysis has been applied to inves-
tigate SSRI-induced alterations of topological organizations and connectivity in resting-state
functional brain networks. In the 0.12–0.25 Hz functional brain network, after treatment,
MDD patients show decreased local cliquishness and nodal centrality in the middle frontal
and superior temporal regions. Furthermore, subnetworks with significantly altered con-
nections present frequency-dependent changes in functional connectivity. Additionally,
the baseline connectivity of connection between the right medial orbitofrontal cortex and
right supramarginal gyrus in the 0.06–0.12 Hz band is found to be correlated with clinical
improvement, which may signal its potential usefulness in predicting treatment outcome,
pending confirmation with future studies. The findings of this work may help in gaining
new knowledge into the neural underpinnings of the SSRI treatment effect. However, due
to the limitation of small sample sizes and lack of placebo control, the results should be
viewed as exploratory and need to be validated on large samples in future works. Future
efforts will be directed towards studying functional brain networks constructed with differ-
ent node sets and connectivity measures, exploring the dynamic network structure across
time, and testing the results on a larger sample size.
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