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Abstract

Genetic selection for improved disease resistance is an important part of strategies to combat infectious diseases in agriculture.
Quantitative genetic analyses of binary disease status, however, indicate low heritability for most diseases, which restricts the rate of ge-
netic reduction in disease prevalence. Moreover, the common liability threshold model suggests that eradication of an infectious disease
via genetic selection is impossible because the observed-scale heritability goes to zero when the prevalence approaches zero. From infec-
tious disease epidemiology, however, we know that eradication of infectious diseases is possible, both in theory and practice, because of
positive feedback mechanisms leading to the phenomenon known as herd immunity. The common quantitative genetic models, however,
ignore these feedback mechanisms. Here, we integrate quantitative genetic analysis of binary disease status with epidemiological models
of transmission, aiming to identify the potential response to selection for reducing the prevalence of endemic infectious diseases. The
results show that typical heritability values of binary disease status correspond to a very substantial genetic variation in disease susceptibility
among individuals. Moreover, our results show that eradication of infectious diseases by genetic selection is possible in principle. These
findings strongly disagree with predictions based on common quantitative genetic models, which ignore the positive feedback effects that
occur when reducing the transmission of infectious diseases. Those feedback effects are a specific kind of Indirect Genetic Effects; they
contribute substantially to the response to selection and the development of herd immunity (i.e., an effective reproduction ratio less than
one).
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Introduction
Infectious diseases are of great concern in agriculture, because
they cause considerable economic damage in terms of production
losses and costs of treatment. In livestock, moreover, infectious
diseases harm animal health and welfare, and cause indirect cost
through trade restrictions and impact on human health in the
case of zoonoses (Bennett 2003). Although combatting infectious
diseases has always been a challenge, the increase in antibiotic re-
sistance, followed by restrictions on the use of antibiotics has in-
tensified the need for additional solutions (Speksnijder et al. 2015).

Genetic selection for improved disease resistance is a common
strategy to combat, especially endemic, infectious diseases, as an
alternative or additional intervention to classical control meas-
ures such as antibiotic treatment (Bishop et al. 2010). In livestock,
genetic variation in disease resistance seems to be present in vir-
tually all species, and for a wide range of diseases (Bishop et al.
2010). While this observation implies that genetic improvement
of infectious disease traits is possible in principle, the rate of ge-
netic improvement is restricted by the limited heritability of the
disease traits.

Infectious disease traits are often measured as the binary dis-
ease status of the individual (healthy/diseased ¼ 0/1), and herita-
bility estimates for disease status are typically below 10%. For
mastitis in dairy cattle, for instance, observed-scale heritability
estimates range from 0.01 to 0.09, with corresponding prevalence
ranging from 0.09 to 0.39 (Martin et al. 2018). Although the herita-
bility of binary traits is sensitive to prevalence, with the highest
values at intermediate prevalence, the above estimates are fairly
low. Given the population average value for binary disease status
(p), the additive genetic variance in binary disease status is fully
determined by heritability; r2

Aobs
¼ h2

obspð1� pÞ. Thus these low
heritabilities also indicate limited genetic variation in binary dis-
ease status. Because the mean value of individual disease status
is equal to the prevalence of the disease, the formula for the addi-
tive genetic variance also seems to imply that the potential re-
sponse to selection for reduction of disease prevalence is limited.

Higher heritabilities are found with threshold models, which
assume a continuous liability underlying the observed binary dis-
ease status. (Dempster and Lerner 1950; Robertson 1950).
However, while threshold models are statistically much more
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appropriate than linear models (Gianola 1982), a high heritability
on the liability scale does not imply a large response to selection,
because the response in binary disease status depends on the
heritability on the observed binary scale (Robertson 1950).

An important expectation following from classical quantita-
tive genetic models is the impossibility to eradicate a disease via
selection. Eradication seems impossible because additive genetic
variance on the observed binary scale goes to zero when the prev-
alence approaches zero (Robertson 1950). Hence, for breeders,
this implies that genetic reduction of disease prevalence becomes
increasingly difficult and ultimately impossible at lower preva-
lence. In epidemiology, however, successful eradication of several
infectious diseases has been achieved using vaccination, with
vaccines being neither 100% effective nor successfully applied to
everyone (Halloran et al. 1992). A well-known example in live-
stock is the worldwide eradication of rinderpest, which has been
successful without the need to vaccinate all the animals. In
Somalia, for example, only about 50% of the animals had vacci-
nation immunity for rinderpest at eradication (Mariner et al.
2012).

The eradication of infectious diseases using vaccination
relates to a phenomenon known as “herd immunity” (Fine 1993).
When a sufficient proportion of the population is immune to the
disease, the disease can no longer spread in the population and
thus dies out. Hence, the mechanisms determining the preva-
lence of an infectious disease are fundamentally different from
those determining the prevalence of a noncommunicable dis-
ease, such as, say, heart failure. This difference is relevant not
only for the case of vaccination, but also for the results of selec-
tion for disease resistance; a reduction in disease susceptibility
due to genetic selection would have the same effect on disease
prevalence as a corresponding reduction in susceptibility
achieved with vaccination. However, despite this fundamental
difference, mainstream theory and methods in quantitative ge-
netics and livestock genetic improvement completely disregard
the key role of transmission between individuals.

Whereas the previous paragraph stresses the importance of
transmission dynamics, other explanations for the low heritabil-
ity of infectious diseases have also been proposed. The low heri-
tability of individual disease status, even at intermediate
prevalence, seems to disagree with the moderate to high herita-
bility estimates for immune response traits (Knap and Bishop
2000; Henryon et al. 2006; Thompson-Crispi et al. 2012). To explain
this discrepancy, Bishop and Woolliams (2010) argue that incom-
plete exposure of individuals to the infectious agent, low test spe-
cificity and sensitivity, and incomplete data recording can cause
underestimation of the heritability of binary disease status. In ad-
dition, Lipschutz-Powell et al. (2012) point to the potential impor-
tance of genetic variation in infectivity, defined as the propensity
of infected individuals to infect others, which is not captured by
the current models. Hence, these mechanisms might also partly
explain why not all genetic variation is captured with the current
breeding methods.

Nevertheless, while more accurate disease data and account-
ing for genetic variation in infectivity might indeed improve the
response to selection (Tsairidou et al. 2019), these factors cannot
explain why epidemiological models that account for transmis-
sion dynamics often suggest a substantially greater response to
selection than genetic models, even in the absence of measure-
ment errors and when genetic variation is in disease resistance
only (i.e., in the absence of genetic variation in infectivity). Using
an epidemiological model tailored to foot rot in sheep, for exam-
ple, Nieuwhof et al. (2009) have shown that selection for

resistance reduces prevalence faster than predicted by common
quantitative genetic models of disease status. This suggests that
the ordinary breeding values for individual disease status do not
correctly predict prevalence in the offspring generation.
Empirical examples of a relatively large reduction in disease prev-
alence resulting from genetic selection were found for infectious
pancreatic necrosis (IPN) in Atlantic salmon and for clinical mas-
titis in dairy cows. The salmon industry managed to decrease IPN
mortality by over 70% in 2 years, using marker-assisted selection
for an IPN-resistance QTL (AquaGen 2012). In a selection experi-
ment, Heringstad et al. (2007) observed a phenotypic decrease in
the prevalence of clinical mastitis of 15% after 5 generations of
single trait selection against clinical mastitis, while the reduction
predicted by estimated breeding values was only 8%. Although
this phenotypic response could be explained by environmental
changes (e.g., improvements in management), a correlated re-
sponse in clinical mastitis from single trait selection on higher
protein yield observed in the same experiment contradicts this
explanation. Selection for higher protein yield resulted in a phe-
notypic increase in clinical mastitis prevalence from 10% to 25%,
while the increase predicted by EBVs was only 2%. Hence, an en-
vironmental decreasing effect on clinical mastitis is highly un-
likely, because this disagrees with the much higher phenotypic
increase observed after selection for higher protein yield. Results
of Heringstad et al. (2007), therefore, indicate greater genetic re-
sponse than predicted by EBVs from classical quantitative genetic
models.

The discrepancy between predictions based on epidemiologi-
cal vs. genetic models illustrates that the relationship between
the heritability of binary disease status and the amount of ge-
netic variation that can actually be used to reduce disease preva-
lence is still unclear, even for the most basic and well-established
epidemiological models. As a consequence, prospects of genetic
selection to reduce infectious disease prevalence are not correctly
predicted by current quantitative genetic models.

Here, we show that the low heritabilities of binary disease sta-
tus are fully consistent with a large genetic variation in disease
resistance. Heritability estimates from common quantitative ge-
netic models by no means represent the variation available to
breeders for genetic improvement, even for the simplest epidemi-
ological model and with genetic variation in disease resistance
only. Consequently, the potential for genetic selection to reduce
the prevalence of infectious diseases will be considerably larger
than currently believed, even when the conventional breeding
values for disease status are used as a selection criterion. This
occurs because the effect of genetic selection on the disease sta-
tus of individuals acts in two ways: Both directly via a reduced
susceptibility of the individuals, and indirectly via reduced expo-
sure of individuals to infected herd mates, because of a lower
susceptibility of those herd mates.

Material and methods
To quantify the relationship between the heritability of binary
disease status and the potential response to genetic selection for
lower prevalence, we will first find the genetic variation in dis-
ease susceptibility required to reproduce the common heritability
values of disease status. For this purpose, we will use simulation
of an endemic infectious disease with an epidemiological model
that is appropriate for many endemic infectious diseases at the
farm level, while keeping the mathematics as simple as possible.
We aim to find the epidemiological parameters and genetic var-
iances that result in observed-scale heritabilities for binary
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disease status of 0.02, 0.05, and 0.10, using a common prevalence
of endemic infectious diseases in livestock. After identifying the
epidemiological parameters and genetic variances corresponding
to those heritabilities, we will estimate the potential response to
selection using those parameters and variances as input.

Because the common linear models capture genetic variation
in disease resistance only, we simulated individuals to differ only
in disease resistance. For reasons of mathematical convenience
and consistency with epidemiological models, we in fact modeled
disease susceptibility instead of resistance. Susceptibility is the
(relative) probability an individual becomes infected given expo-
sure (Doeschl-Wilson and Kyriazakis 2012), and is the opposite of
disease resistance; individuals with a high susceptibility have a
low resistance, and vice versa.

This section starts with a description of the epidemiological
model we used for simulation of the endemic disease. This de-
scription initially ignores variation in susceptibility, to make the
model more easily understandable. Next, we describe how indi-
vidual genetic variation in susceptibility can be introduced into
the epidemiological model. Then, we describe how we simulated
a population with variation in susceptibility, followed by a de-
scription of the implementation and the scenarios used to quan-
tify response to selection. Table 1 provides a notation key.

Susceptible-Infectious-Susceptible model without
genetic variation
To illustrate our point with a minimum of mathematical detail,
we used one of the simplest epidemiological models for endemic
infectious diseases, the so-called Susceptible-Infectious-
Susceptible (SIS) model (Hethcote 1989). Although the model is
simple, it provides a realistic representation of the transmission
of several endemic infectious diseases in livestock populations
and is well-established in veterinary epidemiology for that rea-
son. Note that in the context of an SIS-model, “susceptible”
merely means that an individual is not infected and can in princi-
ple become infected; it does not indicate high susceptibility or
low disease resistance.

In the SIS-model, individuals can be in one of two states: sus-
ceptible (S) or infected and then also infectious (I; Figure 1). In ep-
idemiology, the symbols S and I are generally used to indicate
both the state of an individual and the total number of individu-
als in that state. To prevent confusion, we will use S and I (in

italics) to indicate the number of susceptible and infected individu-
als in a herd, and S and I for the state of an individual. Thus, S
indicates the number of individuals with disease state S in a
herd. The infection is endemic within the separate herds, and we
assume that transmission can occur only between herd mates. N
is the total number of individuals in a herd, which is equal to the
sum of the number of susceptible and infected individuals in the
SIS-model (Sþ I ¼ N).

Transitions in an individual state, so-called events, are possi-
ble in both directions (from S to I and from I to S). Susceptible
individuals can become infected through contacts with infected
herd mates, while infected individuals can recover and thus be-
come susceptible again. The types of events (i.e., transmission or
recovery) and the bookkeeping of the individuals involved in
these events define our stochastic model. The average number of
susceptible individuals that becomes infected per unit of time
(e.g., per day) depends on the total number of susceptible individ-
uals in the herd at that moment, the fraction infected among
their herd mates ( I

N, i.e., the prevalence of the disease), and the
transmission rate parameter of the disease, b (Diekmann et al.
2012):

Rate S! I ¼ bS
I
N

(1)

For a population of N¼ 100 individuals in the endemic state
with, for example, a prevalence of 0.1 (I ¼ 10; S ¼ 90), and a b of
0.03, on average 0:03 � 90 � 0:1 ¼ 0:27 susceptible individuals will
become infected each day.

The number of recovering individuals per unit of time depends
on the number of infected individuals in the herd at that moment
(I) and on the recovery rate parameter, a:

Rate I! S ¼ aI (2)

The recovery rate parameter a also determines the average
duration of the infectious period, which is equal to 1

a. Continuing

Table 1 Notation key and overview of input values

SYMBOL MEANING SIMULATED VALUE(S)

b Transmission rate parameter (t�1) 0.03 day-1

a Recovery rate parameter (t�1) 0.02 day-1

S Susceptible state of an individual –
I Infected state of an individual –
S (in italics) Number of susceptible individuals () –
I (in italics) Number of infected individuals () –
N Herd size () 102
I
N Prevalence 0.33
bi Transmission rate parameter for individual i (t�1) bci day-1

ci Individual susceptibility eAc iþEc i

Ac i Individual additive genetic effect (breeding value) for the logarithm of susceptibility �Nð0; r2
A;cÞ

Ec i Individual permanent environmental effect for the logarithm of susceptibility �Nð0; r2
E;cÞ

r2
Ac

Simulated additive genetic variance for the logarithm of susceptibility –
r2

Ec
Simulated permanent environmental variance for the logarithm of susceptibility –

a2
P Chosen additive genetic proportion of the full permanent variance in log-susceptibility

among individuals.
0.25; 0.5; 0.75; 1

h2
c; liab Liability-scale heritability for the logarithm of susceptibility –

h2
Obs Target observed-scale heritability of binary disease status 0.02; 0.05; 0.1

Figure 1 Susceptible-Infected-Susceptible-Model.
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the previous example of a population of 100 individuals and a

prevalence of 0.1 (I ¼ 10Þ, with an a of 0.02, each day on average

0:02 � 10 ¼ 0:20 infected individuals will recover and thus be-

come susceptible again.
Combining transmission and recovery in the above example

shows that in this situation the average number of infected indi-

viduals increases, and the number of susceptible individuals

decreases (i.e., 0.27> 0.20). This continues until the prevalence

reaches 0.33; after which the average number of infected and sus-

ceptible individuals remains constant

(bS I
N ¼ 0:03 � 67 � 0:33 ¼ 0:66, aI ¼ 0:02 � 33 ¼ 0:66). The endemic

disease is then said to be in equilibrium, the so-called pseudo-

steady state in stochastic models. The SIS-model tends to such a

dynamic equilibrium, in which the average number of infections is

equal to the average number of recoveries. The actual number of

susceptible and infective individuals fluctuates around this equi-

librium because we have a stochastic model in a finite population.

The expected prevalence of the endemic disease is equal to the av-

erage proportion of infected individuals in the equilibrium.
Thus, at equilibrium, the transmission rate equals the recov-

ery rate:

bS
I
N
¼ aI 3ð Þ (3)

The equilibrium prevalence, therefore, follows from solving

Equation (3) for I
N.Using the fact that S ¼ N� I, yields:

Pequilibrium ¼
I
N
¼ 1� a

b
¼ 1� 1

R0
(4)

where R0 ¼ b=a, which is the so-called basic reproduction ratio

(Diekmann et al. 1990). The prevalence is thus only a function of

the ratio of a and b and can therefore also be expressed as a func-

tion of the basic reproduction ratio. With variation among indi-

viduals in susceptibility (introduced in the next paragraph),

Equation (4) is no longer exactly equal to the average prevalence

(Biemans et al. 2017).
R0 is a key parameter in epidemiology. It represents the aver-

age number of susceptible individuals that get infected by a sin-

gle average infectious individual in a totally susceptible

population. Hence, R0 has a threshold value of 1: if R0 > 1 a single

infected individual will infect initially more than one new individ-

ual, so that the infection can spread in the infection-free popula-

tion after introduction. On the other hand, if R0 < 1, infectious

disease will die out. Hence, also for an endemic disease to persist,

R0 must be greater than one. Moreover, any measure that reduces

R0 to a value smaller than 1 results in eradication of the infec-

tious disease. Obviously, Equation (4) does not apply when

R0 < 1. In that case, the disease is absent and prevalence at equi-

librium is zero.

Introducing variation in susceptibility into the
SIS-model
Here, we describe how variation in disease susceptibility can be

introduced among individuals. With equal exposure to infected

herd mates, individuals with higher susceptibility are more likely

to become infected. Because we will only simulate variation in

susceptibility, we define an individual transmission rate parame-

ter for the recipient animal, following (Anche et al. 2014):

bi ¼ bci (5)

where b is the transmission rate parameter for the average sus-
ceptible individual (infectiousness being the same for all individ-
uals), and ci the (relative) susceptibility of individual i. For the
average individual, ci ¼ 1, so that bi is equal to b. Individuals with
above-average susceptibility have ci > 1, such that their bi is
greater than b, which means that they have a higher than aver-
age probability to become infected (given equal exposure).
Accordingly, individuals with below-average susceptibility have
ci < 1, bi < b, and a lower than average probability to become
infected. Note that ci cannot be lower than 0, since this would re-
sult in a negative transmission rate.

Replacing b by bi in Equation (1), and using S ¼ 1 representing
the single individual i, yields the transmission rate for individual i
exposed to all individuals in the population, of which a fraction I

N

is infectious:

Rate Si ! Ii ¼ bi
I
N
¼ bci

I
N
: (6)

We know from the previous paragraph that individual suscep-
tibility (ci) must be nonnegative and have a value of 1 for the av-
erage individual. For this reason, we simulated ci from a log-
normal distribution. The log-normal distribution is nonnegative
and has positive-skewness, which is often observed for disease
traits (Lloyd-Smith et al. 2005). Thus, following Anacleto et al.
(2015), we simulated an additive model with normally distributed
random effects for the logarithm of susceptibility, so that suscep-
tibility of individual i is:

ci ¼ eAc iþEci (7)

where Ac i denotes the individual additive genetic effect, or breed-
ing value for the logarithm of susceptibility, and Eci

the perma-
nent individual environmental effect for the logarithm of
susceptibility, with Ac � Nð0;r2

Ac
) and Ec � Nð0;r2

Ec
). Thus

Ac ¼ Ec ¼ 0, as common in quantitative genetics. Consequently,
ci ¼ 1 for an individual with the mean Ac and Ec (but c is not ex-
actly 1, because of the positive skewness).

For brevity, we will refer to Ac i as the “breeding value for sus-
ceptibility” or just “breeding value” and to Eci

as the “individual
permanent environmental value for susceptibility” or just
“permanent environmental value”. Beware though that Ac i and
Eci

refer to the logarithm of individual susceptibility.
We included a permanent environmental effect for suscepti-

bility, Ec, to allow for a similarity between repeated records on
the same individual that is not purely genetic, but also environ-
mental (e.g., because of developmental effects). This relates to re-
peatability models as discussed in e.g., Falconer and MacKay
(1996). We use the symbol a2

P to denote the additive genetic pro-
portion of the full permanent variance in log-susceptibility
among individuals,

a2
P ¼

r2
Ac

r2
Ac
þ r2

Ec

(8)

Simulation of a population with variation in
susceptibility
We simulated a population with individual variation in suscepti-
bility. The simulated population consisted of two generations;
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parents and offspring. We simulated offspring breeding values
according to the infinitesimal model (Fisher 1919):

Ac i ¼
1
2

Acsirei
þ 1

2
Acdami

þMSc i
(9)

in which Acsire
and Acdam

were simulated from Normal distribu-
tions as shown above, and MSc i denotes the Mendelian sampling
term, sampled from a normal distribution MSc i � N 0; 1

2 r2
Ac

� �
.

The additive genetic variance for susceptibility was obtained us-
ing an iterative procedure tuned to the desired value of observed
heritability (see subsection Implementation). The permanent en-
vironmental variance in susceptibility was calculated from the
additive genetic variance and the chosen additive proportion (a2

P;
Equation 8), r2

Ec
¼ r2

Ac
ð1� a2

PÞ=a2
P.

Implementation
Our simulations consisted of the iteration of four consecutive
steps, aiming to find the additive genetic standard deviation in
susceptibility (rAc ) that is required to arrive at the desired herita-
bility value of disease status at the observed scale:

1) Stochastic simulation of 20 replicates of a population with a
certain genetic standard deviation (rAc ) and relative magni-
tude of genetic permanent effects (a2

P) for the logarithm of
susceptibility.

2) Stochastic dynamic simulation of an endemic infectious
disease in herds of the population and recording of binary
disease status data for all animals in all replicates.

3) Estimation of the heritability of disease status (h2
Obs) from

the recorded disease data with a linear mixed model for all
replicates.

4) Change rAc by 0.05 and rerun the entire simulation starting
at step 1 if the mean h2

Obs of the 20 replicates is not within
two standard errors from either 0.02, 0.05, or 0.1.

Supplementary Figure S2 provides a schematic overview of
the above steps.

R (R Core Team 2020) was used for simulation of the popula-
tion and the infectious disease (steps 1 and 2). The code is avail-
able in supplemental files S3 (population simulation) and S4
(infectious disease simulation). The endemic disease was simu-
lated using the Gillespie algorithm (Gillespie 1976), which is the
standard procedure for stochastic simulation of infectious dis-
eases (Keeling and Ross 2008). The algorithm simulates the suc-
cessive infection and recovery events (see section SIS-model
without genetic variation) in two steps:

a) Monte Carlo sampling of the time to the next event,
b) Monte Carlo sampling of the type of event (either infection

or recovery) and the individual involved.

The probability of sampling an event and the individual in-
volved depends on the individual transmission rates (bi) and the
population recovery rate (a) (see section Introducing variation
into the SIS-model). More details are provided in Appendix II.

We started the simulations by infection of a fraction of ran-
domly chosen individuals in each herd. To speed up the simula-
tions and to prevent early dying out of the disease by chance (this
occurs when no infected individuals are left in a herd, I ¼ 0), we
started the simulations near the equilibrium prevalence. To pre-
vent an effect of the initially infected individuals on the parame-
ter estimation, we simulated a burn-in period of 500 days without
recording of data for parameter estimation. The recording period
was 1,000 days, such that the total simulated period was

1,500 days. We chose this relatively long period to allow for re-
peated records on disease status, which are essential for the esti-
mation of genetic parameters, given the highly dynamic nature
of infectious diseases (Doeschl-Wilson et al. 2014; Biemans et al.
2017). For the parameter estimation, the disease status of all indi-
viduals in each herd was recorded monthly, resulting in 33
records per individual.

In step 3, we estimated the heritability of binary disease status
with a linear mixed model including a random animal effect with
a pedigree-relationship matrix (IDi), fitted with ASReml 4.1
(Gilmour et al. 2015). Next to the random genetic effect, the model
contained a random herd effect (Herdk) and a random nongenetic
animal effect (a so-called permanent effect) to account for re-
peated records on the same individual (IDRi),

yikt ¼ lþ Herdk þ IDi þ IDRi þ eikt; (10)

where yikt is the tth binary disease record (0/1) of individual i pre-
sent in herd k, l is the overall mean prevalence of the disease in
the population, eikt is the residual variance at the observed scale.

Input values
In our simulations, the prevalence ( I

N) and the mean duration of
the infectious period (1

a) were set to 0.02 day�1, so that the average
duration of the infectious period was 50 days, consistent with
Biemans et al. (2018). This was done to reflect a common endemic
disease in livestock: digital dermatitis (DD), a bacterial infectious
claw disorder in cattle. The prevalence was set to 0.33, represent-
ing herds in the Netherlands that suffer considerably from DD
(Holzhauer et al. 2006). To obtain a prevalence of 0.33, b was set to
0.03, based on Equation (4). Note that R0 was thus 1.5, as can be
calculated from the prevalence or from b

a.
In part of the scenarios with a high desired value for h2

Obs, a
large variance in susceptibility was needed. In these scenarios,
the positive skewness of the lognormal distribution caused the
population mean susceptibility (ci

�) to be (much) larger than 1.
Since c acts as a scaling factor on b, ci

�> 1 resulted in bi
�> b

(Equation 5), which in turn resulted in a prevalence higher than
the desired value of 0.33 (Equations 4 and 6). To avoid inconsis-
tencies in prevalence between scenarios, the b was iteratively
corrected for each combination of h2

Obs and a2
P, such that the prev-

alence was 0.33 in all scenarios. This issue is further addressed in
the discussion.

The simulated population consisted of a parental generation
of 102 sires, each mated to 102 dams, with one offspring per mat-
ing, resulting in a total of 10,404 offspring with a half-sib family
structure. The offspring generation was kept in 102 herds of size
102, each consisting of offspring of six randomly sampled sires,
each sire contributing 17 offspring. This structure is somewhat
similar to a dairy cattle population, but more balanced. The dis-
ease was simulated in the offspring generation only.

The relative magnitude of genetic permanent effects (a2
P) was

set to 0.25, 0.50, 0.75, or 1. Since practically nothing is known
about the relative magnitude of genetic and nongenetic perma-
nent effects on susceptibility, we simulated values of a2

P in the
range of 0.25 to 1. Repeatabilities thereby range from equal to the
heritability to the 4-fold of the heritability.

Estimation of response to selection
The above procedure results in a genetic standard deviation in
susceptibility (rAc ) that corresponds to heritabilities of the dis-
ease status of 0.02, 0.05, or 0.10. Next, we used this rAc and the
same epidemiological model to investigate the potential response
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to selection in disease prevalence for this range of observed herit-
abilities. To do so, we performed additional simulations in which
we selected the six best out of the 102 sires, based on their true
(i.e., simulated) breeding value (TBV) for susceptibility. Each of
these six sires was mated to 1,734 randomly chosen dams, result-
ing in a total of 10,404 offspring, which were allocated randomly
to 102 herds. Thus, there was a selection in sires only. To better
illustrate the effect of selection, the starting prevalence in the off-
spring generation was kept at 0.33, even though this was higher
than the expected prevalence in that generation (since ci

� < 1 af-
ter selection). To show trends in the number of infected individu-
als over time, we used daily records of the entire 1,500 days.
Hence, the simulations will illustrate the gradual decrease of
prevalence from the initial 0.33 to the new equilibrium value.

Heritability on the underlying scale
The heritability of binary disease status can be defined on two
different scales; the observed scale of the binary record, and the
underlying scale of the linear additive model for the genetics of
susceptibility. The latter is the so-called liability scale (Dempster
and Lerner 1950; Robertson 1950). In our simulations, we esti-
mated the observed-scale heritability for binary disease status,
but the heritability of the underlying susceptibility was unknown
[note that we did not simulate residual variance in susceptibility
(Equation 7)]. To provide a heritability value for susceptibility, we
calculate heritability on the liability scale in this section. Because
our model is additive for log-susceptibility, the liability scale
refers to the logarithm of susceptibility. Note, we do not describe
new simulations or analyses in this section, but merely motivate
the calculation of a liability-scale heritability for our model.

Binary data (y) can be generated from an underlying linear
model in two different ways: using a threshold model and using a
generalized linear (mixed) model (GLMM). First, in the threshold
model, a linear model is used to specify an individual liability, in-
cluding a residual. Individuals with a liability value greater than
a predefined threshold have y¼ 1; the others have y¼ 0. Hence,
given the threshold, an individual’s liability fully determines its
observed binary record. Second, in the GLMM, a linear model
without a residual is combined with a link function to specify the
probability that y¼ 1. Subsequently, the binary records are sam-
pled from a Bernoulli distribution with this probability. Hence, in
this approach, the linear model specifies the expectation of the
binary record, E yð Þ ¼ Pðy ¼ 1Þ; not the actual record. Both models
are fully equivalent when the link function of the GLMM is the
cumulative density function (cdf) that corresponds to the proba-
bility density function (pdf) of the residual of the threshold model
(De Villemereuil et al. 2016). In the classical threshold model, for
example, the residual on the liability scale follows a standard
normal pdf, while the probit link of a GLMM corresponds to the
standard normal cdf. Thus the classical threshold model is equiv-
alent to a GLMM with a probit link [see e.g., Supplementary
Information A in De Villemereuil et al. (2016)]. The link function
in a GLMM “replaces” the liability residual in the threshold model.
For this reason, the residual liability variance is also known as
the “link variance” (De Villemereuil et al. 2016). However, a
liability-scale heritability can be defined only based on the
threshold model, because the underlying linear model in a GLMM
has no residual. (In other words, a GLMM has no “phenotypic”
variance on the underlying scale, so the denominator of heritabil-
ity cannot be determined).

We simulated binary disease status data by specifying the
probability of events (infection vs. recovery; see step 2 and
Appendix II) using the rates for these events as the rates of a

Poisson process (for the infection event this is 1� e�bci
I
N), which is

the GLMM approach. Thus, to find the heritability on the liability
scale, we have to translate our model into the corresponding
threshold model. GLMM comes with different link functions,
each relating to a different pdf of the residual of a corresponding
threshold model. As our binary disease data are generated by a
Poisson process, the appropriate link function is the complemen-
tary log-log. [This is a standard result for GLMM (McCullagh
2019), and motivated in detail for binary disease data in Anche
et al. (2015)]. Thus, we have to find the residual liability variance
of the threshold model that corresponds to a GLMM with a clog-
log link function. The link variance of a GLMM with a clog-log
link follows from the Gumbel distribution and equals p2

6

[Appendix I, Nakagawa et al. (2017)].
Therefore, we define the liability for the jth record of individual

i as

lij ¼ Aci
þ Eci

þ eli;j

where var eli;jð Þ ¼ p2

6 � 1:64, and heritability on the underlying lia-
bility scale of log-susceptibility equals:

h2
c;liab ¼

r2
Ac

r2
Ac
þ r2

Ec
þ p2

6

(11)

Data availability
Supplemental Material available at figshare: https://doi.org/10.
25386/genetics.13090076. Supplementary Table S1 contains heri-
tability estimates for different genetic standard deviations in the
logarithm of susceptibility. Supplementary Figure S2 provides a
schematic overview of our methodology. Supplemental File S3
contains the R-code for simulation of a population with genetic
variation in the logarithm of susceptibility. Supplemental File S4
contains the R-code for simulation of the endemic disease.

Results
This section starts with the genetic variances and corresponding
liability heritabilities for the logarithm of susceptibility that cor-
respond to observed heritabilities of 0.02, 0.05, and 0.10 for dis-
ease status. Subsequently, we show to what extent individual
breeding values for susceptibility are reflected in individual dis-
ease status. Next, we show the response to selection for each
value of the observed heritability. Finally, we illustrate the mech-
anisms underlying the observed response to selection, using sim-
ulations of herds consisting of individuals with similar
susceptibility.

Genetic variation in susceptibility
Table 2 shows the genetic standard deviations in the logarithm of
susceptibility (rAc ) and liability heritabilities (h2

c: liab) that corre-
spond to observed scale heritabilities of binary disease status
(h2

obs) of 0.02, 0.05 and 0.1. Results are shown for additive genetic
proportions of the permanent variance (a2

P) of 1, 0.75, 0.5 and
0.25. To illustrate the magnitude of the genetic variation in sus-
ceptibility, Table 2 also shows the genetic values for R0 for the
10% of individuals with the highest breeding values and the 10%
individuals with the lowest breeding values for susceptibility.
These R0-values are relevant for the prevalence of the infectious
disease (see Equation 4) and give an indication of the potential re-
sponse to selection. In Supplementary Table S1 actual h2

obs
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estimates for the different rAc are given with corresponding stan-
dard errors.

Table 2 shows that common observed scale heritability values
for binary disease status correspond to a substantial genetic vari-
ation in the logarithm of susceptibility (rAc ). An observed scale
heritability of 0.02, for example, corresponds to a genetic stan-
dard deviation in susceptibility of 0.3. With a rAc of 0.3, the mean
breeding value of the 10% of individuals with the lowest breeding
values for susceptibility (A�c ) is –0.53, accordingly, the mean
breeding value of the 10% of individuals with the highest breed-
ing values (Aþc ) is 0.53. Corresponding genetic susceptibility val-
ues (c� ¼ eA�c ; cþ ¼ eAþc ) for these individuals are 0.59 and 1.70,
which results in values for R0 of 0.59*1.5¼ 0.88 and 1.7*1.5¼ 2.54
respectively. There is thus an almost 3-fold genetic difference in
R0:between the highest and lowest 10% of individuals. This differ-
ence is substantial in itself, but more importantly, R0 for the 10%
individuals with the lowest susceptibility are below 1, which
means that an individual with such susceptibility, on average,
infects less than 1 herd mate. Implying that an infectious disease
will die out. For higher values of observed heritability, the corre-
sponding genetic standard deviation increased considerably,
resulting in values for R0 even further below 1 for a h2

obs of 0.05
and 0.10.

The relative magnitude of genetic versus environmental per-
manent effects on susceptibility (a2

p) only had a minor effect on
the observed heritability, as illustrated by the similar values of
the genetic standard deviation in susceptibility needed to obtain
a certain observed heritability. The effect of a2

p was substantial
only for an observed scale heritability of 0.10. In this case, we
needed a considerably higher genetic standard deviation in sus-
ceptibility for lower values of a2

p, especially for a a2
p ¼ 0:25.

Similarly, the liability heritability is quite consistently, approxi-
mately twice the value of h2

obs, across the different values of a2
p.

In conclusion, a remarkably large genetic variation in suscep-
tibility is needed to reproduce common observed scale heritabil-
ities for disease status. As a consequence, a considerable
proportion of the population had genetic R0 values smaller than
one.

The relationship between susceptibility and
individual disease status
Figure 2 shows the relationship between breeding value for sus-
ceptibility and disease prevalence (over all herds) when herds are
composed of offspring of random sires. The figure shows the
prevalence over time (mean of 20 replicates) in the 10% most and
10% least susceptible individuals in the population, for a2

p ¼ 1.
Results were very similar for other values of a2

p, as expected given
the minor effect shown above.

The distance between two lines increases with h2
obs, because a

higher h2
obs corresponds to a greater genetic variation in suscepti-

bility. For an observed heritability of 0.02, the prevalence in the

10% most susceptible individuals is about a factor of 2 higher
than in the 10% least susceptible individuals (25% vs. 50%). This
difference of about 25% points is considerable given the very low
heritability. For an observed heritability of 0.10, the distance
increases up to a factor of 4 (15% vs. 60%). Hence, though a heri-
tability of 0.10 is only a moderate value, the corresponding differ-
ence in prevalence is large.

A comparison of Figure 2 and Table 2 shows that the actual
prevalence in the 10% most and least susceptible individuals
(Figure 2) is considerably different from the prevalence that is
expected based on the values for R0 (Table 2). For a heritability of
0.10, for example, the actual prevalence is about 0.6 in the 10%
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Figure 2 Population prevalence with random herds. Prevalence (P) of the
infectious disease in the total population (over all herds) for a2

p of 1 and
different h2

obs. Lines indicate the 10% of individuals with highest and the
10% with lowest breeding value for susceptibility for the respective h2

obs,
herds formed by random allocation of sires.
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Figure 3 Prevalence in six herds after sire selection. Number of infected
individuals (I) and prevalence (P) over time in six representative herds,
represented by the different colors, consisting of offspring from six sires
selected for low susceptibility. h2

obsof 0.05, a2
p of 1. Each herd consists of

102 individuals.

Table 2 Genetic standard deviation in susceptibility required for observed scale heritability of disease status of 0.02, 0.05, and 0.10

h2
obs 0.02 0.05 0.10

a2
P rAc

h2
c;liab R0�10% R0þ10% rAc

h2
c;liab R0�10% R0þ10% rAc

h2
c;liab R0�10% R0þ10%

1.0 0.30 0.05 0.88 2.54 0.50 0.13 0.62 3.62 0.75 0.25 0.40 5.62
0.75 0.30 0.05 0.88 2.54 0.50 0.13 0.62 3.62 0.75 0.23 0.40 5.62
0.50 0.30 0.05 0.88 2.54 0.50 0.12 0.62 3.62 0.85 0.23 0.34 6.70
0.25 0.30 0.04 0.88 2.54 0.55 0.11 0.57 3.95 1.10 0.19 0.22 10.4

Required genetic standard deviation in the logarithm of susceptibility (rAc ), liability heritability for susceptibility h2
c;liab and R0 for the 10% of individuals with the

highest (R0þ10% ) and 10% with the lowest (R0�10% ) values for susceptibility for each combination of a2
P(rows) and h2

obs (columns).
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most susceptible and about 0.15 in the 10% least susceptible indi-
viduals, while the expected prevalence based on R0 is 0.82 and 0,
respectively (see Table 2 and Equation 4). This indicates that the
genetic susceptibility values are not completely reflected in the
disease status of individuals. This phenomenon occurs because
individual disease status depends not only on individual suscep-
tibility, but also on exposure to infectious herd mates. With ran-
domly composed herds, individuals experience similar exposure
to infectious herd mates, irrespective of their susceptibility. For
this reason, differences in prevalence between subgroups in the
population were smaller than expected based on their genetic
value for Ro.

Response to selection
To investigate the effects of selection for lower susceptibility on
the prevalence of the disease, the six sires with the lowest true
breeding values for susceptibility were selected to produce all off-
spring. Figure 3 illustrates the effect of this single generation of
sire selection on the prevalence in six herds for the scenario with
a a2

p ¼ 1; ðh2
c;liab ¼ 0:13Þ and a h2

obs ¼ 0:05. Herds were selected
such that they represent the different prevalence patterns we ob-
served for this scenario in the simulations. The figure shows that
the prevalence in all herds fluctuates around a decreasing trend
from the starting prevalence of 0.33. Eventually, the infection
“dies out” in some herds, which means that there are no infec-
tious individuals anymore to sustain infection.

For a more extensive investigation of response to selection,
Figure 4 shows the proportion of infection-free herds over time
(mean of 20 replicates), for all 12 scenarios. For each scenario, we
selected the six sires with the lowest true breeding value for sus-
ceptibility to produce all offspring. The figure clearly shows that
the disease disappeared from a substantial proportion of herds.
Even when the observed heritability was only 0.02, 20 to 50 of the
102 herds became infection-free after a single generation of sire
selection.

The response was larger with higher h2
obs; for the highest value

(h2
obs ¼ 0:10; a2

p 6¼ 0:25), the infection was eliminated from practi-
cally all herds. Again the relative magnitude of genetic perma-
nent effects (a2

PÞ only had a considerable effect when it was 0.25.
The lines for the other values of a2

P are very close to each other
for a given h2

obs. The response for a2
P ¼ 0:25 and h2

obs ¼ 0:10 seems
not in accordance with this general pattern. For example, it is
lower than the response for a2

P ¼ 0:25 and h2
obs ¼ 0:05. This is most

likely a consequence of the very large genetic variance in

susceptibility required to reproduce a heritability of disease sta-
tus of 0.10 for that scenario, together with the lognormal distribu-
tion of c (see Discussion).

The mechanism underlying response to selection
Results in Figure 4 show that the responses to selection are con-
siderably greater than the differences in disease status between
the 10% most and 10% least susceptible individuals within a gen-
eration (Figure 2). We hypothesize that this difference originates
from positive feedback effects in the transmission dynamics,
resulting in some degree of herd immunity in the results in
Figure 4. To investigate this hypothesis and clarify the mecha-
nism underlying these unexpectedly large responses to selection,
we simulated a population where individuals were grouped into
herds based on their breeding value for susceptibility. The first
herd consisted of the 102 least susceptible individuals, the second
herd of the 102 individuals with the second lowest breeding val-
ues for susceptibility, and so forth, until the last herd, consisting
of the 102 most susceptible individuals. The herds consisting of
the least susceptible individuals resemble the herds after selec-
tion, since herds consist entirely of individuals with low suscepti-
bility in both cases. Hence, similar to the case with selection,
individuals with low susceptibility are accompanied by herd
mates with low susceptibility, which reduces their exposure to
the infectious agent.

Figure 5 shows the prevalence in herds composed of the 10%
most and 10% least susceptible individuals based on breeding
value for susceptibility. Comparison to Figure 2 shows that this
formation of herds substantially increases the difference in prev-
alence between the most and least susceptible individuals. For an
h2

obs of 0.02, for example, the difference increased from 25% ver-
sus 50% in random herds to 5% versus 60% in sorted herds. For
an h2

obs of 0.10, it increased from 15% versus 60% to � 0% versus
80%. The prevalence in the top and bottom individuals in Figure 5
is more in accordance with the expected prevalence based on the
values for R0 (Table 2). The bottom lines in Figure 5, which repre-
sent the herds consisting of the least susceptible individuals,
show a clear decreasing prevalence over time, and reach zero for
all three observed heritabilities. This fully agrees with the R0 val-
ues below 1 for these individuals.

This observation clearly shows that the susceptibility of herd
mates has a considerable effect on the disease status of an indi-
vidual. An individual is more often infected when its herd mates
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Figure 4 Infection-free herds after sire selection. Proportion of infection-
free herds over time for all combinations of h2

obs and a2
p , herds consisting

of offspring from six sires selected for low susceptibility. Different colors
represent different h2

obs, different line types represent different a2
p . The

initial prevalence was 0.33 in each herd.
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Figure 5 Population prevalence with nonrandom herds. Prevalence (P) of
the infectious disease in the total population (over all herds) for a2

p of 1
and different h2

obs Lines indicate the 10% of individuals with highest and
the 10% with lowest breeding value for susceptibility for the respective
h2

obs, herds formed by allocation of individuals based on breeding value
for susceptibility.
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have a higher than average susceptibility, and less often when its
herd mates have a lower than average susceptibility, on top of
the effect of the susceptibility of the individual itself. This mecha-
nism explains the larger than expected response to selection;
when all individuals in a herd descend from superior parents, not
only the individual itself will be less susceptible, but it will also
be accompanied by herd mates that are less often infected. This
reduces the exposure of the individual to the infectious agent.
These results show that susceptibility not only has a direct effect
on the disease status of the individual itself, but also an Indirect
Genetic Effect (IGE) on the disease status of its herd mates (see
also Anche et al. 2014).

Discussion
Here, we showed that low-heritability estimates for infectious
disease status (0/1¼healthy/diseased) are fully consistent with a
large amount of genetic variation in disease susceptibility. The
genetic variation needed to reproduce an observed-scale herita-
bility of only 0.02 roughly corresponds to R0-values of 2.5 and 0.9
in the 10% top and 10% bottom-ranking individuals. This large
difference in R0 corresponded to a large reduction in prevalence
of the disease after selection, and even eradication of the disease
occurred after a single generation of sire selection in our simula-
tions.

The possibility to arrive at a prevalence of zero using selection,
i.e., herd-level eradication, is an important result. It contradicts
predictions based on classical quantitative genetic models for bi-
nary traits that do not account for the transmission of infection
between individuals, such as the classical threshold model by
Dempster and Lerner (1950). For binary traits, the classical model
shows that the observed-scale heritability approaches zero when
prevalence approaches zero or one (Robertson 1950). Hence, con-
tinued selection against an infectious disease will reduce the her-
itability in the threshold model, so that response to selection will
approach zero as well, and it is impossible to reach a prevalence
of zero.

The difference between our findings and predictions based on
classical models originates from positive feedback effects occur-
ring in the transmission of infectious diseases. These feedback
effects entail that individuals with a low susceptibility are not
only less likely to become infected themselves, but they also in-
fect fewer herd mates, just because they are less likely to be in
the infectious state. This shows that genetic variation in disease
susceptibility leads to so-called Indirect Genetic Effects (IGE). In
general, IGE is an effect of the genotype of an individual on the
trait values of other individuals (Griffing 1967; Moore et al. 1997;
Muir 2005; Bijma 2014). The fact that genetic variation in suscep-
tibility inevitably leads to IGE was also shown by (Anche et al.
2014) and (Bijma 2020). The larger difference in prevalence be-
tween the least and most susceptible individuals when allocation
to herds was based on breeding value for susceptibility, com-
pared to allocation at random, illustrates this IGE of susceptibil-
ity.

The response to selection we found can also be placed in the
more general framework of the Price equation (Price 1970). The
Price equation states that response to selection in a trait is the
sum of two components. The first component represents the con-
tribution directly attributable to selection. The second term rep-
resents the effect due to “incomplete fidelity of transmission of
the trait value to the next generation” (Gardner 2020). This trans-
mission term defines nonselective effects, for example, a differ-
ence in nonadditive effects between the parent and offspring

generation, due to a change in allele frequency. The response to
selection in prevalence can be described in two ways using the
Price equation, depending on whether the IGE of susceptibility is
incorporated into the selection term or into the transmission
term (Bijma 2020). The common breeding values for disease sta-
tus from the linear animal model do not capture the IGE of sus-
ceptibility and therefore represent the latter case, where the IGE
is considered a nonselective effect arising from a change in the
environment (less exposure to infectious individuals in the popu-
lation). However, one can also define a so-called total breeding
value for prevalence, including both the direct and indirect ge-
netic effect of susceptibility (Bijma 2011, 2020). In this approach,
the indirect effect of susceptibility is shifted into the selection
term. The latter approach makes sense, because the IGE due to
genetic variation in susceptibility is a special kind, which arises
entirely via the direct genetic effect on the disease status of the
individual itself. Hence, the direct and indirect genetic effects due
to susceptibility are fully correlated, such that selection on sus-
ceptibility is automatically on the indirect effect as well. This
complete correlation also increases the total genetic variation in
disease status (Bijma 2010). Consequently, the breeding value for
prevalence predicts a larger response in prevalence because of se-
lection on susceptibility than the ordinary breeding values for
disease status. Especially at lower prevalence, the selection dif-
ferential in susceptibility required to eliminate a disease is much
smaller than expected based on the classical breeding value for
disease status (Bijma 2020).

The positive feedback mechanism described above is well
known in epidemiology, with herd immunity (R0 < 1) as the most
prominent example (Fine 1993). As illustrated by the eradication
of rinderpest in cattle, it is not necessary that all individuals are
fully resistant to infection to reach herd immunity. If a sufficient
fraction of the population is vaccinated, a disease will have no
possibility to transmit, because there are not enough sufficiently
susceptible individuals in the population to sustain transmission.
For herd immunity (i.e., for R0), it is in principle irrelevant
whether a certain reduction in susceptibility is obtained by ge-
netic selection or by vaccination causing incomplete immunity,
because the positive feedback mechanisms underlying herd im-
munity result from the reduction in susceptibility, independent
of how the reduction is obtained, and are therefore equally pre-
sent in both cases. Thus, as with vaccination, a sufficient fraction
of the population should have a sufficiently low susceptibility to
reach herd immunity using genetic selection.

In our model, we simulated genetic variation in susceptibility
only. Next to susceptibility, the transmission and prevalence of
infectious diseases is affected by two other host traits: infectivity
and the duration of the infectious period (Doeschl-Wilson et al.
2011). Infectivity is the propensity of an infected individual to
transmit the disease to a susceptible individual per unit of time.
It has an impact only on the disease status of other individuals,
not on the disease status of the individual itself. In other words,
infectivity only has an indirect genetic effect, no direct genetic ef-
fect. Consequently, the common genetic analysis of the binary
disease status of the individual does not capture genetic variation
in infectivity (Lipschutz-Powell et al. 2012). Variation in infectivity
thereby does not contribute to the established values of the heri-
tability of disease status, which were the starting point of our
analysis. Incorporating variation in infectivity in our simulations
would therefore not change the genetic variation in susceptibility
needed to arrive at the target observed heritabilities. However, if
host infectivity shows genetic variation and it is incorporated in
selection, this would increase the potential of the population to
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respond to selection for lower disease prevalence (e.g., Tsairidou
et al. 2019).

The second trait, the duration of the infectious period, relates
to the ability of an individual to recover from infection, and deter-
mines the time an individual stays in the infectious state. In con-
trast to infectivity, variation in duration of the infectious period
is directly reflected in an individual’s disease status. In fact, it is
the reverse of susceptibility, since it determines the rate at which
individuals change from the infected to the susceptible state. In
an earlier analysis with the same SIS-model, we found that the
effect of variation in the duration of the infectious period on the
heritability of disease status is comparable to that of susceptibil-
ity. Moreover, just like susceptibility, the duration of the infec-
tious period clearly has an indirect effect as well. If individuals
have a short infectious period, they are less likely to infect others,
just because they are in the infectious state for a shorter period
of time. Because the effects of the duration of the infectious pe-
riod are similar to those of susceptibility, we, therefore, chose to
simulate the genetic variation in susceptibility only.

In some scenarios, we needed to simulate a large variance in
susceptibility to reproduce the desired heritability of disease sta-
tus. A large variance in susceptibility had two counteracting
effects on the prevalence of the disease in our simulations: (1) an
increase in prevalence because c� is much larger than 1 leading to
a higher R0; (2) a decrease in prevalence because increasing het-
erogeneity among individuals reduces the prevalence (Springbett
et al. 2003). With a small variance these two effects balanced
each other, but with increasing variation the first effect became
dominant, such that the actual prevalence in some of the simula-
tions was considerably higher than the desired value of 0.33. To
prevent inconsistencies in the estimation of heritability and re-
sponse to selection, we needed to correct for this higher preva-
lence, to obtain a prevalence of 0.33 in all scenarios. A prevalence
much lower or higher than 0.33, close to 0 or 1, would have the ef-
fect that much higher genetic variances are needed to reach our
target observed heritabilities. On first sight, the correction should
ensure that the property b ci

� is equal to 0.03, either by decreasing
b to 0:03 ci

� or by setting ci
� to 1 (via the introduction of an extra

term in Equation 7). However, such a correction of either b or ci
�

resulted in a prevalence (much) lower than 0.33 because of the
decreasing effects of heterogeneity on prevalence. We, therefore,
chose to iteratively correct b until actual prevalence was 0.33 in
all scenarios.

We observed a considerably lower response to selection for
a2

p ¼ 0:25 and h2
obs ¼ 0:10 than for the other scenarios. The total

(genetic þ environmental) permanent susceptibility variance
needed to reproduce h2

obs ¼ 0:10 was exceptionally large for this
scenario. It could even be considered unrealistically high, since it
corresponds to a coefficient of variation of 111% which is above
maximum values observed in literature (e.g., Houle 1992). Mean
population susceptibility (ci

�) was much larger than 1 for this vari-
ance, because of the skewness of the lognormal distribution of c.
We prevented effects of this higher mean susceptibility on the
prevalence by the correction of b described in the previous para-
graph. In case of selection, however, (extremely) high individual
dam and environmental effects, resulting from the highly skewed
distribution of susceptibility, cause a much higher average sus-
ceptibility in the offspring than would be expected from the
mean breeding value of the selected sires. This higher susceptibil-
ity in the offspring resulted in a larger than expected bc�

i, and con-
sequently in a lower proportion of infection-free herds compared
to the other scenarios. Because the combination of a2

p ¼ 0:25 and

h2
obs ¼ 0:10 leads to unrealistically high variation in susceptibility,

we feel this issue is not very relevant.
To illustrate the potential response to selection, we selected

sires on their true (simulated) breeding values for susceptibility.
We took this approach to reveal the additive genetic variance
available for genetic improvement and to clarify the mechanisms
underlying response to selection, without interference of the ac-
curacy of breeding value estimation. However, the correlations
between the estimated breeding values for disease status from
the linear model and the true breeding values for log-
susceptibility of sires were between 0.75 (h2

obs of 0.02) and 0.90
(h2

obs of 0.10). This indicates that differences due to selecting sires
based on their EBV for disease status instead of selecting them on
their TBV for susceptibility would be relatively small. These high
accuracies likely result from the large number of offspring per
sire in our simulations and the intermediate prevalence of the
disease, since individual differences in susceptibility are best visi-
ble at intermediate prevalence. If the prevalence is close to zero,
the accuracy of EBVs will be smaller.

Even though our results clearly show that selection against in-
fectious diseases should be much more promising than the com-
mon low heritability for disease status suggests, questions may
arise as to whether our conclusions are achievable in practice
and are not too optimistic. These questions might be motivated
by the limited availability of empirical examples of large response
to selection in disease prevalence. Even though the common
quantitative models ignore indirect genetic effects, the previous
paragraph shows that they still relatively accurately ranked the
individuals on their susceptibility, which suggests that more
examples of large response might be available than the two we
found and mentioned in the introduction. In the next paragraphs,
we will identify important aspects related to the visibility and va-
lidity of our results in real data examples.

A first important point is that the feedback effects underlying
our response are only effective if the entire herd is selected for
low susceptibility. If only part of a herd is selected for low suscep-
tibility, the offspring of selected parents are still exposed to (the
offspring of) nonselected individuals with higher susceptibility. In
practice, this might for instance be the case in dairy cattle herds,
where individuals usually belong to different generations.
Another complicating factor is that herd-year effects in models
for breeding value estimation may hide the feedback effects.
When the model contains the direct genetic effect only, the IGE-
component of genetic differences in the prevalence of the disease
between herds, or between consecutive years of the same herd,
will end up in the herd-year effect, and thus be attributed to dif-
ferences in herd management. Hence, response due to positive
feedback (i.e., due to IGE) is difficult to see in classical quantita-
tive genetic analysis.

A key assumption underlying our results is that the pathogen
can replicate only in the host individual, meaning that a reduc-
tion in individual host susceptibility fully translates in reduced
exposure of the host population to the pathogen. When a patho-
gen is able to replicate outside the host population, for instance
in the environment or another species, the impact of the feed-
back effects on transmission will be smaller. An example of such
a case is Bovine Tuberculosis, where badgers are an external res-
ervoir in which the pathogen can replicate (Böhm et al. 2009).
Because the key mechanism underlying our results is the positive
feedback of selection for lower susceptibility, we expect that as
long as no external replication occurs, our conclusions remain
valid. For instance, in case where the transmission process is
delayed because of a latency period between the moment of
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infection and the time an individual becomes infectious to
others, or when the pathogen can survive but not replicate in the
environment. The feedback effects in transmission are still pre-
sent in those cases; only the total duration of the infection-cycle
is prolonged (Ma and Earn 2006).

A general problem in relation to management of infectious
diseases is the evolutionary response of pathogens to the applied
interventions, such that these interventions become less effec-
tive. Pathogens are known to be able to adapt to every type of in-
tervention, with the widespread antibiotic resistance as probably
the best-known example (Davies and Davies 2010; Kennedy and
Read 2017). Here we discuss briefly what breeders could do to
minimize the risk of pathogen adaptation. Importantly, evolution
of pathogen resistance can only occur when there is transmis-
sion. Consequently, the most promising interventions with re-
spect to prevention of resistance development are those that
prevent transmission to occur (R0 < 1) as soon as possible. The
higher the selection pressure put on the pathogen population, es-
pecially when targeting the pathogen in multiple ways, the lower
the probability of development of resistance (REX Consortium
2013). A well-known example is combination therapy for HIV,
which is relatively successful in preventing pathogen resistance
development by targeting the pathogen in multiple ways
(Kennedy and Read 2017).

With respect to genetic selection, the above paragraph implies
that strong selection for polygenic resistance should minimize
the risk of pathogen adaptation. Plant breeders, for example, rec-
ognize that breeding for broad-spectrum resistance is the most
sustainable way to manage infectious diseases such as potato
blight (Vleeshouwers et al. 2011). In livestock populations, results
of Genome-Wide Association Studies show that important en-
demic infectious diseases, such as mastitis and digital dermatitis
are highly polygenic traits (Tiezzi et al. 2015; Biemans et al. 2019).
This would argue for a few generations of strong selection for
lower susceptibility of the host population. However, such selec-
tion is currently uncommon in practice because of undesired cor-
related responses in other traits in the breeding goal, such as
yield traits. For mastitis, for instance, the correlation of disease
status with milk yield is positive, with most estimates between
0.20 and 0.55 (Rupp and Foucras 2010). Selection solely for a
lower prevalence of mastitis would thus result in a negative (cor-
related) response in yield. Nevertheless, many questions about
the adaption of pathogens to artificial selection in livestock are
still unanswered.

The results of our simulations provide a new perspective on
genetic selection for lower infectious disease prevalence, and
show that this might lead to much better results than current
quantitative genetic models predict. Because of the complicating
factors described in the above paragraphs, carefully designed se-
lection experiments are needed to confirm our results with real
data examples. Next to confirmation of our results with real
data, work into the genetic background of the disease traits is
needed as well, particularly on the presence of genetic variation
in infectivity (Lipschutz-Powell et al. 2012). The use of a method
for statistical genetic analysis that accounts for the dynamic na-
ture of transmission and for differences in infection exposure be-
tween individuals is essential here, and might also increase the
response to selection. Examples of such methods are models us-
ing Bayesian inference (Pooley et al. 2020) and Generalized linear
mixed models (Biemans et al. 2019).

In this study, we used simulations of an established epidemio-
logical model to demonstrate that genetic selection against infec-
tious diseases is much more promising than expected based on

commonly used quantitative genetic models. As most models of

biological systems, it will be needed to tailor our model to fit cer-

tain specific cases. However, by incorporating the positive feed-

back effects that have been demonstrated time and again in the

field of epidemiology, our model provides a fundamentally better

description of infectious disease transmission than the classical

quantitative genetic models for binary traits, which do not ac-

count for feedback effects. The main implication for breeders of

this work is that a low ordinary additive genetic variance in bi-

nary disease status, as often observed in practice, should not be

interpreted as a limiting factor for potential response to selection.

Instead, we showed that these low values are fully consistent

with a large amount of available genetic variation in disease sus-

ceptibility, which in turn translates into a larger than expected

response to selection in the prevalence of the disease. Feedback

effects occurring in transmission are of crucial importance for

this response, and make it possible to eradicate infectious dis-

ease, at least in theory.
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Appendix

I. Derivation of link variance for the
complementary log-log link function
The link variance for the liability model as presented in Equation

(11) in the main text, can be derived by calculation of the vari-

ance belonging to the pdf of the inverse of the clog-log link func-

tion. This pdf is obtained by differentiation of the inverse of the

complementary log-log function.
The formula for the complementary log-log link function is:

x pð Þ ¼ log �log 1� pð Þ
� �

The inverse of this function is:

p xð Þ ¼ 1� e�ex

Differentiation of the inverse results in the formula for the pdf:

f xð Þ ¼ ex�ex

The variance of this probability density function can be

obtained by using the general formula for the variance of a func-

tion:

VAR Xð Þ ¼ E X2ð Þ � E Xð Þ2

in which E denotes the expected value. The expected values are

calculated by integration of f xð Þ:

E X2ð Þ ¼
ð1
�1

x2f xð Þx ¼ c2 þ p2

6

EðXÞ ¼
ð1
�1

xf xð Þdx ¼ �c

in which c denotes the Euler-Mascheroni constant. VAR Xð Þ
becomes:

VAR Xð Þ ¼ c2 þ p2

6
� �cÞ2 ¼ p2

6

�

In fact, the inverse of the clog-log and its corresponding pdf are
(mirrored) standard Gumbel distributions, the variance of the
standard Gumbel distribution is indeed equal to p2

6 .

II. Gillespie-algorithm
In the simulation of the infectious disease, the time to the next
event is sampled from an exponential distribution, which
requires calculation of the total rate parameter r, defined as the
sum of all individual transmission and recovery rates:

r ¼
X

i

bi
I
N
þ aI

After sampling a time to the next event based on r, the type of
event and the individual involved in the event is sampled based
on the contribution of each individual to r, such that the probabil-
ity of infection for a certain susceptible individual i is bi

I
N

r and the
probability of recovery for a certain infected individual j is a

r (this
a is the same for each individual in our simulations). The effect
of individual susceptibility on the probability of infection is thus
multiplicative: An individual with a susceptibility of two has a
two times higher bi than an average individual with a susceptibil-
ity of one. Consequently, given same exposure to infectious indi-
viduals, its share in r, and thus its probability of infection, is two
times higher as well.
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A.D. Hulst et al. | 13


	tblfn1
	app1

