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Abstract

Background

Treatment selection for elderly patients with lung cancer must balance the benefits of cura-
tive/life-prolonging therapy and the risks of increased mortality due to comorbidities. Lung
cancer trials generally exclude patients with comorbidities and current treatment guidelines
do not specifically consider comorbidities, so treatment decisions are usually made on sub-
jective individual-case basis.

Methods

Impacts of surgery, radiation, and chemotherapy mono-treatment as well as combined
chemo/radiation on one-year overall survival (compared to no-treatment) are studied for
stage-specific lung cancer in 65+ y.o. patients. Methods of causal inference such as pro-
pensity score with inverse probability weighting (IPW) for time-independent and marginal
structural model (MSM) for time-dependent treatments are applied to SEER-Medicare data
considering the presence of comorbid diseases.

Results

122,822 patients with stage | (26.8%), Il (4.5%), llla (11.5%), llIb (19.9%), and IV (37.4%)
lung cancer were selected. Younger age, smaller tumor size, and fewer baseline comorbidi-
ties predict better survival. Impacts of radio- and chemotherapy increased and impact of
surgery decreased with more advanced cancer stages. The effects of all therapies became
weaker after adjustment for selection bias, however, the changes in the effects were minor
likely due to the weak selection bias or incompleteness of the list of predictors that impacted
treatment choice. MSM provides more realistic estimates of treatment effects than the IPW
approach for time-independent treatment.
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Conclusions

Causal inference methods provide substantive results on treatment choice and survival of
older lung cancer patients with realistic expectations of potential benefits of specific treat-
ments. Applications of these models to specific subsets of patients can aid in the develop-
ment of practical guidelines that help optimize lung cancer treatment based on individual
patient characteristics.

Introduction

Lung cancer is the leading cause of cancer mortality in the United States and primarily occurs
in older adults, with an approximate average age of 69 years at diagnosis. Clinicians must make
lung cancer therapy decisions by weighing the pro benefits of curative and life-prolonging ther-
apy against contra factors such as increased mortality risk due to comorbid conditions. Unfor-
tunately, estimating both the risks and benefits of treatment for older patients is difficult. Trials
evaluating lung cancer treatments often exclude elderly patients to avoid an obscuration of the
cancer treatment effects by patients’ comorbid conditions [1-4]. The presence and severity of
comorbid conditions in elderly patients are generally known to increase the risk of treatment
toxicity and decrease treatment tolerance; however, the data that more specifically guides ther-
apies are severely lacking [5]. In the end, existing guidelines do not provide detailed informa-
tion that can help to make these difficult decisions and treatment is essentially guided by
subjective clinical judgment on an individual case basis [6].

Recent advances in collection of powerful datasets and in development of statistical methods
such as causal inference give researchers new opportunities to precisely compare the effect of
different treatment modes for minimally heterogeneous groups of patients. The analysis of the
linked Surveillance, Epidemiology, and End Results (SEER)-Medicare database by methods al-
lowing for addressing the selection bias (the most important challenge in analysis of observa-
tional data) could provide new and comprehensive information about treatment modes that
can be time-dependent. Using these analyses for relatively homogenous subsets of patients
based on individual characteristics such as cancer stage, treatment, and comorbid conditions
can potentially greatly aid in the development of treatment guidelines in circumstances where
strong quantitative evidence is currently lacking. However, the methods of causal inference
have been never applied to SEER-Medicare data and their ability to provide the causal esti-
mates (as well as the properties of these estimates) is not known. The first and inevitable step
in addressing this gap in knowledge is to check how standard approaches of causal inference
for time-independent and time-dependent treatments which were successfully applied in other
areas of medical research could work in cancer research. This step is the main focus of
this study.

Propensity-score-based approaches (e.g., inverse probability weighting (IPW)) and margin-
al structural models (MSMs) are currently the most successful statistical technologies capable
of addressing selection bias for time-independent and time-dependent treatments, respectively
[7,8]. MSM uses the IPW approach to evaluate individual (stabilized) weights and then evalu-
ates the effects of time-dependent treatments within a weighted repeated measure approach.
MSM has been used in several circumstances [9-11] but its use for cancer treatment has not
been reported. The objective of this analysis is to apply IPW and MSM to SEER-Medicare data
to study the causal effects of treatment (surgery, radiation, or chemotherapy, as well as no treat-
ment) on survival of patients with lung cancer given individual patient’s tumor characteristics,
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comorbidities, and demographic and socioeconomic factors. Specific attention is paid to dy-
namic interrelations of treatment and comorbidities, given that comorbidity impacts both
treatment choice and treatment effectiveness while cancer therapy can aggravate co-existing
conditions. Methodologically, we investigate how applying the methods of causal inference to
large scale observational data such as SEER-Medicare can help clarify the effects of different
treatment modalities on lung cancer survival.

Data and Methods

The expanded SEER registry covers approximately 26% of the U.S. population. The Medicare
records for several millions of individuals are available in SEER-Medicare including 413,776 in-
dividuals with lung cancer. For the majority of patients, continuous records of Medicare ser-
vices use are available from 1991 (or from the time the person has passed the age of 65 after
1990) until the patient's death. A small fraction of individuals (e.g., new patients diagnosed
with cancer in 2003-2007) has Medicare records from 1998. The Medicare records are avail-
able for each institutional (MedPAR, outpatient, hospice, or home health agency (HHA)) and
non-institutional (Carrier-Physician-Supplier and Durable Medical Equipment Providers)
claim type.

Treatment patterns (i.e., the prevalence of each treatment type including chemotherapy, ra-
diation therapy, and surgery at each day of individual follow-up) are constructed using ICD-9,
CPT/HCPCS, and revenue centers procedure codes available in different Medicare sources.
The approach to reconstruct the date at onset is similar to that used in Berry et al. [12]. Infor-
mation from i) demographic characteristics (age, sex, and race), ii) tumor-related characteris-
tics (histology, stage, and TNM status), iii) area-based social-economic statuses (SES), and iv)
prevalence of other diseases reflected in the comorbidity index, is used to create baseline and
time-dependent (for comorbidity only) predictors of treatment mode and survival. Socio-eco-
nomic factors are represented by census tract based information on patient’s residence; this in-
formation is obtained from the 1990 or 2000 U.S. census bureau surveys, depending on the
patient’s year of cancer diagnosis, respectively. The following SES variables are considered: per-
centage of blacks, percentage of persons aged 25+ years old who has at least four years of col-
lege education, and percentage of the residents living below the poverty level. Dynamically
changing comorbidity status is represented by the comorbidity index calculated as C(t) = 2,
wal4(t), where I(t) are the indicators of diseases at time ¢, and w, are disease weights estimated
using the Cox regression model applied to the entire cohort of lung cancer patients, controlling
by patients’ age, race, sex and stage at diagnosis. The details of the calculation and the list of 85
conditions contributing to the index are discussed in Kravchenko et al,, [13]. In the present
paper, the comorbidity index is categorized into five groups based on percentiles of its distribu-
tion for all patients selected for the analysis. Patients in Group 0 had the least amount of co-
morbidities while patients in Group 4 had the highest amount of co-morbidities.

The following inclusion criteria were used: i) lung cancer diagnosis was made during the pe-
riod of time from 1992 to 2007; ii) the age at diagnosis was 65+ years; iii) tumor histological
type was non-small cell carcinoma; iv) patients had health insurance coverage by Part A and B
Medicare and no HMO insurance in each month of the period from 12 month before and 6
month after the diagnosis; v) tumor stage at the time of diagnosis as defined using the Modified
AJCC Stage 3" (1992-2003) and 6 editions was either stages I, I, IITA, IIIB, and IV and not
classified as “unknown”; vi) the date of lung cancer onset as identified from the analysis of
Medicare trajectories [14] fell into the period not earlier than two and not later than three
months compared with the SEER recorded date of cancer diagnosis; vii) information about the
three SES variables described above (SES black, SES college, and SES poverty) is not missing;
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viii) the death event did not occur earlier than 15 days from lung cancer diagnosis; and ix)
tumor stage T was not stage TO.

The methods of causal inference are used to evaluate the effects of treatment on survival of
lung cancer patients in stage-specific strata. For time-independent treatments (represented by
anon-ordered list of treatments applied to a patient), we used the propensity score approach
with inverse probability weighting methodologically following the computational scheme used
in [15]. The components of this approach are i) the estimation of treatment model and evalua-
tion of individual weights, ii) checking the quality of created pseudorandomization by analysis
of the tables that compare variables among treatment groups for original and weighted (i.e.,
pseudorandomized) patient cohorts, and iii) evaluation of the treatment effect for the weighted
cohorts and its comparison with the estimate obtained without using the weights. The methods
were then generalized for use with time-dependent treatments. Such approaches are known as
the marginal structural models [7,8]. In this approach, IPWs were first calculated for each time
point using both baseline and time-dependent predictors. The estimates of treatment effects
were then obtained with a weighted repeated measures approach when both parameters re-
sponsible for treatment effect and controlling factors as well as the parameters of correlation
matrix capturing the effect of different time points were estimated.

Ethics statement. The data used in this study have no individual identifiable information.
No written informed consent given by participants and no specific procedures for the de-iden-
tification of the records were required. All data analyses were designed and performed in accor-
dance with the ethical standards of the responsible committee on human experimentation and
with the Helsinki Declaration (of 1975, revised in 1983) and have been approved by the Duke
University Health System Institutional Review Board (Pro00030031).

Analysis and Results

The baseline characteristics of selected patients are given in Table 1. In total, we selected
122,822 lung cancer patients of stages I (26.8%), II (4.5%), I1Ia (11.5%), I1Ib (19.9%), and IV
(37.4%). As seen in Table 1, the age group of 70-74 years has the highest number of diagnoses
and the distribution of ages at diagnoses is similar for all stages. Overall males are diagnosed
more often than females. Females are more often diagnosed at earlier stages. In contrast, non-
white patients are more often diagnosed at higher stages. Both adenocarcinoma (AC) and squa-
mous cell carcinoma (SCC) of the lung are diagnosed more often at earlier stages compared to
other lung cancer histotypes. The shapes of the distributions of T and N statuses are expected
from clinical perspective (M-status is not shown because it is M1 for stage IV and MO for other
stages). Patients diagnosed at more advanced cancer stages had more comorbidities. As would
be expected based on current treatment guidelines and practice, the prevalence of surgery dra-
matically drops among patients with late-stage lung cancer. In contrast, treatments involving
chemo- and radiation therapy (as well as “no treatment” option) are used more often in thera-
pies of advanced cancers. Patients with higher SES (whose living area is characterized by more
educated, lower-poverty-level, and lower-fraction-of-blacks population) are diagnosed at earli-
er stages, though the effect is minor.

Time-independent treatment

Treatment modes are defined using information from procedure codes in the time period from
the date at diagnosis to 200 days after the diagnosis. Occurrence of any code associated with
surgery, chemotherapy, or radiotherapy in any Medicare file indicates the respective treatment
for a patient. Two-year stage- and treatment-specific survival functions are presented in Fig 1.
Left columns show the effects for treatment modes not involving surgery, including no therapy
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Table 1. Demographic, tumor, socio-economic characteristic and treatment modes for lung cancer patients with stages |, II, llIA, llIB, and IV.
Variable | Il A B 1\ Total
Stage 32895 (26.8) 5480 (4.5) 14095 (11.5) 24383 (19.9) 45969 (37.4) 122822 (100)
Age (years)
65-69 6571 (20.0) 1315 (24.0) 2956 (21.0) 4519 (18.5) 9775 (21.3) 25136 (20.5)
70-74 9509 (28.9) 1710 (31.2) 4081 (29.0) 6486 (26.6) 12835 (27.9) 34621 (28.2)
75-79 8879 (27.0) 1437 (26.2) 3713 (26.3) 6122 (25.1) 11858 (25.8) 32009 (26.1)
80-84 5433 (16.5) 758 (13.8) 2300 (16.3) 4395 (18.0) 7549 (16.4) 20435 (16.6)
85+ 2503 (7.6) 260 (4.7) 1045 (7.4) 2861 (11.7) 3952 (8.6) 10621 (8.6)
Race
White 30767 (93.5) 5160 (94.2) 12977 (92.1) 22150 (90.8) 42049 (91.5) 113103 (92.1)
Non-White 2128 (6.5) 320 (5.8) 1118 (7.9) 2233 (9.2) 3920 (8.5) 9719 (7.9)
Sex
Male 16690 (50.7) 3072 (56.1) 8010 (56.8) 13616 (55.8) 25266 (55.0) 66654 (54.3)
Female 16205 (49.3) 2408 (43.9) 6085 (43.2) 10767 (44.2) 207083 (45.0) 56168 (45.7)
Histology
AC 13948 (42.4) 2225 (40.6) 4262 (30.2) 8780 (36.0) 17343 (37.7) 46558 (37.9)
SCC 10422 (31.7) 1926 (35.1) 4942 (35.1) 6663 (27.3) 8149 (17.7) 32102 (26.1)
Other 8525 (25.9) 1329 (24.3) 4891 (34.7) 8940 (36.7) 20477 (44.5) 44162 (36.0)
T-status
T1 14558 (44.3) 1369 (25.0) 2320 (16.5) 333 (1.4) 7044 (15.3) 25624 (20.9)
T2 14981 (45.5) 3149 (57.5) 5473 (38.8) 659 (2.7) 14425 (31.4) 38687 (31.5)
T3 14 (0.0)% 633 (11.6) 3495 (24.8) 586 (2.4) 909 (2.0) 5637 (4.6)
T4 14777 (60.6) 7423 (16.1) 22200 (18.1)
X 3342 (10.2) 329 (6.0) 2807 (19.9) 8028 (32.9) 16168 (35.2) 30674 (25.0)
N-status
NO 29347 (89.2) 628 (11.5) 1560 (11.1)8 5959 (24.4) 8404 (18.3) 45898 (37.4)
N1 4405 (80.4) 519 (3.7) 1233 (5.1) 2124 (4.6) 8281 (6.7)
N2 11111 (78.8) 8352 (34.3) 15703 (34.2) 35166 (28.6)
N3 3049 (12.5) 3486 (7.6) 6535 (5.3)
NX 3548 (10.8) 447 (8.2) 905 (6.4) 5790 (23.7) 16252 (35.4) 26942 (21.9)
Comorbidity*
0 11987 (36.4) 1851 (33.8) 3712 (26.3) 4265 (17.5) 6457 (14.0) 28272 (23.0)
1 8543 (26.0) 1476 (26.9) 3571 (25.3) 4882 (20.0) 8058 (17.5) 26530 (21.6)
2 6192 (18.8) 1105 (20.2) 3123 (22.2) 52083 (21.3) 9501 (20.7) 25124 (20.5)
3 4039 (12.3) 699 (12.8) 2325 (16.5) 5265 (21.6) 10896 (23.7) 23224 (18.9)
4 2134 (6.5) 349 (6.4) 1364 (9.7) 4768 (19.6) 11057 (24.1) 19672 (16.0)
Treatment**
No 5177 (15.7) 485 (8.9) 2531 (18.0) 7939 (32.6) 15475 (33.7) 31607 (25.7)
Che 804 (2.4) 137 (2.5) 947 (6.7) 3349 (13.7) 8643 (18.8) 13880 (11.3)
Rad 3979 (12.1) 448 (8.2) 2494 (17.7) 3539 (14.5) 6461 (14.1) 16921 (13.8)
Che+Rad 2546 (7.7) 669 (12.2) 4455 (31.6) 7010 (28.7) 13737 (29.9) 28417 (23.1)
Sur 17415 (52.9) 1839 (33.6) 1292 (9.2) 1180 (4.8) 633 (1.4) 22359 (18.2)
Sur+Che 1189 (3.6) 587 (10.7) 483 (3.4) 389 (1.6) 334 (0.7) 2982 (2.4)
Sur+Rad 1228 (3.7) 784 (14.3) 878 (6.2) 405 (1.7) 251 (0.5) 3546 (2.9)
Sur+Che+Rad 557 (1.7) 531 (9.7) 1015 (7.2) 572 (2.3) 435 (0.9) 3110 (2.5)
SES (Mean,STD)
SES black 9.2 (19.8) 8.5 (18.6) 9.9 (20.9) 10.6 (21.7) 10.3 (21.4) 9.9 (20.9)
SES college 24.9 (16.6) 25.0 (16.3) 24.0 (16.0) 23.5(16.0) 24.1 (16.2) 24.2 (16.2)
(Continued)
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Table 1. (Continued)

Variable I [ A ][} v Total
SES poverty 10.8 (9.7) 10.5 (9.4) 11.2 (9.8) 11.8 (10.2) 11.4 (10.1) 11.3 (9.9)

*—quintiles of distribution of entire patient groups, i.e., for all stages (0—lowest, 4—highest)

**_—chemotherapy (Che), radiation therapy (Rad), and surgery (Sur)

S_there are some minor inconsistencies in the recorded T and N statuses and respective AJCC stage (e.g., T3NO should be stage II; T1-3NO would be
either stage | or stage I, not ll1A).

Values in brackets are percents of all patients (for Stage, i.e., first line of the Table) or stage-specific cohorts of patients.

doi:10.1371/journal.pone.0121406.t001

at all, while the right columns show the effects of treatments of surgery with or without other
therapies. Several conclusions can be made from qualitative review of the treatment-specific
survival functions. Treatments involving surgery are beneficial for each stage. At least in part,
this could be due to a selection bias where surgery was preferentially selected for patients who
were healthier. Patients who underwent surgery may differ by specific tumor characteristics.
For example, while surgery is very unlikely used for patients with widespread metastases, it is
sometimes used for stage IV patients who only have one site of metastases. Also, for stage IIIA,
surgery is more likely used for patients whose N2 disease is due to a limited amount of micro-
scopic findings as compared to the patients who have extensive metastases in lymph nodes. For
stage I patients, adding other therapies to surgery did not appear to provide additional short-
term survival benefit. For higher stage patients, combining surgery with other therapies ap-
peared to improve survival. In addition, early survival for patients who had surgery for stages
II-IV appears worst for patients who only had surgery—this finding could be due to patients
who were primarily treated with surgery and had complications or mortality from surgery that
limited their ability to be given other therapies.

Selection bias can be addressed by using the propensity score based analysis with IPW. The
treatment model (generalized logit model) predicting the probability to have one of eight treat-
ment modes (i.e., any combination of surgery, chemo-, and radiotherapy vs. no treatment) is
estimated controlling by sex, race, age group, T-status, three SES variables (categorized into the
three groups according to percentiles), comorbidity index, and histology. The model predicts
probabilities to have any treatment for each patient. Individual weights are then calculated as
reciprocal of probability to have actually observed treatment, resulting in a weighted popula-
tion that is pseudorandomized with respect to health-related characteristics for subcohorts by
each administered treatment mode. Table 2 and S1 and S2 Tables show that frequency distribu-
tions evaluated for weighted population are similar for all treatment-specific subcohorts: p-val-
ues of the formal tests checking the distributions among treatment groups are collected in
Table 2 and the complete information (including actual numbers of patients in treatment
groups and percentage calculated without and with the weights) is presented in S1 and S2 Ta-
bles. The results show that although almost all variables are distributed differently in the pa-
tient groups, this heterogeneity disappears for pseudorandomized cohorts for which respective
percentages and p-values are calculated using the IP weights.

The causal effect of the treatment modes is evaluated in the Cox model for the pseudorando-
mized population. The results of the analysis for one-year survival are presented in Table 3. We
right-censored all patients who had not died and had follow-up beyond one year at the one
year time point. Both weighted and non-weighted estimates are presented. The main predictor
of interest was the eight-category variable representing treatment modes. Three cofactors were
used: age group, comorbidity group, and T-status. The evaluated effects of these cofactors are
expected: evident increase of their effects for age group, comorbid subgroups or subgroups
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® No treatment:
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5 10 15 20
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Fig 1. Survival curves for treatment-specific and stage-specific patient groups. Rows correspond to

stages |, II, llIA, llIB, and IV.

doi:10.1371/journal.pone.0121406.g001
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Table 2. The p-values of the y*-tests for treatment-group comparison of stage-specific cohorts of lung cancer patients calculated for original and
pseudorandomized (i.e., weighted) populations.

Stage | | ] ] A A B B v v

Weight No IP No IP No IP No IP No IP

Sex <.0001 0.9877 0.3944 0.6365 0.0073 0.9926 <.0001 0.3624 <.0001 0.1569
Race <.0001 0.8535 <.0001 0.9867 <.0001 0.5864 <.0001 0.0737 <.0001 0.8942
Age <.0001 0.9945 <.0001 0.8566 <.0001 0.9771 <.0001 0.9985 <.0001 0.4444
T-status <.0001 0.9945 <.0001 0.9932 <.0001 0.9783 <.0001 0.4964 <.0001 0.1920
SES(black) <.0001 0.9898 <.0001 0.9999 0.0008 0.9523 0.0050 0.9310 <.0001 0.1989
SES(college) <.0001 0.6077 <.0001 0.9938 <.0001 1.0000 <.0001 0.9799 <.0001 0.4817
SES(poverty) <.0001 0.3820 <.0001 0.8949 <.0001 0.7707 <.0001 0.3551 <.0001 0.9934
Histology <.0001 0.4553 <.0001 0.9919 <.0001 0.9469 <.0001 0.9473 <.0001 0.0107
Comorbidity <.0001 0.4361 <.0001 0.9788 <.0001 0.6010 <.0001 0.2881 <.0001 0.0773

doi:10.1371/journal.pone.0121406.t002

with higher values of T-status. The effects of treatment modes are also expected and in concor-
dance with the results shown in Fig 1. The hazard ratio (HR) of surgery decreases for higher
stages, while the HR of radiation and/or chemotherapy increases for higher stages. The repro-
duction of results expected from clinical experience is the first observation from the estimates

Table 3. The causal effect of the lung cancer treatment modes (represented by HRs) evaluated in the Cox model for original and pseudorando-
mized population for one-year follow-up for treatments involving surgery (Sur), radio- (Rad) and chemotherapy (Che) vs. no treatment.

Stage | | ] I A A B B v v
Weight No IP No IP No IP No IP No IP
Treatment

Che 0.842 0.924 1.0%* 1.13*% 0.625 0.648 0.500 0.514 0.495 0.503
Rad 0.667 0.753 0.758 0.836 0.604 0.637 0.615 0.621 0.778 0.783
Che+Rad 0.880 1.0%* 0.711 0.784 0.557 0.585 0.581 0.606 0.702 0.718
Sur 0.249 0.285 0.438 0.496 0.420 0.521 0.304 0.423 0.398 0.521
Sur+Che 0.246 0.352 0.229 0.233 0.201 0.211 0.225 0.370 0.247 0.254
Sur+Rad 0.414 0.469 0.399 0.471 0.289 0.352 0.314 0.333 0.436 0.394
Sur+Che+Rad 0.621 0.763 0.459 0.561 0.308 0.341 0.383 0.445 0.452 0.565
Age (years)

70-74 vs. 65-69 1.163 1.208 1.151 1.144 1.131 1.194 1.098 1.107 1.031 1.112
75-79 vs. 65—-69 1.276 1.243 1.303 1.204 1.306 1.373 1.147 1.04* 1.111 1.237
80-84 vs. 65-69 1.437 1.519 1.415 1.648 1.412 1.481 1.248 1.311 1.143 1.195
85+ vs. 65-69 1.534 1.925 1.697 2.067 1.505 1.608 1.219 1.649 1.110 1.574
T-status

T2 vs. T1 1.695 1.519 1.545 1.389 1.460 1.516 1.248 1.703 1.223 1.325
T3 vs. T1 1.2%* 0.4%* 1.867 1.816 1.785 1.835 1.649 1.928 1.269 1.471
T4 vs. TH 1.409 1.765 1.211 1.323
TXvs. T1 2.094 2.110 1.454 1.274 1.845 2.096 1.741 2.454 1.295 1.297
Comorbidity

1vs.0 1.350 1.349 1.295 1.336 1.219 1.228 1.306 1.377 1.209 1.217
2vs.0 1.769 1.705 1.512 1.677 1.465 1.527 1.553 1.491 1.493 1.534
3vs.0 2.322 2.202 1.861 2.042 1.886 1.903 1.908 2.152 1.862 1.792
4vs.0 3.486 3.688 3.315 3.402 2.733 2.934 2.660 2.637 2.687 2.944

*—estimate is not significant (0.05<p<0.3)
**_—estimate is not significant (0.3<p)

doi:10.1371/journal.pone.0121406.t003
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presented in Table 3. The second observation is that the estimates of the treatment effects do
not change strongly for original and pseudorandomized patient groups. This observation sug-
gests that the selection bias is not as strong as initially suspected or that the set of observed vari-
ables in Table 2 do not adequately cover the actual list of variables predicting the treatment
choice. The third observation is that the effects of all treatments (vs. no treatment) became
smaller in the pseudorandomized population for all comparisons except the subcohort of stage
IV patients treated with both surgery and radiotherapy.

Time-dependent treatment

One limitation in using time-independent treatments is that specific treatment can be not as-
signed to an individual because of his/her death. This can distort the effects of specific treat-
ment on survival. Moreover, another conclusion from Fig 1 is that the Cox proportional
hazard model might not work for the entire time period of individual follow-up. Therefore, a
longitudinal model for repeated data in which the probabilities of treatment are evaluated and
survival during short period of time is considered, could be better applicable. Such approach is
known as MSM [7,8], the logistic model for weighted repeated measures model with general-
ized estimating equations (GEE). In this model, probability of different treatment modes of in-
terest are modeled for preselected time points of individual follow-up (e.g., each two months).
Pseudorandomization using baseline and time-dependent variables is created at each time
point. The survival probability is then modeled for each time point and observations for the
same patients are considered as repeated measurements. The results for two treatment groups
(involving and not involving surgery) are presented in Table 4. Table 4 also contains the esti-
mates of HR for time-independent treatments (as in Table 3, but selecting or unselecting pa-
tients with surgery). One observation from the results is that beneficial effects of chemo- and
radiotherapy are more pronounced for advanced stages of lung cancer. Although odds ratios
(OR) calculated without using the IP weights are at the level of 1.0 (or even higher) even for ad-
vanced stages, incorporation of IP weights results in significant beneficial effects for stages
IIIA,B and IV. Another observation is that there exist situations when treatment can be harm-
ful: both OR for MSM and HR calculated for time-independent treatments could be around or
exceed 2.0 when all three treatments are administered for patients with stage I and II--these
findings suggest that overtreatment in some situations expose patients to morbidity and mor-
tality secondary to the treatment without providing additional survival benefit. Also, we see
that estimates for time-independent treatment show more positive benefits than those obtained
within MSM. The difference in these estimates comes from the contributions of person-
months without chemo- or radiotherapy: for MSM these person-months are considered as no
treatment control, while for time-independent treatment they contribute to the treatment esti-
mated for this individual. For the cases without surgery these person-years without treatment
in this month correspond to better survival, therefore, we observe more positive benefits for
time-independent treatments. Similar arguments allow us to understand the differences that
are observed for the patients treated with surgery. We see a similar picture for advanced stages
because “surgery only” is not optimal treatment strategy for advanced stages and we have op-
posite situation for stage I because “surgery only” is the most optimal treatment for stage I (see
Fig 1).

The standard formulation of MSM requires using so-called stabilized weights that are calcu-
lated as: IT,(w,/wy), where index t runs over all time periods (including baseline, i.e., the
month of diagnosis), and time-specific weights w; and w,, represent reciprocal of probabilities
of actually observed treatments conditional on baseline predictors ¢, with or without time-de-
pendent predictors ¢, i.e., w; = [Pr(T = Tj|c, ¢)] " and wyy = [Pr(T = T/|c;)] . The calculation
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Table 4. MSM estimates for two treatment groups (involving and not involving surgery) of lung cancer patients represented by ORs and respective
IPW estimates for time-independent treatments represented by HRs.

Stage | I I ] A A nB nB v v
Weight No IP No IP No IP No IP No IP
Patients without surgery (vs. no treatment)

Methods: MSM for time-dependent treatment (OR)

Che+Rad 1.055 0.998 1.174 1.014 1.094 0.920 1.044 0.849 1.237 0.949
Che 1.043 0.989 1.057 1.023 0.969 0.680 0.979 0.667 1.159 0.688
Rad 0.988 0.733 1.045 0.906 1.026 0.799 1.028 0.792 1.096 0.889
Methods: IP for time-independent treatment (HR)

Che+Rad 0.851 0.870 0.721 0.747 0.557 0.587 0.576 0.603 0.702 0.718
Che 0.813 0.795 1.0%* 1.1%* 0.625 0.651 0.498 0.513 0.496 0.505
Rad 0.655 0.649 0.758 0.772 0.604 0.633 0.613 0.618 0.778 0.782
Patients with surgery (vs. surgery only)

Methods: MSM for time-dependent treatment (OR)

Sur+Che+Rad 1.483 2.741 1.301 1.959 1.193 1.447 1.226 0.905 1.106 0.946
Sur+Che 1.200 1.593 1.119 0.914 1.126 0.880 1.154 0.991 1.204 0.804
Sur+Rad 1.302 1.920 1.092 1.202 1.140 1.030 1.193 1.031 1.118 1.090
Methods: IP for time-independent treatment (HR)

Sur+Che+Rad 2.602 2.569 1.0%* 1.12*% 0.725 0.739 1.262 1.16* 1.11* 1.13*
Sur+Che 1.0** 1.134 0.515 0.513 0.479 0.481 0.751 0.788 0.596 0.584
Sur+Rad 1.682 1.715 0.91* 0.9%* 0.692 0.702 1.0%* 1.0%* 1.11* 1.13*

*—estimate is not significant (0.05<p<0.3)
**_—estimate is not significant (0.3<p)

doi:10.1371/journal.pone.0121406.1004

of the stabilized weights involves two additional specific approaches compared to the approach
for calculating IP weights for time-independent treatments (i.e., simply w;, for a time point): i)
the weights in a certain time point are calculated as a ratio w,/w,, i.e., an additional factor is
used in the denominator and ii) the weights are calculated as products of the weights obtained
during measurements at previous time points. We do not use both types of adjustments for the
weights calculation in our approach and use the usual formula for the weight w, = [Pr(T = T}
Cps ct)]'lwith tumor characteristics, current comorbidity index, previous treatment, SES factor
and demography (sex and age) as predictors of specific treatments. The choice was based on
the comparison of the results obtained using this approach and approaches based on the stabi-
lized weights, and non-stabilized weights with multiplications over previous time points. Only
our chosen approach provided reasonable pseudorandomization in all considered time points,
which is illustrated in S3 Table. The pseudorandomization in both of the two alternative ap-
proaches described is not sufficient, resulting in occurrence of a bias in the survival model pa-
rameter estimates. For example, the effect of chemotherapy in Table 4 (weights are w,) is

OR = 0.989 for stage I, while the approaches with other weights give 1.107 (weights are I, w,),
1.111 (weights are w,/wy), and 1.369 (weights are stabilized, i.e., I1,(w,/w,y)). We believe that
the estimate in Table 4 is realistic because the fraction of significant differences among the vari-
ables predicting treatment choice (not shown) is 2/31 (both for comorbidity index), while these
fractions for other three methods are 9/31, 17/31, and 21/31, respectively.

The outcomes and predictors in MSM are evaluated in each time point and considered sepa-
rate observations. We use four time points (0, 2, 4, and 6 months after diagnoses) and, there-
fore, the dataset for MSM has the number of records four times larger than the number of
patients. The observations from the same patient are not independent, therefore the GEE
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approach with a working matrix describing the correlation between time points of the same pa-
tient is used. The results presented in Table 4 are obtained using so-called 3-dependent work-
ing matrix in which the diagonal parameters (i.e., matrix elements on the three diagonals

Wi inj = W}, j =1, 2, 3) are the same (among all rows represented by index i) and are subject
for estimation. For majority of weighted and non-weighted stage-specific analyses the parame-
ters were approximately estimated as W; ~ 0.7, W, ~ 0.4, and W3 ~ 0.1. Also independent, ex-
changeable, autoregression, and unspecified working matrixes were tested. The estimates using
these working matrixes and statistical criteria (such as the quasi-likelihood information criteri-
on (QIC) by Pan [16] confirm the choice of 3-dependent matrix as optimal.

Sensitivity Analysis

The above comparison of the estimates for time-independent and time-dependent treatments,
for alternative approaches to calculate weights, and for different models of working correlation
matrices in GEE is the first stage of our sensitivity analyses designed to assess the robustness of
our findings and identify uncertainties of applying MSM to SEER-Medicare data. Other model
specifications were tested in additional sensitivity studies allowing for assessment of the impact
of assignment of the date of diagnosis and specific choice of point of time for treatment evalua-
tion. We did not find substantial changes in the results varying respective model assumptions
except the case when different numbers of time points were used. The removal of the last time
point from the analysis (i.e., time point at 6th month after the date of diagnosis) results in
more beneficial effects of all therapies. This observation suggests that delays of this length after
diagnosis results in poorer survival.

The most important limitation of the above model is the assumed lack of unmeasured co-
variates related to treatment assignment and subsequent survival. Evidently, unmeasured
tumor statuses (i.e., the triad of the T-, N-, and M-statuses) before and after treatment are such
variables. They are measured at baseline only. To check the effect of this assumption we mod-
eled dynamics of tumor statuses using stage-specific transition probabilities. First, distributions
of T and N statuses at the time of diagnoses were used to randomly replace unknown statuses
at baseline. Second, we modeled two-month stage-specific probabilities of increase of the sta-
tuses by 1 or 2 units, e.g., we used 5% for T,, — T, and 20% for T,, — T,,,, for all stages and
5, 10, 25, and 25% for My — M, for stages I, II, IIIA, and IIIB, respectively. Third, we modeled
the effects of each treatment. Surgery and radiation therapy resulted to T and N, with certain
stage specific probabilities of subsequent recurrent tumor growth in two months, e.g., probabil-
ities for Ny — Nj were 2, 10, 15, 15, and 15% for the five considered stages. Chemotherapy was
assumed to have certain probability to improve T- and N-statuses (e.g., 50% for T, — T}, 1,
25% T,, — T,, and 25% T,, — T,.,) and to decrease the probability of metastasizing. We mod-
eled TNM-statuses for all patients using these assumptions and then added these new variables
to the MSM models. We detected the change in estimates (e.g., ORs for treatments without sur-
gery of patients staged IIIA were 0.868 (instead of 0.920) for chemo- and radio-therapy, 0.711
(0.680) for chemotherapy and 0.769 (0.799) for radiotherapy), which however allowed our con-
clusions to remain the same. A minor change in parameter estimates occurred because infor-
mation about patient death was not used, considering that probability of patient death strongly
correlates with changes of TN- and especially of M-statuses. When we added this information
into our modeling strategy (e.g., we assumed that probability of transition M, — M; depends
on time to death as exp(a(t;—t)), where t and ¢, are the current time and time of diagnosis, we
observed much higher changes in parameter estimates. However, estimating how realistic these
results are is difficult, because it is challenging to distinguish between actual dependence of sur-
vival on M, or that induced by our simulation strategy.
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Discussion

In this paper, we applied a set of statistical models to evaluate the stage-specific causal effects of
surgical resection, radiation, and chemotherapy on survival of lung cancer patients, considering
both time-independent and time-dependent treatments. Within the approaches for time-inde-
pendent treatment, the treatment was represented by an eight-stratum variable that did not
consider order of treatment. In the approach for time-dependent treatment the treatment was
represented by a set of these variables reflecting treatments in all predetermined time points.
Application of these causal inference methods allowed us to comprehensively evaluate the im-
pact of lung cancer treatment while considering specific patient details regarding not only can-
cer characteristics but also specific comorbid states. Applying these novel methods to datasets
that allow assembly of large cohorts of patients with relatively uncommon substages of lung
cancer has the potential to provide data that can help close a current significant gap in evidence
regarding lung cancer treatment effectiveness and patients survival, that is how to choose the
optimal treatment for an older patient with lung cancer when considering not only details
about their cancer but also the patients’ comorbid conditions. These methods can be used to as-
sist development and enhancement of comprehensive guidelines for lung cancer treatment of
older adults by considering the impact of dynamically changing comorbidities. By allowing
cancer care providers and patients to make treatment decisions based on quantitative data and
not simply subjective estimation of the impact of comorbid conditions, care of lung cancer pa-
tients can be more evidence-driven and better standardized. Considering the current preva-
lence of lung cancer in conjunction with the aging population, the application of these
methods of causal inference to SEER-Medicare claims data, which had not previously been de-
scribed, has the potential to significantly impact and improve patient care. Both methodologi-
cal and substantive aspects of our approach are discussed in detail below.

Methodological issues of modeling time-independent treatment

The idea of time-independent treatments reflects the point of view that the complete treatment
is largely planned at the time of cancer diagnoses and then only minor changes are possible. In
this approach cancer stage and patient characteristics at baseline dictate which modality or
combinations of modalities define treatment options for patients. In total, eight possible time-
independent treatments were considered: i.e., from “no treatment” option to the modes when
all three treatments are applied.

Three issues are needed to keep in mind when interpreting the results with time-indepen-
dent treatments. The first is that in practice the treatments are corrected during the treatment
course because of multiple reasons. We discuss them below considering time-dependent treat-
ments. For time-independent treatments we have only the resulting treatment patterns and
they are not always resulted from decision at baseline. The second is that we need to make sim-
plifying assumptions to limit the complexity of the analysis. For example, we consider only
whether patients had surgery or not as part of their treatment, but in reality surgery per se can
be of at least five different types depending on the extent of resection, such as pneumonectomy,
lobar and sublobar resection, local treatment, and other (unknown extent). In this analysis we
ignore the differences in the specific surgeries applied for the selected lung cancer patients. The
third is that the treatments within a certain treatment pattern are still quite heterogeneous. Ex-
cept for different types of the surgery, we also can deal with multiple surgeries of different
types, and with different doses of chemo- and radio-therapy. Moreover, the patterns with dif-
ferent order (i.e., initial treatment and following courses) of treatments were not considered in
this study as different treatments.
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Selection bias is addressed through the method of pseudorandomization. The underlying
idea of this approach is to assign a weight for each patient to create a situation where all patient
characteristics for treatment-specific groups become similar. An important step in propensity-
score-based analyses is testing the quality of pseudorandomization. Within the approach based
on IPW, this testing can be performed formally, e.g., ANOVA test for continuous and y* test
for categorical predictors. Table 2 and S1 and S2 Tables represented the results of these testing
for time-independent treatments and showed that p-values demonstrating strong significance
for original patients groups (i.e., non-weighted) became non-significant when the weights were
applied. This finding occurred for all variables predicting the treatment choice in the treatment
model, indicating that this approach simulates “clinical trials” in which we select similar (ran-
domized) groups for all variables except the treatment of interest. Treatment is the main pre-
dictor in the outcome model that is then estimated for weighted and non-weighted (for
comparison) patient groups. The variables contributing to the treatment model (and, which,
therefore, are not different for weighted population) can also be added to the outcome model
as predictors. They are not expected to impact the treatment effect (because of lack of the cor-
relation between them and treatment for weighted population) but they can have their own
contribution to probability of survival. One additional conclusion from the analysis of time-in-
dependent treatment (Table 3) is that pseudorandomization did not strongly change the esti-
mates for treatment effects in stratum-specific groups, suggesting that the selection bias is not
critical or/and that the patient group in strata defined by a lung cancer stage is not very hetero-
geneous. However it can also mean that the list of predictors that impact treatment choice is
not complete and that unmeasured variables important to treatment selection are not being
considered. Examples of potentially important variables that were not available in the dataset
and, therefore, were not considered in this study include overall functional status and specific
pulmonary function measurements.

Methodological issues of modeling time-dependent treatment

The assumptions of the models for time-independent treatments could be relaxed if additional
longitudinal information available in data was used, such as the dates of specific treatments ad-
ministered and changes in comorbidity patterns during individual treatment course. The co-
morbidity time patterns and treatment dates are reconstructed using ICD-9 procedure, CPT/
HCPCS, and revenue center codes [12,14], which are all available in Medicare records. Avail-
ability of this longitudinal information allowed us to apply the MSM for Medicare data on lung
cancer patients. In MSM we consider treatments taken at a certain time point of individual fol-
low-up. All other time-dependent variables (such as disease indicators and comorbidity index)
are also defined and evaluated in these predetermined times points. The treatment model in
MSM is defined for each time point. Predicted probabilities of time-specific treatments are
used to evaluate weights for pseudorandomization at each time point. The effects of specific
treatments on the outcome are represented by a single treatment-specific measure resulting
from some “averaging” over time-specific treatment effects. This “averaging” is effectively ob-
tained within an outcome model (specifically a logistic model for weighted repeated measures
model with generalized estimating equations) in which individual time-specific records (pre-
dictors and outcome) are considered correlated and this correlation is represented by an appro-
priate working matrix. Two important methodological steps have to be performed to support
the results of the modeling: checking the quality of created pseudorandomization in all time
points and performing a detailed sensitivity study.

Methodologically, addressing the selection bias for time-independent treatment is a routine
procedure that does not provide researchers with flexibility if the counterfactual treatments
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and all predictors of the treatment and outcome are defined. In the case of MSM, the model
can be defined and specified in several ways. The available flexibility in model specification is
used to tune the model for a specific substantive case. The structure of the data and the nature
of underlying substantive process in this present study differ from those for which MSM is typ-
ically applied. Usually, MSM is applied for a situation representing a steady state or data that
can be considered as a stationary or almost stationary time series, where the researcher can in-
corporate the ideas of analyses of time series when different individual measurements are sim-
ply different measurements of the same steady-state. In the case of lung cancer, different time
points cannot be considered as steady-state and respective MSM models therefore have to be
tuned accordingly, which is why we made four modifications to the standard MSM formula-
tion for binary outcomes ([7,8], a specific implementation for continuous outcomes are given
in Faries et al. [17]). The first change is that we do not use stabilized weights but instead simply
the usual IP weight that is a part of the stabilized weight. At baseline, the stabilized weights go
to unit and do not provide the appropriate pseudorandomization for ¢ = 0. The second change
is that we do not multiply weights calculated for different time points of the same individual,
because in our applications the quality of pseudorandomization was much better in the case
when we used only the weight taken in the current time point. The third change is that we do
not use the censoring component for MSM weights. We do not have censoring events in the
follow-up period because of our strategy for patient selection. The fourth change is that we do
preselect patients based on their previous treatment for the treatment model, but use the previ-
ous treatment as a predictor of current treatment.

The results of respective effects for time-dependent and time-independent treatments are
qualitatively similar, but strongly deviate quantitatively (Table 4). The reason for this deviation
is the contributions of time periods when no treatments were administered. For patients with
time-independent pattern “no treatment,” these time periods contribute to the reference group
both for time-dependent and time-independent treatments. However, they contribute differ-
ently for patients with other treatment patterns. In the case of MSM analysis of time-dependent
treatments, time periods without any treatment are the referent group, while for the IP analysis
of time-independent treatments they (being a part of an entire time-independent treatment
pattern) are not a part of the no-treatment referent group. As a result, the referent group for
time-dependent treatment has better survival. Many other opportunities for model specifica-
tions allowed us to perform detailed sensitivity studies. We found that there are not many ef-
fects due to pure technical issues such as different forms of the working matrix. The two
detected sensitivities were due to substantive reasons. First, we found that our result was depen-
dent on the time of the last point where we evaluated treatment and other predictors and pre-
dicted survival which in accordance with the idea discussed above that the outcome is not a
stationary series during the individual treatment course. The survival probability (as well as
death rate) is different for different time points after the date of diagnosis (Fig 1).

The second type of sensitivity analysis was aimed at addressing the most important limita-
tion of the MSM, which is the assumed lack of unmeasured covariates related to treatment as-
signment and subsequent survival. Clearly, unmeasured tumor status before and after
treatment is such a variable. We modeled dynamics of TNM-statuses and implemented their
effects into the model. We found that unmeasured TNM-statuses can impact the estimates of
treatment effects in MSM. One promising approach to deal with this issue is based on the sto-
chastic process model [18] in which survival is modeled as a function of both observed (treat-
ment and comorbidity) and unobserved (TNM-statuses) time-dependent covariates. The
dynamic changes of these covariates can be modeled by stochastic differential equation(s)
based on measurements for observed covariates and knowledge from clinical practice for unob-
served TNM-statuses.

PLOS ONE | DOI:10.1371/journal.pone.0121406  April 7, 2015 14/19



@'PLOS ‘ ONE

Causal Effects of Treatments in Lung Cancer Patients

The analysis presented in this paper is based on MSM that currently is a standard approach
in causal inference for longitudinal data. The use of this approach to estimate treatment effect
with SEER-Medicare data, which is a very comprehensive dataset with details on cancer diag-
nosis linked to Medicare records, has not been previously described. This step in analysis of
time-dependent treatment effect is necessary and methodologically unavoidable. This analysis
also creates a basis for further studies of treatment effect involving some substantive (and,
maybe, parametric) assumptions about dependences of mortality risks and treatment selection
on the history of previous treatment and current comorbidities.

Discussion of substantive results

The results obtained from our study can have direct practical applications. Specifically, the re-
sults can be used to help optimize the treatment decision for older patients with lung cancer
both to help choose treatment that will provide the highest chance of survival while avoiding
therapy that does not help or even have negative impact on patient’s survival. Choosing treat-
ment for elderly patients with lung cancer is currently a common and critically important situ-
ation, considering that nearly 40% of all new lung cancer cases diagnosed are in patients aged
70+ years old [19]. Importantly, the use of population-based dataset provides the results that
are generalizable to typical patients seen in very common clinical situations. Choosing therapy
for an individual lung cancer patient is also an inherently complex process. While the stage of
lung cancer at diagnosis is the most significant predictor of survival, other factors such as age,
gender, race, tumor size and histology [20,21], SES, and comorbidities [22-26] also impact the
treatment choice and effectiveness. Our current study also found that a better prognosis for
survival was associated with younger age, smaller tumor size, higher SES, and fewer comorbidi-
ties, which is consistent with multiple other studies of these factors. However, this knowledge
of factors important to prognosis has not necessarily been able to be translated into change in
clinical practice to improve outcomes. Developing a tool that allows accurate estimates of the
benefits of specific treatments for patients based on specific characteristics has the potential to
assist the treatment decision process for individual patients. The results of this population-
based study can allow clinicians to make the evidence-based treatment decisions, rather than
having to rely on their subjective judgment. Perhaps most importantly, clinicians can make
their objective decisions regarding whether the benefits of treatment outweigh the risks, rather
than choosing treatment based on whether the patient is considered “too old” or “too sick” to
tolerate and derive benefit from a treatment.

Age still appears to be a major factor influencing treatment choice in elderly patients [27-
29]. However, treatment decisions for older patients should take into account many factors, in-
cluding the benefits in life expectancy, treatment tolerance, and presence of and complications
due to comorbidities. Unfortunately, information available on benefits and tolerability of dif-
ferent treatments in older adults is sparse, and the risk versus benefit has not been studied ade-
quately. For example, the role of surgery in the elderly with lung cancer has significantly
changed during the last 20 years due to advances in anesthetic management and surgical tech-
niques which have allowed the inclusion of increasing numbers of the elderly patients in surgi-
cal studies. While some studies support an association between increased age and occurrence
of postoperative complications [30], others do not [31,32]. In addition, surgical advances such
as minimally invasive surgical techniques have improved the safety of surgery in elderly pa-
tients, and lung cancer surgery has been shown to be able to be safely performed with good
long-term survival in extremely elderly patients such as octogenarians [33,34]. In our study,
the beneficial effect of surgery on lung cancer patients’ survival decreased with advancing can-
cer stage. Elderly patients also receive fewer chemotherapy doses when compared with younger
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counterparts; however, they seem to derive the same benefit from adjuvant chemotherapy as
younger patients do, with no significant increase in toxicity [35]. In our study, we observed
that the beneficial effects of chemo-and also radiotherapy on survival increased with advancing
lung cancer stage. In the literature, role of radiotherapy in aged patients with lung cancer also
remains uncertain because of limited data: for example, some reports have shown that stereo-
tactic body radiation is a safe and effective method of treating lung cancer in medically inoper-
able patients [36,37]. However, these retrospective studies are based on highly selected patients
and their extrapolation to the general elderly population should be made with caution. Finally,
even considering that the effectiveness, toxicity, and complications of different therapies
change in humans with advancing age due to physiological aging-related changes, the presence
and severity of comorbid conditions that generally are known to increase the risk of treatment
toxicity make the lung cancer treatment decision process even more complex in elderly patients
[5].

Unfortunately, existing guidelines do not provide detailed information that will help physi-
cian to make difficult decisions on treatment choice in older patients with lung cancer using
specific patient characteristics [6]. In addition, the majority of recommendations are made
based on retrospective data, which potentially are limited by selection bias that can make it dif-
ficult to determine if the results can be generalized to be applicable to a specific patient [35].
Importantly, these decisions cannot be done on the basis of chronological age alone but must
incorporate all characteristics of patients, including specific tumor details as well as their other
medical comorbidities. Attempts to provide informative tools that assist treatment decisions
have been made: e.g., a comprehensive geriatric assessment (CGA) has been suggested to esti-
mate a patient’s functional status, the presence of comorbidities, mental status and emotional
conditions, nutritional status, polypharmacy and the presence or absence of geriatric syn-
dromes [38]. However, even when the International Society of Geriatric Oncology recom-
mended a CGA-based approach to elderly cancer patients [39], this method has not been
prospectively validated as a prognostic and predictive factor for treatment-related toxicity and
outcome. The methods described in our study have the potentially to much more significantly
be integrated into clinical care. The application of the standard approach of propensity scoring
that is broadly used in analyses of treatment effects using administrative data [40,41]) to
SEER-Medicare data in this study allowed the development of statistical methodologies that
can be implemented into a new computational tool for physicians. This tool can be used by cli-
nicians in choosing the optimal lung cancer treatment that balances treatment benefits and
risks for the patient based on individual lung cancer patient’s characteristics.

Conclusion

In summary, we investigated in this study how applying methods of causal inference to large
scale observational data such as SEER-Medicare can help clarify the effects of different treat-
ment modalities on lung cancer survival. Specifically, we estimated causal treatment effects on
overall survival of lung cancer patients for counterfactual time-independent and time-depen-
dent treatment modalities. We also tested the plausibility of the model assumptions with sensi-
tivity studies. This study provides new information on the causal effects of different treatment
modalities on overall survival in lung cancer patients, as well as the effects of socioeconomic
factors, tumor characteristics, age groups, and baseline/dynamic comorbidities on treatment
choice and overall survival in lung cancer patients. The results also confirm that Medicare data
is a powerful source for evaluating causal effects of time-dependent treatment in older adult pa-
tients with cancer diagnosis.
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