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In vitro differentiation of human induced pluripotent stem cells (iPSCs) into beta

cells represents an important cell source for diabetes research. Here, we fully

characterized iPSC-derived beta cell function in vitro and in vivo in humanized

mice. Using a 7-stage protocol, human iPSCs were differentiated into islet-like

aggregates with a yield of insulin-positive beta cells comparable to that of

human islets. The last three stages of differentiation were conducted with two

different 3D culture systems, rotating suspension or static microwells. In the

latter, homogeneously small-sized islet-like aggregates were obtained, while in

rotating suspension size was heterogeneous and aggregates often clumped. In

vitro function was assessed by glucose-stimulated insulin secretion, NAD(P)H

and calcium fluctuations. Stage 7 aggregates slightly increased insulin release in

response to glucose in vitro. Aggregates were transplanted under the kidney

capsule of NOD-SCID mice to allow for further in vivo beta cell maturation. In

transplanted mice, grafts showed glucose-responsiveness and maintained

normoglycemia after streptozotocin injection. In situ kidney perfusion assays

showed modulation of human insulin secretion in response to different

secretagogues. In conclusion, iPSCs differentiated with equal efficiency into

beta cells in microwells compared to rotating suspension, but the former had a

higher experimental success rate. In vitro differentiation generated aggregates

lacking fully mature beta cell function. In vivo, beta cells acquired the functional

characteristics typical of human islets. With this technology an unlimited supply

of islet-like organoids can be generated from human iPSCs that will be

instrumental to study beta cell biology and dysfunction in diabetes.
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Introduction

Diabetes develops when the amount of insulin secreted fails to

meet the body’s metabolic demands. The cellular and molecular

mechanisms underlying pancreatic beta cell failure vary across

different types of diabetes (Nolan et al., 2011; Herold et al., 2013;

Cnop et al., 2017). Human pluripotent stem cells provide an

unlimited cell source to produce beta cells for mechanistic and

therapeutic studies and for cell replacement in diabetes (Balboa

et al., 2019). During the past decade the methods to differentiate

pluripotent stem cells into beta cells have improved substantially

(Pagliuca et al., 2014; Rezania et al., 2014; Russ et al., 2015; Petersen

et al., 2018; Balboa et al., 2019). Beta cells are generated by

stimulating stem cells with a series of small molecules and

growth factors that guide them into pancreatic developmental

steps (Petersen et al., 2018; D’Amour et al., 2005; Jennings et al.,

2015; Pan and Wright, 2011).

An important advance in disease modeling with stem cells

occurred with the development of three-dimensional (3D)

organotypic culture systems (Liu et al., 2018). The 3D

environment allows better cell-to-cell communication and

correct cellular polarization. Correct islet architecture and beta

cell polarization are crucial for beta cell functionality. In vitro

organoid systems require a platform to induce self-organization

and lineage specification. Natural scaffold-based strategies rely on

laminin-rich Matrigel, pure laminins, collagens or other

biomaterials, which favor cell differentiation and functionality.

Several reports have described beta cell differentiation using

natural or synthetic scaffolds (Kuo et al., 2017; An et al., 2018;

Candiello et al., 2018). However, pure extracellular matrix proteins

are costly, limiting large-scale organoid production. For large-scale

production, beta cells can be differentiated in dynamic suspension

cultures or bioreactors but organoid formation and size are not

well controlled (Pagliuca et al., 2014; Mihara et al., 2017).

Uncontrolled aggregation easily results in too large organoids,

which undergo central necrosis and hamper beta cell maturation.

Smaller organoids can coalesce into bigger unorganized cell

clumps, leading to failed experiments.

Many laboratories have reported successful differentiation of

insulin-releasing beta cells in vitro and in vivo. In these studies,

functional human stem cell-derived beta cells were generated by

sorting more mature beta cells in order to generate beta cell-

enriched clusters (Nair et al., 2019) or by modulating signaling in

the last stages of differentiation, e.g., TGF-beta (Velazco-Cruz

et al., 2019) andWNT4 signaling (Yoshihara et al., 2020). Despite

improvements in human stem cell differentiation into beta cells,

the methods remain technically challenging and limited by poor

reproducibility. In this study we report a scalable and easy

technique to generate homogeneously small-sized islet-like

organoids from human induced pluripotent stem cells (iPSCs)

with great experimental success rate. We characterize in depth

the function of iPSC-derived beta cells in vitro and in vivo after

transplantation.

Material and methods

Ethical approval

In vivo studies were performed with the approval of the

Commission d’Ethique et du Bien Être Animal (CEBEA),

Medical Faculty, Université Libre de Bruxelles. The CEBEA

follows the European Convention for the Protection of

Vertebrate Animals used for Experimental and other Scientific

Purposes (European Treaty Series No.123). Human pancreata,

not suitable for transplantation, were collected from non-diabetic

brain-dead organ donors with the approval of the Ethical

Committee of the University of Pisa, Italy, after signed informed

consent by next-of-kin (Marchetti et al., 2018). Human iPSCs were

reprogrammed from skin fibroblasts with approval by Ethical

committees, see below. The differentiation of iPSCs into beta

cells was approved by the Ethical Committee of the Erasmus

Hospital, Université Libre de Bruxelles, reference P2019/498.

Cell culture

Human clonal EndoC-βH1 cells (kindly provided by Raphael

Scharfmann, Cochin Institute, Paris, France) (Ravassard et al., 2011)

were cultured in DMEM (ThermoScientific) as described (Grieco

et al., 2014; Brozzi et al., 2015). Human islets (from 9 non-diabetic

donors, age 67 ± 10 years, BMI 26.9 ± 3.2 kg/m2, Supplementary

Table S1) were isolated by collagenase digestion and density gradient

purification in Pisa (Marchetti et al., 2018; Marselli et al., 2020) and

cultured in Brussels as described (Santin et al., 2011). The beta cell

purity of the human islets, determined by insulin

immunofluorescence (Cunha et al., 2008), was 55.2 ± 22.0%.

Human induced pluripotent stem cell
differentiation into beta cells

The human iPSC line HEL115.6 (Cosentino et al., 2018; De

Franco et al., 2020) was reprogrammed from skin fibroblasts (with

approval by the Ethics Committees of the Hospital District of

Helsinki and Uusimaa (no. 423/13/03/00/08) and Erasmus

Hospital) by Cytotune iPSC reprogramming (Life technologies)

(Trokovic et al., 2014) at Biomedicum Helsinki Stem Cell Center
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(Cosentino et al., 2018). The human iPSC line 1023A was kindly

provided by Dieter M Egli, University of Columbia, and the

H1 human embryonic stem cells by Timo Otonkoski,

University of Helsinki. ULBi001.BJ.6 was reprogrammed with

Sendai virus at ULB Center of Diabetes Research as described

in (De Franco et al., 2020). Karyotype, embryoid body assay,

pluripotency marker expression and colony morphology validated

iPSC pluripotency (Supplementary Figure S1). iPSCswere cultured

in Matrigel (Corning BV, Life Sciences) coated plates in

E8 medium (Life Technologies) and passaged with 0.5 mmol/L

EDTA (Life Technologies) twice weekly. Absence of mycoplasma

was verified monthly using MycoAlert Mycoplasma Detection

(Lonza). For beta cell differentiation we used a stepwise

protocol (Cosentino et al., 2018; De Franco et al., 2020)

modified from published protocols (Pagliuca et al., 2014;

Rezania et al., 2014; Saarimaki-Vire et al., 2017). iPSCs were

washed with 0.5 mmol/L EDTA, incubated with Accutase

(Capricorn Scientific) for 3–8-min and seeded at

1.5–2.5 million cells/3.5-cm Matrigel-coated wells in

E8 medium containing 5 μmol/L ROCK inhibitor (Y-

27632 dihydrochloride, StemCell technologies). Twenty-

four hours later, cells reached confluency and were

differentiated in Matrigel-coated wells until the end of stage 4

(St4), after which cells were detached by washes with 0.5 mmol/L

EDTA and 5–8-min incubation with Accutase at 37°C. After 3-min

centrifugation at 250 g, cells were resuspended in medium with

10 μmol/L ROCK inhibitor and plated either in suspension or in

microwells (AggreWell400, StemCell technologies) at a density of

750 cells/microwell unless otherwise indicated. Basal and

differentiation media composition are described in (Cosentino

et al., 2018) and Supplementary Tables S2, S3. A detailed

differentiation protocol is provided in the Supplementary

Methods section.

RNA extraction, reverse transcription and
real-time PCR

RNA was extracted with Poly(A)+-RNA oligo-dT 25-coated

polystyrene Dynabeads (Life Technologies) following the

manufacturer’s instructions. RNA was reverse transcribed

using Reverse Transcriptase Core Kit (Eurogentec). Real-time

PCR was performed using IQ SYBR Green Supermix on CFX

Connect (Bio-Rad) or Rotor-Gene Q cycler (Qiagen). Expression

values were corrected for the geometric mean of reference genes

GAPDH and ACTB. Primer sequences are provided in

Supplementary Table S4.

Dispersion of aggregates

Aggregates were washed twice with 0.5 mmol/L EDTA,

exposed for 8-min to Accumax (Sigma-Aldrich) and dispersed

by repeated pipetting as described (Lytrivi et al., 2021). Knockout

serum (Gibco) was added to smother the dissociation. Cells were

pelleted and resuspended in medium supplemented with

10 μmol/L ROCK inhibitor for overnight culture.

Immunofluorescence

Cells were fixed in 4% paraformaldehyde for 15–20-min,

permeabilized with 0.5% triton-X100, blocked with UltraV block

(ThermoScientific) for 10-min and incubated with primary

antibodies diluted in 0.1% Tween in PBS for 3 h at room

temperature or overnight at 4°C. Following 30–60-min

incubation with secondary antibodies at room temperature

samples were mounted with Vectashield with DAPI (Vector

Laboratories) and covered with glass coverslips. Antibodies are

provided in Supplementary Table S5.

Flow cytometry

Dispersed aggregates were resuspended in PBS containing

“Zombie Aqua” dye (BioLegend) and incubated 20-min in the

dark to detect live and dead cells. Cells were fixed and

permeabilized, incubated with conjugated antibodies for 2 h at

room temperature in Perm/Wash buffer (BD Cytofix/Cytoperm,

BD Biosciences). After washes, cells were analyzed using

FACSCanto II or LSRFortessa X-20 cytometers (BD

Biosciences) and FlowJo software (Tree Star). Antibodies are

provided in Supplementary Table S6.

In vitro insulin secretion, insulin and
proinsulin content

Twenty aggregates were washed with glucose-free Krebs

buffer (Univercell Biosolutions, Toulouse, France), pre-

incubated in 1.6 mmol/L glucose Krebs for 30-min, exposed to

2.8, 16.7 or 16.7 mmol/L glucose plus 10 μmol/L forskolin for 1 h

and supernatant was collected for human insulin ELISA

(Mercodia, Uppsala, Sweden). Cellular (pro)insulin was

extracted using acid ethanol (95% ethanol, 5% 12N

hydrochloric acid) and quantified by ELISA (Mercodia).

Insulin secretion and aggregate (pro)insulin content were

normalized to total protein content, measured by protein

assay dye (Bio-Rad). For NADPH and intracellular calcium

measurements, aggregates were preincubated for 40-min in

Krebs containing 0.5 mmol/L glucose. Batches of 10 aggregates

were incubated for 1 h at 37°C in 1 ml Krebs containing 2 or

20 mmol/L glucose with or without 25 μmol/L gliclazide.

Medium was collected for insulin assay and data normalized

to DNA content. For perifusion experiments, 300–500 aggregates

were perifused at 37°C, at a flow rate of 0.5 ml/min. After an
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initial 20-min equilibration with the first solution, they were

challenged by various test solutions and effluent was collected

every 4-min. Insulin was assayed with home-made

radioimmunoassay (Gilon et al., 1993).

NAD(P)H and intracellular calcium
measurements

To measure changes in intracellular calcium concentration

([Ca2+]i), aggregates were loaded with Fura-2 LR acetoxymethyl

ester for 2 h at 37°C in culture medium (non-starved) or Krebs

containing no glucose (glucose-starved). They were then

perifused with Krebs (flow rate ~1 ml/min) at 37°C in a

temperature-controlled chamber placed on the stage of an

inverted microscope. The Fura-2 LR fluorescence ratio (λex
340/380 nm; λem 510 nm) was acquired every 5 s as described

(Khaldi et al., 2004). For NAD(P)H measurements, non-starved

or 2-h glucose-starved aggregates were perifused as above and

NAD(P)H autofluorescence (λex 360 nm; λem 470 nm) was

acquired every 10 s (Khaldi et al., 2004).

iPSC-derived beta cell transplantation

NOD.CB17-Prkdcscid/NCrCrl (Charles River, UK, purchased

at age 6-to-8 weeks) were housed in a specific pathogen-free

(SPF) animal facility, Université Libre de Bruxelles. Mice were

housed at 21°C, in a 12 h light/dark cycle, with ad libitum access

to regular chow and water. Transplantations were performed in

8-to-12-week-old male mice (average weight 30.5 ± 0.9 g). Mice

were anesthetized with intraperitoneal Ketamine (Nimatek,

Dechra, 100 mg/kg)/Xylazine (Rompun, Bayer, 5 mg/kg)

injection and aggregates were transplanted under the kidney

capsule using a 10 µL precision pipet. Paracetamol (100 mg/L

drinking water) was given as analgesic 1 day prior to

transplantation and for 10 days after. Seven, 14 and

20–21 weeks after transplantation, mice underwent

intraperitoneal glucose tolerance tests (IPGTTs), performed as

described (Igoillo-Esteve et al., 2020). After 16-h fast, 2 mg

glucose per g body weight was administered. Glycemia was

measured using a glucometer (Accu-Chek Aviva Nano,

Roche) before (0) and 15, 30, 60, 90 and 120 min after

injection. Mouse weight, appearance and mobility were

monitored to ensure their welfare. Blood was collected from

the tail vein at 0, 30, 60 and 90 min and plasma separated by

centrifugation at 3,000 rcf for 20-min at 4°C. C-peptide levels

were quantified using human ultrasensitive C-peptide ELISA

(Mercodia). At 21–23 weeks after transplantation, mice were

injected with a single dose of streptozotocin (200 mg/kg) to

selectively ablate mouse beta cells. One week later, mice

underwent nephrectomy to retrieve the graft or they were

killed by cervical dislocation for kidney perfusion.

In situ kidney perfusion

The iPSC-beta cell grafted kidney was perfused in situ at 37°C

at 1 ml/min flow rate in a single-pass circuit. A ligature was

performed at the level of the abdominal aorta above the coeliac

trunk, a catheter inserted in the abdominal aorta and the venous

effluent collected by another catheter inserted in the renal vein.

To avoid coagulation, the engrafted kidney was first perfused

with 1 ml heparinized (50 IU/ml) PBS. After an initial 20-min

equilibration with basal perfusion solution, the effluent was

collected every 4-min. Insulin was assayed by

radioimmunoassay (Gilon et al., 1993).

Statistical analysis

Sample size calculations are described in Supplementary

Methods. Data are shown as violin plots (truncated) of the

indicated number (n) of independent experiments, defined as

one iPSC-beta cell differentiation or one human islet preparation,

shown as individual data points. Dotted line represents the

median. Paired two-way ANOVA or mixed effects model

analysis (the latter in case of a missing value) were applied. If

not specified otherwise, the Bonferroni correction was applied for

multiple comparisons.

Results

Microwell culture produces standardized
human beta cell aggregates with high
success rate

Human iPSCs were differentiated into beta cells using a

stepwise protocol (Figure 1A). Cells differentiated successfully

into definitive endoderm (St1) as shown by morphology and

expression of definitive endoderm marker SOX17

(Supplementary Figure S2A). Cells progressed through

primitive gut tube, posterior foregut and formed pancreatic

progenitors (St4) co-expressing PDX1 and NKX6.1

(Supplementary Figure S2A). At this point cells were

transferred from monolayer culture into rotating suspension

or static microwells to sustain the formation of islet-like

aggregates. 7 million cells were plated per low attachment 6-

well in 5 ml for suspension, whilst the optimal cell density for

microwells was tested by seeding 500, 750, 1,000 and 2,000 cells/

microwell in 2 ml and monitoring aggregate diameters. At lower

cell densities (500–750 cells/microwell), aggregates kept a stable

diameter of 103 ± 1 μm during culture, while at higher densities

aggregate size increased with time (Figures 1B,C). This increase

was not due to cell proliferation, since very few Ki67-positive cells

were detected (Figure 1D), but due to fusion of aggregates that

were displaced to neighboring microwells. Based on these data,
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FIGURE 1
Human iPSC differentiation into beta cells. (A), Human iPSCs were differentiated into beta cells following a 7-stage stepwise protocol. Until
stage 4 (St4) cells were cultured in 2D and then transferred to 3D culture, either in suspension (SP) ormicrowells (MW). Media specification is shown in
boxes. (B), Morphology and size of aggregates differentiating into beta cells in rotating suspension (upper panels) or staticmicrowells (bottom panels)
at 1, 5 and 12 days post-detachment from 2D culture. Scale bar is 400 µm. (C), Diameter of the aggregates generated with 500, 750, 1000 or
2000 cells per microwell. Diameters were measured at day 1, 4 and 12 post-detachment from 2D culture. (D), Quantification of immunochemical
analysis of total or insulin-positive cells (co-)expressing the proliferation marker Ki67 (n = 5). (E), Microwell and suspension aggregates stained for
insulin (green), glucagon (red) and PDX1 (purple). Scale bar is 100 µm. Symbols represent different cell models (Hel115.6, circles; 1023A, squares). N,
number of independent experiments, defined as one iPSC-beta cell differentiation, shown as individual data points.
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FIGURE 2
Characterization of human iPSC-derived islet-like organoids. (A), Differentiation markers were measured by quantitative RT-PCR. White bars
represent cells until stage 4 (St4, 2D culture), grey bars represent microwell aggregates (MW), red bars suspension aggregates (SP), green bars
EndoC-βH1 cells and yellow bars human islets (HI). (B), Representative pictures of dispersed aggregates stained for insulin (green) and glucagon (red).
Nuclei are visualized with DAPI (blue). (C), Quantification of insulin (INS), glucagon (GCG) and insulin/glucagon (INS/GCG) expressing cells from
immunochemical analysis (MWn= 29; SP n = 22, HI n = 205). (D), Representative flow cytometry analysis of dispersedMWand SP aggregate cells. (E),
Representative pictures of dispersed aggregate cells stained for insulin (green) and chromogranin A (CHGA), PDX1 or NKX6.1 (all in red). (F),
Quantification of immunochemical analyses of cells expressing insulin only (yellow), chromogranin A, PDX1 or NKX6.1 only (purple), and both (blue)

(Continued )
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we selected 750 cells/microwell for further experiments.

Suspension aggregates also increased in size between St5 and

St7 due to fusion. Forty-50% of the suspension differentiations

were lost due to such massive clustering. Similar results were

obtained with the iPSC line 1023A. Worse outcomes were

observed using iPSC line ULBi.001.BJ.6 and embryonic stem

cell line H1, for which suspension culture resulted in clumping

and loss of the experiments (n = 5 and n = 3, respectively). In

contrast, the success rate of microwell experiments was 91–100%

for these stem cell lines, pointing to greater inter-cell line

reproducibility (Supplementary Figure S4A). The suspension

aggregates were larger (369 ± 6 μm at St6) and much more

heterogeneously sized (range 231–606 μm, Figure 1B). Some

of the aggregates generated in rotating suspension culture

showed a dense core of DAPI-stained nuclei (Supplementary

Figure S3C) suggesting central necrosis; this was not encountered

with microwell culture. Using 3D microscopy in suspension

aggregates, expression of the differentiation marker PDX1 was

confirmed (Supplementary Figures S3A,B). At the end of St7,

bothmicrowell and suspension aggregates contained insulin- and

PDX1-or insulin- and NKX6.1-double positive cells (Figure 1E,

Figures 2E,F).

Cells followed a normal developmental pathway along the

differentiation by transiently expressing endocrine progenitor

marker NGN3 at St5, both in suspension and microwell

aggregates (Figure 2A). Expression of beta cell-specific

transcription factors PDX1 and NKX6.1 started at St3 and

increased progressively (Figure 2A). The mature beta cell

marker MafA increased slightly upon differentiation but

remained far below the expression of adult human islets

(Figure 2A). At the end of differentiation, suspension and

microwell aggregates were composed of a mixture of beta,

alpha and bihormonal cells quantified by

immunofluorescence and FACS (Figures 2B–D,

Supplementary Figure S4B). Microwell and suspension

aggregates contained 70–72% chromogranin A-positive cells,

of which 42–46% were also insulin-positive (Figures 2E,F).

Microwell aggregates contained 5–10% more insulin-positive

cells and fewer glucagon-positive cells than suspension

aggregates. The yield of insulin- and glucagon-double

positive cells was similar, below 7% (Figures 2B–D). The

yield of insulin-positive cells in microwells was on average

comparable with the beta cell proportion in human islets

from >200 donors, but much less variable (Figure 2C).

Reproducibility within iPSC lines was assessed by calculating

the coefficient of variation for beta cell yield. This showed more

reproducible results for microwell than suspension aggregates;

consistency was lower for human islets (Supplementary Table

S7, Supplementary Figure S4B).

Taken together, microwells provide a more efficient, user-

friendly platform to create reproducible and standardized size-

controlled aggregates with similar differentiation efficiency

compared to traditional suspension culture.

Human iPSC-derived beta cells have an
immature functional phenotype in vitro

We compared in vitro function of microwell and suspension

aggregates at St7 of differentiation. High glucose (16.7 mmol/L)

stimulation elicited a modest increase (1.4 ± 0.4-fold) in insulin

secretion in microwell aggregates, whilst no increase was

observed in suspension aggregates (Figure 3A). Forskolin,

which boosts insulin release by increasing intracellular cAMP

levels, markedly stimulated insulin secretion in both (4.3 ± 1.9-

and 3.1 ± 1.1-fold, respectively). Basal insulin secretion was

similar, but the response to high glucose and/or forskolin was

substantially below that of human islets (5.4 ± 2.5- and 13.0 ± 4.9-

fold, Figure 3A). This was not due to lesser insulin content, which

was in the same range for microwell aggregates and human islets

and tended to be lower in suspension aggregates (Figure 3B).

Reproducibility within iPSC lines was assessed by calculating the

coefficient of variation for insulin secretion measures. This

showed overall more reproducible results for microwell than

suspension aggregates; consistency tended to be lower for human

islets (Supplementary Table S8, Supplementary Figure S4C).

Proinsulin content was similar in iPSC-beta cell aggregates

and human islets (Figure 3C).

We further assessed functional maturation of microwell

aggregates by measuring the acute effect of glucose and KATP

channels modulators on NAD(P)H autofluorescence, [Ca2+]i and

insulin secretion. In non-starved aggregates, NAD(P)H

autofluorescence progressively decreased during perifusion at

2 mmol/L glucose and presented a small non-significant

increase upon glucose stimulation while it rapidly decreased

upon mitochondrial uncoupling with FCCP (Figure 3D). In

these aggregates, the sulfonylurea gliclazide, but not glucose,

increased [Ca2+]i or insulin secretion (or tended to do so)

(Figures 3E,F), indicating that these aggregates have functional

KATP channels.

As human beta cell lines have better glucose-stimulated

insulin secretion after glucose starvation (Ravassard et al.,

FIGURE 2
(MW n = 8–11; SP n = 6–7). Median (bold dotted line) and quartiles (light dotted line) are shown and dots represent independent iPSC-beta
differentiations or human islet preparations. Symbols represent different cell models (Hel115.6, circles; 1023A, squares, EndoC-βH1, black circles;
human islets, triangles). N, number of independent experiments, defined as one iPSC-beta cell differentiation or one human islet preparation, shown
as individual data points. Mixed-effects analysis followed by Bonferroni correction for multiple comparisons, *p < 0.05, **p < 0.01, ***p < 0.005.
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FIGURE 3
In vitro function of human iPSC-derived beta cells. (A), Glucose-stimulated insulin release, (B), insulin content (pmol/L) normalized by total
protein (μg) and (C), proinsulin content (pmol/L) normalized by the total protein (μg) from microwell (MW, grey bars) or suspension aggregates (SP,
red bars) or human islets (HI, yellow bars). To stimulate insulin secretion, aggregates were exposed to low (1.6 mmol/L) or high (16.7 mmol/L) glucose
or high glucose plus forskolin (1 μmol/L) (MW n= 13; SP n = 12; HI n = 6–8). (D), NAD(P)H autofluorescence during perifusion of MW aggregates
at glucose concentrations (Gn, n mmol/L), as indicated on top of the figure (n = 6). (E), Fura-2 LR fluorescence ratio during perifusion of MW
aggregates with KRB containing Gn and added compounds (Dz, 250 μmol/L diazoxide; GCZ, 25 μmol/L gliclazide; K30, 30 mmol/L extracellular K+).
Data are means ± SEM for 7 preparations, each with 1-2 aggregates of each kind. (F), Insulin secretion in response to G2 or G20 with or without
25 μmol/L GCZ (n = 3). (G,H), Glucose-induced changes in NAD(P)H autofluorescence and fura-2 LR fluorescence ratio after 2-h glucose starvation
(n = 5–6). (I), Insulin secretion by glucose-starved MW aggregates during perifusion with Krebs containing G0, G20, Dz or K30 as indicated (n = 4).
(A–C), Median (bold dotted line) and quartiles (light dotted line) are shown; dots represent independent iPSC-beta differentiations, and symbols
different cell models (Hel115.6, circles; 1023A, squares; human islets, triangles). N, number of independent experiments, defined as one iPSC-beta
cell differentiation or one human islet preparation, as indicated. Mixed-effects analysis followed by Bonferroni correction for multiple comparisons,
*p < 0.05, **p < 0.01, ***p < 0.005 or exact p value shown.
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FIGURE 4
In vivo function of human iPSC-derived beta cells. (A), Stage 7 microwell or suspension aggregates were transplanted under the kidney capsule
of NOD-SCID mice. Intraperitoneal glucose tolerance test (IPGTT) was done at week 7, 14 and 20. At 21–22 weeks, mice were injected with
streptozotocin (STZ) to selectively ablate mouse beta cells. Glycemia was recorded for 1 week before nephrectomy or in situ kidney perfusion. (B),
Mouse glycemia (top panels) and human plasma C-peptide (bottom panels) during IPGTT in suspension (left panels) and microwell (right
panels). (C), Dose-response of streptozotocin toxicity in human islets (n = 3), human iPSC-derived beta cells (n = 5) andmouse islets (n = 5) after 24-h
exposure to the drug. Mixed-effects analysis followed by Bonferroni’s correction formultiple comparisons, **p < 0.01, ***p < 0.005. (D), Twenty-one
weeks after transplantation, a single dose of streptozotocin (200 mg/kg) was administered intraperitoneally. Non-implanted mice rapidly develop
diabetes (blue, n = 5). Mice transplanted with stage 7 aggregates remain normoglycemic until graft removal by nephrectomy (black, n = 5). (E), Kidney
perifusion was performed 22 weeks after transplantation in two mice STZ-injected and one mouse non-STZ-injected. The grafted kidney was

(Continued )
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2011), we glucose-starved microwell aggregates for 2 h (Figures

3G–I). Under these conditions, stimulation with glucose

markedly increased NAD(P)H autofluorescence, with ~80% of

maximum effect already observed at 2 mmol/L glucose. High

glucose also tended to increase [Ca2+]i and insulin secretion, and

this was reversed by the KATP channel opener diazoxide.

The St5-7 culture media contain a high glucose concentration

(20 mmol/L), known to exert glucotoxic effects in human islets

(Weir and Bonner-Weir, 2004). In order to evaluate whether this

affects St7 aggregate function, the iPSC-beta cell differentiation

in microwells was tested at 5.5 mmol/L glucose, at which glucose

responsiveness of human islets is better preserved during culture

(Eizirik et al., 1992), and at 8 mmol/L glucose, slightly above the

half-maximal effective glucose concentration of human islet

insulin secretion (Henquin et al., 2006). This glucose effect

was tested in basal 3 and CMRL medium, a culture medium

commonly used in human islets (Murdoch et al., 2004). There

was no difference in expression of beta cell markers

(Supplementary Figure S5A) or yield (Supplementary Figures

S5B–D) between basal 3 and CMRL media and the three glucose

concentrations (5.5, 8 and 20 mmol/L). There was no

improvement in NAD(P)H or [Ca2+]i responses to glucose or

other secretagogues without or with glucose starvation

(Supplementary Figures S6A–D and Supplementary Figures

S7A–D). Accordingly, culture of St7 aggregates at different

glucose concentrations did not markedly affect insulin release

in response to high glucose or KCl (Supplementary Figures S6E,F

and Supplementary Figures S7E,F). Insulin secretion seemed

better for non-starved aggregates cultured in Basal 3 vs.

CMRL medium due to lower secretion at low glucose

(Supplementary Figures S6E,F), while it seemed better during

perifusion of glucose-starved aggregates cultured in CMRL vs.

Basal 3 medium due to higher secretion at high glucose

(Supplementary Figures S7E,F). Altogether, these data show

that in vitro beta cell differentiation protocols reliably generate

islet-like structures that lack a fully functional phenotype.

Maturation is not improved by different glucose concentrations.

Human iPSC-derived beta cells acquire a
mature functional phenotype in vivo

In vivo iPSC-derived cells receive differentiation and

maturation cues that are lacking in vitro. Given the overall

similar efficiency in differentiation, but difference in size of

microwell and suspension aggregates, we transplanted

1,000 suspension or 3,000 microwell St7 aggregates under the

kidney capsule of immunodeficient NOD/SCID mice (Figures

4A, Supplementary Figure S2B). In these humanized

(i.e., transplanted with human iPSC-derived beta cells) mice,

mouse glycemia and human C-peptide levels were measured in

IPGTTs 7, 14 and 20 weeks post-implantation (Figure 4B).

Starting from 14 weeks, microwell and suspension iPSC-beta

cells acquired glucose responsiveness, as shown by glucose-

stimulated human C-peptide release (Figure 4B). In parallel,

mouse glucose tolerance tended to improve (Figure 4B).

Streptozotocin is known to ablate selectively rodent but not

human beta cells (Eizirik et al., 1994). We tested the

sensitivity of human iPSC-beta cells to streptozotocin in vitro.

Streptozotocin dose-dependently reduced viability of mouse

islets, but not of human beta cells derived from iPSCs or

adult organ donors (Figure 4C). At 21–23 weeks after

transplantation, streptozotocin was injected intraperitoneally

(Figure 4A). Non-implanted mice immediately became

severely hyperglycemic, but mice with human iPSC-beta cell

grafts maintained normoglycemia (Figure 4D). Nephrectomy of

the graft-bearing kidney rendered the mice severely diabetic,

demonstrating that the human iPSC-beta cells had provided

glycemic control. Immunohistochemical analysis of grafts

from streptozotocin-injected mice showed the presence of

human beta and alpha cells (Supplementary Figures S2C,D).

Using in situ kidney perfusion, we performed detailed human

beta cell functional studies in vivo (Figure 4A). High glucose

strongly stimulated insulin secretion from the human graft and

this effect was amplified by forskolin (Figure 4E). The

stimulatory effect of glucose was abolished by diazoxide,

restored by gliclazide and maximally stimulated by high

potassium.

In sum, the in vivo environment boosted functional

maturation of human iPSC-beta cells with acquisition of

excellent responsiveness to glucose and other secretagogues.

Discussion

Since the initial reports of successful differentiation of

human iPSCs into beta cells (Pagliuca et al., 2014; Rezania

et al., 2014), a body of studies has optimized differentiation

strategies (Nair et al., 2019; Velazco-Cruz et al., 2019; Li et al.,

2020; Yoshihara et al., 2020). However, poor differentiation

FIGURE 4
perifused with medium containing 0 (G0) or 20 mmol/L glucose (G20). Forskolin (1 μmol/L, FK), gliclazide (25 μmol/L, GCZ), diazoxide (250 μmol/L,
DZ) and KCl (30 mmol/L, K30) were added. Secretion from each graft was normalized to themaximum secretion during the first 12-min in K30-Dz. N,
number of independent experiments, defined as one iPSC-beta cell differentiation or one human or mouse islet preparation or one humanized
mouse, as indicated. **p < 0.01, ***p < 0.001 vs basal condition (time 0-min) using mixed-effects analysis followed by Dunnett’s (b) or Sidak’s (e)
correction for multiple comparison.
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reproducibility in iPSC lines continues to hamper the field.

Here we describe a 3D microwell system that represents a

straightforward, highly reproducible method to differentiate

iPSCs into similarly sized beta cell organoids with nearly

100% experimental success rate, thereby increasing cost-

effectiveness. We used three different human iPSC lines and

one embryonic stem cell line and compared them to the gold

standard human islets. Overall reproducibility of key results

(beta cell yield and insulin secretion) was better for microwell

than suspension culture. Human islets showed greater

variability, which is not unexpected considering the known

heterogeneity of this organ donor tissue. We also performed

detailed in vitro and in vivo iPSC-beta cell functional studies.

The in vitro function of St7 microwell aggregates was non-

inferior to suspension aggregates. Both aggregate types have the

machinery to secrete insulin, and respond to increased cAMP

concentrations (forskolin), KATP channel modulators and high

K. However, they remain poorly glucose-responsive. Only in

the in vivo environment following transplantation did the

aggregates acquire a mature phenotype comparable to

human islets.

Human iPSC-beta cells represent an important technology

for the modeling of beta cell pathophysiology in diabetes. Even

if a good proportion of insulin-expressing cells can be achieved

(40–50% in our hands), full in vitro functional maturation

remains unfulfilled. Most differentiation protocols use

monolayer culture until pancreatic progenitor stage, and

then transfer cells into 3D to sustain the formation of islet-

like structures (Rezania et al., 2014; Balboa et al., 2019; Liu et al.,

2021). This promotes the organization of the aggregates’

cytoarchitecture. Suspension culture does not allow to

control aggregate size, leading to generation of large and

heterogenous structures. The bigger size results in more

limited access of the cells to nutrients, growth factors and

oxygen in the core, contributing to hypoxia and central

necrosis. Transferring cells in 3D using microwells instead

allowed to control the number of cells per aggregate, thus

generating homogeneous aggregates which are analogous in

size to medium-sized human islets. A comparison of techniques

to generate 3D aggregates of rat islet cells, i.e. hanging drop,

suspension and Sphericalplate 5D microwells, showed

controlled organoid size with microwells and hanging drop

cultures, with low throughput for the latter (Wassmer et al.,

2020). Microwells are suitable to scaling-up; the Sphericalplate

5D was developed as a 3D culture product for human islet

transplantation. Commercially available microwell plates can

contain up to 35,400 aggregates per 6-well plate

(AggreWell400) or they can be produced using silicon molds

or 3D printing. Most beta cell differentiation protocols use high

glucose concentration (20 mmol/L) in the later stages to elicit

beta cell development (Pagliuca et al., 2014; Rezania et al., 2014;

Balboa et al., 2018). However, chronic exposure to high glucose

is known to be toxic to human islets. Culture of St7 aggregates at

lower glucose concentrations did not alter expression of beta

cell markers nor their function. Similarly, the two basal media

we used did not alter in vitro glucose responsiveness. We

observed adequate KATP channel activity with stimulation of

calcium influx and insulin secretion by gliclazide. In vitro high

glucose-stimulated insulin secretion was limited, however, as

were changes in NAD(P)H or [Ca2+]i. This glucose response

was improved after 2-h glucose starvation, but even under these

conditions, aggregate metabolism was almost maximally

stimulated by as little as 2 mmol/L glucose. This high

glucose sensitivity is not due to a putative glucotoxic effect

of the medium containing 20 mmol/L glucose, as it was also

observed after 8–14-days culture at 5.5 or 8 mmol/L glucose.

Longer culture at low glucose concentrations might be required

in order to achieve further in vitro maturation (Balboa et al.,

2022).

A progressive and complete functional maturation was

observed in vivo after human iPSC-beta cell transplantation.

This was demonstrated by glucose-stimulated human

C-peptide secretion and maintenance of normoglycemia by

human beta cell grafts after murine beta cell ablation. Of note,

grafts displayed finely regulated and more mature insulin

secretion in response to glucose, forskolin, diazoxide,

gliclazide or KCl in the in situ kidney perfusion studies

compared to in vitro static or dynamic insulin secretion

patterns. It is challenging but of great interest to understand

which critical factors sustain functional maturation of human

iPSC-beta cells in the in vivo environment. Endothelial cells have

been proposed to play a key role, as they are fundamental to

embryonic beta cell development and adult beta cell survival (L

ammert et al., 2001; Staels et al., 2019). Using single-cell

transcriptomic profiling, Augsornworawat and colleagues

showed that pluripotent stem cell-derived beta cells

transcriptionally acquire similarity to adult beta cells following

in vivo engraftment, with enhanced expression of mature beta

cell markers (Augsornworawat et al., 2020).

We show how to generate homogeneously size-controlled

islet-like organoids from human iPSCs with remarkable

experimental success rate. These iPSC-derived beta cells

acquire fully mature functional characteristics typical of adult

human islets following in vivo transplantation in

immunodeficient mice. The present report and future studies

will eventually accomplish full in vitro differentiation of iPSCs

into beta cells and accelerate the generation of humanized mouse

models, thereby creating valuable tools for diabetes disease

modelling, drug testing and cell replacement.
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