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Abstract Quantitative multistage carcinogenesis models

are used in radiobiology to estimate cancer risks and

latency periods (time from exposure to clinical cancer).

Steps such as initiation, promotion and transformation have

been modeled in detail. However, progression, a later step

during which malignant cells can develop into clinical

symptomatic cancer, has often been approximated simply

as a fixed lag time. This approach discounts important

stochastic mechanisms in progression and evidence on the

high prevalence of dormant tumors. Modeling progression

more accurately is therefore important for risk assessment.

Unlike models of earlier steps, progression models can

readily utilize not only experimental and epidemiological

data but also clinical data such as the results of modern

screening and imaging. Here, a stochastic progression

model is presented. We describe, with minimal parame-

terization: the initial growth or extinction of a malignant

clone after formation of a malignant cell; the likely dor-

mancy caused, for example, by nutrient and oxygen

deprivation; and possible escape from dormancy resulting

in a clinical cancer. It is shown, using cohort simulations

with parameters appropriate for lung adenocarcinomas, that

incorporating such processes can dramatically lengthen

predicted latency periods. Such long latency periods

together with data on timing of radiation-induced cancers

suggest that radiation may influence progression itself.

Introduction

The importance of tumor progression

Tumor progression is a late step in carcinogenesis, during

which previously transformed, neoplastic cells may pro-

liferate, become more malignant and evolve into cancer

that presents the first clinical symptoms. In radiation risk-

estimation, early steps such as initiation, promotion and

transformation have been extensively investigated (Lue-

beck and Hazelton 2002; Moolgavkar and Luebeck 2003;

Sachs et al. 2005; Heidenreich et al. 2007; Little et al.

2008). Progression, however, has as yet received less

attention. Indeed, current quantitative radiobiology models

often approximate progression as merely a fixed time lag

from the appearance of the first malignant cell until clinical

cancer incidence.

This deterministic fixed lag time approximation over-

looks important mechanisms underlying progression,

which may significantly affect risk assessment. After

transformation has produced a malignant cell, this lesion

needs to progress through various phases before reaching a

clinical stage. First, it needs to escape extinction in a sto-

chastic birth–death proliferation process. If the lesion does

start to expand, immune suppression or lack of neo-vas-

cularization may arrest or drastically slow its clone’s
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growth, leading to a dormant microscopic tumor (Aguirre-

Ghiso 2007; Kim et al. 2007; Koebel et al. 2007). A sub-

sequent switch from the dormancy phase to aggressive

proliferation may take years or even be postponed indefi-

nitely (Naumov et al. 2008). Hence, progression duration

may be a major part of the latency period between radiation

and clinical cancer.

The effects of stochastic proliferation of malignant

lesions has been addressed and discussed in various ways

but quantitative analyses have been limited to theoretical

formalisms or to modeling rodent experiments (Dewanji

et al. 1991; Yang and Chen 1991; Luebeck and Moolgav-

kar 1994; Tan and Chen 1998; Smith and Portier 2000).

Recently, we analyzed the effect of stochastic extinction on

progression distributions and hazard functions for simu-

lated cohorts based on atomic bomb survivor data (Fakir

et al. 2009). All these studies analyzed only a single aspect

of progression, early stochastic proliferation of malignant

cells, leading to extinction or clonal growth. We suggest

that more investigations of progression, especially of tumor

dormancy, are needed for the following reasons

1. There is strong evidence that microscopic tumors are

commonly present in adults in the form of dormant

lesions (Black and Welch 1993). In such cases,

progression is presumably delayed or arrested by

nutrient or oxygen deprivation, signals from the

microenvironment and interactions with associated

stromal, immune system, or endothelial cells (Aguirre-

Ghiso 2007).

2. Progression is the one relevant process where exten-

sive human data are directly available. Indeed,

advances in molecular technologies are continuously

providing more insights into the pathology of the

tumors and the process of their development in the

asymptomatic state or after clinical detection (Bunn

2002; Liu et al. 2008). In addition, continuing screen-

ing programs and measurements of sojourn time, the

interval during which the disease does not produce

symptoms leading to diagnosis but is already detect-

able by screening tests, are providing more precise and

quantitative data (Chien and Chen 2008; Chien et al.

2008).

3. Reactivation of dormant lesions occurs after other

perturbations, e.g. surgery (Veronesi et al. 1995;

Udagawa 2008) and trauma (El Saghir et al. 2005;

Naumov et al. 2009). Recurrent cancer following

treatment is reviewed in (Naumov et al. 2008).

Radiation as well can act directly on progression for

example by altering angiogenesis or immune responses

[reviewed, e.g. in (Cunha et al. 2003; Folkman and

Kalluri 2004; Ohuchida et al. 2004)]. Clinical cancer

presentation for radiation-induced reactivation of a

pre-existing dormant neoplasm is likely to occur

earlier than for radiation initiation, promotion, or

transformation. Hence, radiation perturbations of pro-

gression may be especially important both in risk

estimation and for prevention or amelioration

measures.

The two-stage clonal expansion carcinogenesis model

The most commonly used biologically based approach to

quantitative cancer modeling and radiation risk estimation

is the two-stage clonal expansion (TSCE) model (Mool-

gavkar and Venzon 1979; Luebeck and Hazelton 2002).

Here, we analyze radiation-influenced carcinogenesis with

the TSCE model augmented by a more detailed treatment

of progression.

The TSCE model assumes that cancer results from

normal stem cells after two sequential stages in a process

comprising four steps (Fig. 1a). The steps can be described

as follows. Initiation: a step in which normal stem cells

acquire alterations such as mutations and thereby become

stage 1 cells, referred to as pre-malignant cells. Promotion:

a second step where pre-malignant cells proliferate with a

slight growth advantage over the surrounding normal stem

cells. Transformation: a step in which a pre-malignant cell

acquires an additional alteration and becomes a stage 2 (i.e.

malignant) cell. Progression: a final step leading from

malignant cells to clinical cancer. Promotion and progres-

sion may last years or decades, while one initiation or

transformation event is comparatively very rapid. In the

standard TSCE model, progression is often approximated

by a fixed relatively short lag time (5–10 years) (Luebeck

et al. 1999; Moolgavkar and Luebeck 2003; Jacob et al.

2007). Here, we assume instead that progression can be

affected by complex processes involving stochastic cell

dynamics, tissue level systems effects, and intercellular

interactions. Even when more than two stages are assumed,

multi-stage models for radiogenic carcinogenesis usually

assume the last step is automatic. A formalism similar to

our progression model in principle could, and in our

opinion probably should, be used to replace this last step.

Progression: early proliferation of malignant cells

Primary malignant lesions are subject to a stochastic birth–

death process and hence may become extinct soon after

their formation, in which case clinical cancer can only arise

from malignant cells formed later. In a simulation of lung

cancer in atomic bomb survivors, we have previously

shown that progression probability distributions for the lag

time from first malignant cell to first invasive tumor can

extend to more than 50 years (Fakir et al. 2009). While
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modeling stochastic growth of malignant cells considerably

improves the understanding of tumor progression, it may

not entirely explain large tumor latency periods and dis-

crepancies between observed microscopic tumors and

clinically observed cancers.

Progression: dormancy and invasiveness

Non-extinct malignant clones or microscopic neoplastic

lesions may persist in an asymptomatic state for years or

decades (Aguirre-Ghiso 2007). This behavior has been

shown for primary malignant tumors, for micrometastases

and for residual disease, after treatment (Udagawa 2008).

A corroboration of these phenomena is the observation that

the frequency of microscopic neoplastic lesions in adults is

much larger than the frequency of invasive cancers (Black

and Welch 1993; Folkman and Kalluri 2004).

These large delays are generally attributed mainly to

tumor dormancy. The specific features of dormancy may

vary; they depend on the phase in tumor growth and the

underlying mechanisms. In fact, dormancy can be related

to single dormant cells subject to cell cycle arrest or to

microscopic dormant tumors that are in a state of balanced

apoptosis and proliferation resulting in no net increase in

tumor mass (Aguirre-Ghiso 2007; Naumov et al. 2008;

Udagawa 2008). In the second case, dormancy is usually

due to immune suppression or the lack of neovasculariza-

tion (Naumov et al. 2008). In the following, we refer to

dormancy as the phase in the progression step where the

growth of microscopic malignant lesions is inhibited. It can

be considered as a dynamic equilibrium from which tumors

may re-emerge when that equilibrium is disrupted. If the

tumor escapes dormancy, it resumes growing at a net per-

cell growth rate comparable with the pre-dormancy rate

(Naumov et al. 2006b).

Methods

In order to account for accidental extinction of malignant

clones and tumor dormancy, we augmented the TSCE

model (Fig. 1a) with a progression model involving a

sequence of three successive phases (Fig. 1b): 1, early

stochastic proliferation of malignant cells that leads either

to clonal extinction or to dormancy; 2, a stochastic dor-

mancy duration that depends on tumor type and site and

can, in some cases, continue indefinitely; 3, invasiveness

during which the tumor resumes growing and causes the

first symptoms. Parameter choices were taken to be those

appropriate for lung adenocarcinomas. We next describe

methods for analyzing these three phases of progression,

then implementation of the augmented model, then the

parameter choices.

Progression phase 1: initial birth–death process

Non-extinct malignant lesions grow first exponentially and

homogeneously, being mainly composed of proliferative

cells. Then because of limited resources (number of cap-

illaries in the tissue and oxygen diffusion within the

tumor), some cells may become hypoxic, anoxic, or

necrotic as the volume of the tumor increases (Adam and

Maggelakis 1990). The tumor then shows a certain degree

of heterogeneity in its composition, its growth gradually

slows and its volume converges to a limiting value, usually

called carrying capacity. The growth of tumors is thus

better described by S-shaped curves of non-homogeneous

systems (see e.g. Gyllenberg and Webb 1990; Michelson

and Leith 1997; Sachs et al. 2001; Albano and Giorno

2006). This limited growth may, actually, occur at different

levels of tumor proliferation controlled by a sequential

increase of the carrying capacity. Indeed, Speer et al.

(1984) showed that stepwise growth offers a better repre-

sentation of in vivo data for tumor growth (Speer et al.

1984). In our study, microscopic dormancy is assumed to

be a first pause in tumor proliferation. Growth profiles at

the macroscopic scale (after clinical presentation) are not

of direct interest here.

normal
cells  promotion

initiation         transformation

clinical
 cancerprogression

malignant
cell

dormant
cancer

clone
harmless

stochastic
extinction

clinical
 cancer

suppression invasive
growth

proliferation

Fig. 1 Carcinogenesis steps a the standard two-stage clonal expan-

sion (TSCE) model for overall carcinogenesis. Initiation rapid

alteration that produces a pre-malignant cell from the pool of normal

stem cells; promotion stochastic proliferation of the pre-malignant

cells; transformation a second rapid alteration which generates a

malignant cell from the pool of pre-malignant cells; progression
occurs during the time from the first malignant cell to clinical cancer.

b More realistic model of the progression step. After transformation, a

lesion may need to progress through bottlenecks, including stochastic

extinction and/or dormancy, in order to generate a clinical cancer. If

more than one malignant cell is formed by transformation, the

different clones evolve independently of each other. For example, the

second malignant cell could lead to the first clinical cancer if the first

malignant clone becomes extinct, remains dormant indefinitely, or

happens to grow slowly
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In our study, tumor growth in phase 1 of progression is

described by a stochastic logistic model with birth rate b(t)

and death rate d(t) given by

bðtÞ ¼ b0 1� nðtÞ
C

� �
and dðtÞ ¼ d0 1� nðtÞ

C

� �
ð1Þ

where n(t) is a random function representing the number of

cells in a malignant clone; n(t) jumps among various non-

negative integers as the clone grows or shrinks; b0 and d0,

with b0 [ d0, are positive constants representing the max-

imum birth and death rates, respectively. The positive

constant C in Eq. 1 is the carrying capacity. The carrying

capacity corresponds to the number of cells in a dormant

tumor. In a deterministic formalism n(t) would approach

but never reach C; in the stochastic logistic process n(t)

eventually reaches either values CC (dormant tumor) or 0

(extinction) (Tan 2002).

Progression phase 2: dormancy

Once the number of cells reaches or exceeds the carrying

capacity C, the tumor is here considered dormant and

modeled as a single unit. Dormant tumors are taken to

progress according to a Markov process to permanent

suppression or to invasiveness (escape from growth inhi-

bition). The time of dormancy can then be approximated as

a stochastic variable which follows an exponential distri-

bution that depends on one parameter, the waiting time.

The waiting time is determined by angiogenesis, immune

system interactions, the tumor location, and other factors.

Progression phase 3: invasion

The growth of the invasive state is taken to be determin-

istic, an approximation valid to high accuracy in view of

the large number of cells at this stage. The growth time

from a dormant lesion to a clinically observable tumor is

approximated using a simple exponential growth model.

Implementation of the augmented model

The TSCE model is implemented by Monte-Carlo instead

of analytic methods, in order to fit smoothly with the

Monte-Carlo progression calculations. The Monte Carlo

program, based on earlier work (Fakir et al. 2009), simu-

lates the full stochastic carcinogenesis process, including

progression analyzed with our stochastic progression

model described previously. Radiation is represented by an

additive instantaneous dose-linear initiation term. Thus, the

initiation rate is expressed as aIðtÞ ¼ aIB þ aIRDdðt � eÞ,
where aIB is an adjustable background initiation rate con-

stant, aIR is an adjustable constant representing the initia-

tion probability per unit radiation dose, D is the radiation

dose, e is age at exposure, and d(t - e)is the Dirac delta

function. We did not explicitly consider more complex

models where radiation acts also on promotion, transfor-

mation or progression itself because the model with radi-

ation only perturbing initiation already gives considerable

insight into the later progression mechanisms of interest.

The Monte Carlo progression calculation proceeds in

small steps of size Dt. For phase 1 of progression, the

numbers of births and deaths during Dt are generated from

a multinomial distribution with probabilities b(t)Dt and

d(t)Dt, respectively. If a tumor then reaches dormancy, it is

added to the pool of dormant tumors. At each time step Dt,

a multinomial distribution is used to select the numbers of

permanently suppressed and reactivated dormant tumors

with probabilities aDt and bDt, respectively. Finally, if a

dormant tumor is reactivated, its subsequent growth is

modeled simply as exponential growth up to a macroscopic

or clinically observable size. Fig. 2 displays the transition

parameters and growth rates of the progression step.

Parameter values

The simulated cohort contains 105 individuals. Based on

measurements of Mercer et al. (1994), we assume that the

number of stem cells (basal and secretory) in the lung is

4 9 109. Their birth rate is assumed equal to 12 per year

(NRC 1999). A tumor may give rise to the first symptoms

and be first diagnosed at volume of *1 ccm that contains

*109 cells (Friberg and Mattson 1997). It is assumed here

that lung cancer behaves totally as lung adenocarcinoma.

Growth kinetics and volume doubling time have been

measured in vivo for early stage lung adenocarcinoma

Fig. 2 Progression parameters. The figure shows the same boxes as

in Fig. 1b, specifying the clone states that are used in our model to

analyze progression processes. Labels on the arrows specify the

parameters relevant to transitions between these states. The param-

eters are fixed by experimental (not epidemiological) data and are

described in more detail in the Methods section. The transition from a

malignant cell to a harmless clone (shown by the downward arrow; it

is actually an extinct clone in this case) is governed mainly by the

maximum death rate d0 and birth rate b0, with carrying capacity C
playing almost no role. In the transition from dormant tumor to

clinical cancer, only the difference SGR : b0 - d0 is relevant, not b0

and d0 seperately. In our calculations here, a was taken as 0
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using low-dose spiral computed tomography by Wang and

colleagues (Wang et al. 2000). However, Mehrara et al.

(2007) have shown that the specific growth rate (SGR) is a

more suitable quantity for the description of tumor growth

kinetics. The SGR represents the volume growth rate of the

tumor in an exponential growth model. The corresponding

SGR is equal to 2.37 per year (Mehrara et al. 2007). This

growth rate implies that exponential deterministic growth

of a malignant cell would produce a clinical cancer in

about 8.7 years. It has been suggested that tumor growth is

due to a reduction in cell loss, while birth rates remain

similar in normal tissues and tumors (Rew and Wilson

2000). Accordingly, it is assumed here that tumor growth is

due to a reduction in cell death rates, while birth rates

remain similar to the birth rates in normal tissues. There-

fore, the death rate d0 for lung adenocarcinomas is 9.63 per

year. A dormant tumor is generally assumed to have a

diameter of *1 mm, and the number of cells equal to

approximately 106 (Naumov et al. 2006a). Despite a sub-

stantial literature about tumor dormancy, very few papers

present quantitative data about dormancy in human cancer.

For simplicity, we here set the permanent suppression rate,

a, to 0. The rate of invasiveness, b, is set equal to 0.26 per

year based on a mean sojourn time (MST) for lung cancer

equal to 3.9 years (95% CI: 3.42–3.99) (Chien and Chen

2008). The MST represents the average duration of the

preclinical screen detectable phase. The data on which the

calculation of the MST is based consist of a large screening

study of asymptomatic individuals at risk for lung cancer

using low-dose computed tomography (Henschke et al.

2006). Following our earlier discussion, we assume that

tumors grow with the same rate before and after dormancy.

The time between the reactivation of dormant tumors and

clinically observable tumors is then 2.9 years based on a

deterministic exponential growth with a SGR equal to 2.37

per year. Progression is thus characterized in our study by

independently measured tumor growth kinetics and

involves no parameters that can be adjusted to fit epide-

miological data. In contrast, in more standard versions of

the TSCE model only one progression parameter, the lag

time, is used but this parameter is adjusted to the epide-

miological data.

The remaining parameters are those of the standard

TSCE model and were determined in order to have the

overall model reproduce lung cancer data for atomic bomb

survivors based on the most recent life span study (LSS)

1958–1998 (Preston et al. 2007). The purpose of using the

LSS data was not to give optimal fits to the atomic bomb

survivor data but rather to obtain a set of reasonable

parameters with which to analyze the properties of the

progression step in an overall, combined model. Detailed

descriptions of the cohort simulation procedure and the

analysis methods are given in (Fakir et al. 2009). The

adjusted TSCE parameter values are the spontaneous ini-

tiation rate aIB = 9.5 9 10-11 year-1, the radiation initi-

ation rate aIR = 8 9 10-8 G year-1, the transformation

rate aT = 3.9 9 10-6 year-1, and birth and death rates of

pre-malignant cells, bP and dP, which are 12 and

11.85 year-1, respectively. In our case, all these parame-

ters are in principle separately identifiable.

Results

In the simulated cohort, only 51% of the individuals who

developed at least one malignant cell presented clinical

cancers. Figure 3 shows the incidence probabilities for

both the first malignant cells and clinical cancers. At early

and middle ages individuals are more likely to build up

malignant clones that may or may not continue through all

the progression phases. Later the persistent lesions show

clinical cancers, while the probability of producing a

malignant cell for the first time decreases. A clinical cancer

incident at 70 years for instance may have resulted from a

malignant cell that has been produced at an age of

20 years.

In order to compare our stochastic progression model to

the deterministic approximation, we calculated the lag time

distributions from the first malignant transformation to

clinical cancer (Fig. 4). For stochastic-exponential growth

without dormancy, the first peak represents the cases where

the first malignant cell escaped stochastic extinction and

progressed to the clinical (symptomatic) phase. For sto-

chastic-logistic growth followed by dormancy, the first

peak represents cases where the first malignant cells pro-

duced escaped stochastic extinction and had only short

dormancy. The width of the first peak depends on the birth
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Fig. 3 Probability density distributions of time of first occurrence of

primary malignant cells and clinical tumors in a heterogeneous cohort

mimicking the atomic bomb survivor cohort. Competing risks are not

taken into account. Tumor growth parameters correspond to lung

adenocarcinoma. The other parameters are adjusted in order to

simulate clinically observed lung cancer incidence. Fluctuations are

due to using Monte-Carlo methods
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and death rates, and its location represents the mean time

needed for proliferation (for exponential growth) or pro-

liferation plus escaping dormancy plus post-dormancy

exponential growth (for logistic growth). The broader,

second peak represents cases where the first malignant

clone becomes extinct and clinical cancers are generated

from a malignant cell produced later. Dormancy shifts the

distribution by about 6 years and considerably flattens it.

The difference in distributions between the solely expo-

nential growth and the growth with dormancy is due to

three components: the logistic growth model, the dormancy

period and the deterministic re-growth period after

‘‘awakening’’ from dormancy. The logistic shape has only

a minor effect on the latency period. The six-year shift is

mainly due to the dormancy period (mean 3.9 years) and

the deterministic re-growth (2.9 years). As discussed in our

earlier work (Fakir et al. 2009), variations in the rates for

processes that precede progression (i.e. initiation, promo-

tion and transformation rates) may indirectly but signifi-

cantly affect our estimated lag time distributions due to the

way in which we fit the epidemiological data. Figure 4

shows the substantial effect of varying a promotion

parameter, the death rate dP of pre-malignant cells. In

contrast, the lag time distributions don’t show any signifi-

cant dependence on the background initiation rate (results

not shown here).

For specific exposure conditions and parameter values, it

is of interest to calculate the frequency distributions of

tumors for an individual at a given age. Such distributions

may be useful for studying potential effects of environ-

mental factors on progression, and especially on malignant

microscopic disease and its evolution into symptomatic

cancer. As an illustration, Fig. 5 shows the frequency dis-

tributions of malignant transformations and clinical

symptomatic tumors for age 90 based on the present

parameters. In our example, it is found that by age 90 an

individual who has never developed a clinical cancer has

on average developed 48 separate malignant transforma-

tions but would present only 1.2 dormant tumors.

Conclusion

In many calculations of radiation risks using the TSCE

model, the production of the first malignant cell inevitably

gives cancer after a fixed lag time. Some studies have

addressed the issues of progression and the fixed lag time

assumption. For instance, Hazelton et al. have analyzed

progression in the TSCE model by replacing the fixed lag

time by a gamma distribution that considerably improved

risk estimation and predicted larger lag times (Hazelton

et al. 2001; 2006). In our work, we aimed to give a bio-

logically motivated quantitative description of the pro-

gression step, involving tumor proliferation mechanisms

and observed phenomena. We aimed to help bridge the gap

between radiation biology modeling based on experimental

and epidemiological studies, and the clinical aspects of

carcinogenesis: at present clinical observations tell us more

about progression than about earlier carcinogenesis steps.

Here, we argued that the progression step and the ability

of malignant cells to proliferate, escape extinction, and

escape dormancy are at least as important as the earlier

steps. Progression may constitute a much larger portion of

0 10 20 30 40 50 60 70
0

4

8

P
ro

ba
bi

lit
y 

pe
r 

ye
ar

 (
 %

 )

Lag time (Years)

Fig. 4 Stochastic progression lag time distributions (first malignant

cell to first clinical tumor) for two values of the pre-malignant cell

death rate dp. For comparison, the figure also shows the lag time

distribution when stochastic exponential malignant cell proliferation

without dormancy is assumed and shows the delta-function distribu-

tion for a 10-year deterministic lag time model. Tumor growth

parameters during progression correspond to lung adenocarcinoma;

for other kinds of lung cancer (results shown in [Fakir et al. (2009) but

not in the present paper] the first peak of the curve assuming no

dormancy is considerably further to the left. The parameters for

earlier steps (initiation, promotion, and transformation) are adjusted

in order to simulate lung cancer incidence in atomic bomb survivors
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Fig. 5 Predicted distribution of the number of malignant transfor-

mations and of clinical tumors that occur in the lifetime of a non-

irradiated individual of age 90 years assuming the parameters

computed here and no competing risks
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the evolution time of cancer than is often assumed in

radiobiological models. In agreement with observations,

our model predicts that an individual may contain a sig-

nificant number of dormant tumors.

Other calculations (not shown here), e.g. for faster

growing tumors, give somewhat smaller progression times

(Fakir et al. 2009). However, in view of the long pro-

gression times estimated here, the data on timing of extra

cancers in the atomic bomb survivors and on radiotherapy

patients (Little et al. 1999; Preston et al. 2007) indicate that

radiation probably acts directly on promotion, on trans-

formation, and even on progression itself. If radiation

action was confined to initiation in Fig. 1a, there would not

be enough time for the extra radiogenic lesions to go

through the subsequent phases prior to observed extra

clinical cancers. Instead, clinical cancers that appear within

*10 years of the irradiation may result from reactivation

of dormant tumors, other progression acceleration, or

malignant transformation of already present pre-malignant

cells that then undergo a comparatively rapid progression

(the first peak in Fig. 4). If confirmed, radiation action

directly on progression would have major implications for

radiation risk estimation and protective measures.

Incorporating progression details complicates the anal-

ysis of cancer development (Enderling et al. 2009) and

introduces additional parameters. Hence, interdisciplinary

studies are needed to better comprehend the different

aspects of the problem. Cancer screening studies can give

valuable information about carcinogenesis. Studies of

second cancers after fractionated radiotherapy are done

under controlled exposure conditions and with good

knowledge of tumor incidence in each patient. Autopsies

can uncover microscopic tumors. Such clinical studies can

supplement the usual analyses of radiogenic carcinogene-

sis, based on data from in vitro or animal experiments and

epidemiological data (on atomic bomb survivors and

occupationally or environmentally exposed cohorts). The

clinical data are relevant to later steps of carcinogenesis,

especially progression. Thus, epidemiological data, the

possibility of radiation influencing progression, and the

need to incorporate increasingly available clinical data all

point to the importance of considering detailed progression

scenarios in mathematical/computational carcinogenesis

modeling.
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