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Background. Osteosarcoma (OS) patients have a poor response to immunotherapy due to the sheer complexity of the immune
system and the nuances of the tumor-immune microenvironment. Methodology. To gain insights into the immune heterogeneity
of OS, we identified robust clusters of patients based on the immune gene expression profiles of OS patients in the TARGET
database and assessed their reproducibility in an independent cohort collected from the GEO database. The association of
comprehensive molecular characterization with reproducible immune subtypes was accessed with ANOVA. Furthermore, we
visualized the distribution of individual patients in a tree structure by the graph structure learning-based dimensionality reduction
algorithm. Results. We found that 87 OS samples can be divided into 5 immune subtypes, and each of them was associated with
distinct clinical outcomes. The immune subtypes also demonstrated widely different patterns in tumor genetic aberrations, tumor-
infiltrating, immune cell composition, and cytokine profiles. The immune landscape of OS uncovered the significant intracluster
heterogeneity within each subtype and depicted a continuous immune spectrum across patients. Conclusion. The established five
immune subtypes in our study suggested immune heterogeneity in OS patients and may provide optimal individual immu-

notherapy for patients exhibiting OS.

1. Introduction

Osteosarcoma (OS) is the most common primary bone
tumor mainly found in pediatric patients. It originates from
mesenchymal stem cells, characterized by osteoid produc-
tion [1]. Despite their rare incidence, OS has a high disability
and mortality rate. The overall 5-year survival rate for pa-
tients with localized OS is about 65%, while it is around 30%
for patients with metastatic or relapsed OS [2, 3]. The
conventional therapeutic procedure for OS combines sur-
gical resection and chemotherapy. Unfortunately, current
standard treatment cannot further benefit patients with
advanced OS due to chemotherapy resistance and early
metastases [4].

Immunotherapy, as a new biological therapy, uses
various strategies to enhance antitumor immunity [5].
Tumor specific immunotherapy such as yd T cell-based

fusion vaccine and chimeric antigen receptor- (CAR-)
engineered T cells displayed outstanding antitumor per-
formance in vitro and in vivo [6, 7]. Moreover, adjuvant
immune therapies may prolong the survival of advanced
OS patients who received tumor-infiltrating lymphocytes
therapy [8]. However, recent clinical trial findings
revealed progressed OS patients’ poor response to im-
munomodulators such as PD-1 inhibitors, IL-2 [9-11].
These discrepancies may be partially due to their complex
and dynamic tumor immune microenvironment where
mesenchymal cells, tumor-infiltrating immune cells
(TIICs), endothelial cells, extracellular matrix molecules,
and inflammatory mediators interact with tumor cells.
Although some immune-related gene signature has been
recently revealed via bioinformatics analysis [12-14], no
studies reported a comprehensive immune characteriza-
tion specifically for OS.
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In our study, we identified five robust OS immune
subtypes based on the ConsensusClusterPlus algorithm and
further validated their reproducibility in an independent
Gene Expression Omnibus (GEO) dataset. The five immune
subtypes were associated with distinct gene expression
patterns, molecular and cellular characteristics, as well as
clinical outcomes. Finally, our work characterized a complex
immune landscape of OS and revealed the intracluster
heterogeneity within the immune subtype.

2. Materials and Methods

2.1. Materials. The gene expression profile and clinical
follow-up information data of the OS training dataset were
downloaded from the Therapeutically Applicable Research
to Generate Effective Treatments (https://ocg.cancer.gov/
programs/target) initiative, which contains a total of 101
samples (Supplementary Table S1). For validation, we
downloaded GSE30699 cohort data from GEO database
(https://www.ncbi.nlm.nih.gov/geo/), which contains 107
samples.

2.2. Sources of Immune-Related Genes. Through the method
of literature mining, the following types of genes were col-
lected as immune-related genes for subsequent analysis:
immune cell-specific genes derived from single-cell RNA-seq
data, genes of costimulatory, and cosuppressive molecules,
cytokines, and cytokine receptors [15]. The genes were in-
volved in antigen processing and presentation, and other
immune-related biological processes. A total of 1989 im-
mune-related genes were collected (Supplementary Table S2).

2.3. Patient Selection and Data Preprocessing. The 87 OS
samples were obtained after the following steps were per-
formed on the RNA-seq data of the TARGET data. (1)
Remove samples without clinical data; (2) remove genes
whose expression level (FPKM) is equal to 0, above 50% of
the samples; and (3) the expression profiles of immune-
related genes were preserved and log conversion was per-
formed in log2 (FPKM + 1). We obtained 76 OS samples
from GEO datasets by deleting cell line and xenotransplant
sample data, removing probes with empty gene detection
values, mapping the chip probes to human genes, and
retaining the expression profile of immune cell-related
genes.

2.4. Identification of Immune Subtypes and Immune Gene
Modules. ConsensusClusterPlus was used to identify robust
clusters of patients [16]. Based on the expression data of 1989
immune-related genes, the immune subtypes (IS) and im-
mune gene modules (GM) of the samples were obtained.
Then, we used the in-group proportion (IGP) [17] and
Pearson correlation among the centroid of the gene module
scores to quantitatively measure the consistency of subtype
identification in the training and validation cohorts (Sup-
plementary Methods). The ANOVA algorithm was used to
evaluate the association between immune subtypes and 64
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immune-related molecular and cellular characteristics
(Supplementary Methods).

2.5. Assessment of Clinical, Molecular, and Cellular Charac-
teristics Related to Immune Subtypes. We used log-rank tests
and multivariate Cox regression to assess the prognostic
value of immune subtypes in training set samples with race,
age, gender, and location as covariates, using overall survival
(OS) and progression-free survival (PES) as the endpoints.
Then, in the validated set of samples, the correlation between
immunological subtypes and various immune-related
molecules and cell characteristics was evaluated by ANOVA.

2.6. Constructing the Immune Landscape. We performed a
dimensionality reduction analysis using a graph learning-
based method to reveal the intrinsic structure and visualize
the distribution of individual patients due to the dynamic
characteristics of the immune system (Supplementary
Methods). Simply put, this analysis projects high-dimen-
sional gene expression data into tree structures in low-di-
mensional spaces by retaining local geometric information
[18]. This approach has previously been used to simulate
cancer progression using large and single-cell gene ex-
pression data and to define the trajectory of cancer [19, 20].
In this study, we applied the analysis to immune gene ex-
pression profiling. This immune landscape reflects the re-
lationship between patients in a nonlinear manifold, which
may complement the discrete immune subtypes defined in
linear Euclidean space. After defining the immune land-
scape, intracluster heterogeneity of immune subtypes was
evaluated by ANOVA. The log-rank test was used to
compare the survival difference of the IS2 subgroup.

2.7. Statistical Analysis. All statistical analyses and data
visualization were performed in R version 3.6.3 (Supple-
mentary Methods). To compare gene expression data from
RNA-Seq expression, we calculated Spearman rank corre-
lations of gene expression for all possible gene pairs across
the samples. Samples with complete clinical data were in-
cluded in survival analysis, and the log-rank test was per-
formed for comparing Kaplan-Meier curves between
subgroups. We used a one-way analysis of variance
(ANOVA) to measure the statistical significance of the
calculated results. P value<0.05 indicated statistical
significance.

3. Results

3.1. Immune Subtypes and Gene Modules Construction.
We extracted the OS expression profile of immune-related
genes from the TARGET database and got 1922 genes for
subsequent analysis. The 87 OS samples are clustered
through ConsensusClusterPlus, and the optimal number of
clusters is determined according to the cumulative distri-
bution function (CDF). The CDF delta area showed that
when consensus index is five, the clustering result is rela-
tively stable (Figures 1(a) and 1(b)). Finally, we choosed k=5
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to get five immune subtypes (Figure 1(c) and Supplementary
Table S3). Kaplan-Meier curves revealed that there are
significant prognostic differences between immune subtypes
(OS: log-rank, P=4.76E—-04; RFS: log-rank, P =0.015;
Figure 1(d)). The prognostic difference in the overall survival
is independent of other clinical factors (race, age, gender,
and location; Table 1), while there was no statistical dif-
ference in relapse-free survival, indicating that the immune
subtype had a higher correlation with the overall survival of
the OS patients. Overall, IS1 was associated with the best
prognosis for both OS and PFS. In contrast, IS5 was the
worst among all subtypes.

Similarly, we identified 7 immune-related gene modules
(Figures 1(e) and 1(f), Supplementary Figure S1 and
Table S4). We found that some gene modules are signifi-
cantly related to the prognosis of OS (Figure 1(g)). Con-
sistent with previous reports, our results showed high scores
of T cell, and IFN-y modules predict a good prognosis.

3.2. Functional and Robust Gene Modules. Gene modules
appeared to be more closely clustered compared with im-
mune subtypes. The functions of gene modules correspond
to phosphorylation, reactive stroma, T cell, inflammation,
differentiation, TGF-f3, and IFN-y (Supplementary Figure S2
and Table S5). Particularly, our gene module of reactive
stroma was consistent with a previously proposed 25-gene
stromal signature [21, 22], in which 18 genes were assigned
to this module and 21 genes were included in our immune-
related gene set. Moreover, gene module 5 was defined as
TGF-f related due to its correlation with the TGF-f re-
sponse score (Spearman p =0.45; P =1.45E - 05).

To verify the immune subtypes identified from the
TARGET database, we downloaded and analyzed a cohort of
OS cases from the GEO database (n=76), an independent
OS dataset (accession number: GSE30699, Supplementary
Figure S3). The expression patterns of gene modules were
highly consistent between the training and validation co-
horts with an average linear correlation of 0.97 (Figure 2(b)).
At the individual patient level, there was a moderate to good
agreement between the two cohorts (IGP from ISI to IS5:
0.878, 0.4, 0.636, 0.625, and 0.667; Figure 2(c)).

3.3. Molecular and Cellular Characteristics of the Immune
Subtypes. We assessed the relation between the immune
subtypes and 64 previously defined immune-related mo-
lecular features (Supplementary Table S6). Consistent with
the immunosuppression phenotype, tumors in IS5 had high
basophils fraction (Figure 3(b)) and the lowest microenvi-
ronment signature score (Figure 3(m) and Supplementary
Table S7). The most basophils infiltration signature score
would promote high infiltration of immunosuppressive
cells, TH2, generating an immune-cold microenvironment.
Overall, IS2, IS3, and IS4 are closely related to IS5 with the
respect of the immune score, macrophage (Figure 3(h)). IS1
demonstrated a favorable immune profile and was associated
with the best prognosis. Compared to the IS5 phenotype
with the worst prognosis, IS1 tumors had the highest effector
memory (TEM) CD4+ T cells and immune score. Of note,

IS1 was enriched with dendritic cells (DCs), macrophages,
monocytes (Figures 3(a), 3(h), 3(j), and 3(n)).

3.4. Immune Landscape of OS. Graph learning-based di-
mensionality reduction techniques were applied to facilitate
visualization and reveal the underlying structure of indi-
vidual patient distribution. This analysis placed individual
patients in a graphic with sparse tree structure (Figure 4(a))
and defined the immune landscape of OS. The position of the
patient in the immune landscape represents the overall
characteristics of the corresponding subtype of tumor im-
mune microenvironment (Figure 4(a)). Indeed, the hori-
zontal coordinate was highly negatively correlated with IFN-
y and T cell (p=-0.40 and -0.75, respectively; both
P <0.001) and was highly positively correlated with TGF-f
and differentiation (p=0.41 and 0.45, respectively; both
P <0.001).This is consistent with the result that we found
that IS3 has an increased T cell compared to IS5. Moreover,
the horizontal coordinate has the highest correlation with
reactive  stroma module (p=-0.82, respectively;
P<22x107'). Correspondingly, IS1 and IS5 have the
lowest and highest reactive stroma scores, respectively
(Figure 2(a)). On the other hand, the vertical coordinate is
significantly related to the differentiation module (p=0.52,
respectively; P <0.001).

Immune landscape analysis further revealed significant
intraclass heterogeneity in each subtype. We found that the
specific subtypes are more diverse and heterogeneous than
other subtypes (Supplementary Figure S4). For example, IS1
tumors can be further divided into three subtypes according
to their location in the immune landscape, which are
manifested as specific immune expression patterns. Similar
results were observed in IS4. Interestingly, the two subtypes
of IS2 tumors were further divided according to the immune
landscape (Figure 4(b)), showing different gene expression
and prognosis patterns (Figures 4(c) and 4(d)). The immune
landscape analysis provides further supplementary results
for the immune subtypes we previously defined.

4. Discussion

As not all OS patients have greater benefit from immuno-
therapy, more immune microenvironment characteristics
should be incorporated to instruct clinical treatment. Re-
searchers have made great effort to reveal the role of tumor
microenvironment and tumor microenvironment-related
genes in OS by a series of bioinformatics methods
[12-14, 23, 24]. In the present study, the Consensu-
sClusterPlus algorithm was utilized to identify the five re-
producible immune subtypes in 87 OS patients from the
TARGET database. Moreover, we first used a graph learning-
based method to depict immune landscape and intracluster
heterogeneity spectrum in OS. To sum up, we provided a
better way of understanding the OS immune microenvi-
ronment and revealing OS immune heterogeneity.

The effect of tumor immune microenvironment on
patient survival has been well documented in many types of
cancer [22, 25-27]. OS is no exception, and the tumor
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immune microenvironment is closely related to the prog-
nosis of OS patients. Zhang et al. first established the
prognostic signature based on immune microenvironment-
related genes for OS [14], and Hu et al. performed com-
prehensive analysis of prognostic tumor microenvironment-

(8

FIGURE 1: The immune subtypes and gene modules in OS. (a) The cumulative distribution function (CDF) curve of training sample; (b) CDF
delta area curve of training sample. Delta area curve of consensus clustering indicates the relative change in area under the CDF curve for
each category number k compared with k— 1. The horizontal axis represents the category number k, and the vertical axis represents the
relative change in area under the CDF curve; (c) Sample clustering heat map when consensus k =5; (d) Kaplan-Meier curves for five
immune subtypes prognosis. (e). CDF curve of immune gene; (f) CDF delta area curve of immune gene; (g) Univariate Cox analysis results
of gene modules.

related genes based on several validated genes [23]. Song
et al. identified a set of immune gene signature related to
clinical response and was verified based on 45 OSA primary
tumors [12]. Our work differs from these studies in several
important aspects. First, we divided patients into five
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FIGURE 3: Molecular and cellular characteristics associated with the immune subtypes. (a)-(p) The middle bar in each box represents the
median level of corresponding features in certain immune subtype. The FDR-adjusted P values for all features were less than 0.05.

immune subtypes with different molecular and prognostic
characteristics and further assessed their reproducibility in
an independent cohort. Second, we used a comprehensive
set of genes to reflect various immunological processes
instead of using established signatures. Third, we applied
graph learning approaches to uncover the overall structure
of the patient distribution and capture intercluster and
intracluster relationships.

In our study, OS of IS1 demonstrated the highest levels of
infiltration by immune effectors such as CD4" T and acti-
vated dendritic cells (DCs). Accordingly, patients in subtype

1 had the best prognosis. In comparison, tumors of subtype 5
had elevated basophils infiltration and reduced monocytes.
Thus, these patients appeared to have the worst survival. The
other immune subtypes demonstrated a similar level of
immune infiltration according to the result of the micro-
environment score and immune score. However, the im-
mune landscape recapitulated the immune subtypes based
on clustering analyses and uncovered previously unappre-
ciated intracluster heterogeneity with potential clinical
significance. For example, tumors of subtype 2 demonstrated
the intracluster heterogeneity. The immune composition of
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FIGURE 4: The immune landscape of OS and the intracluster heterogeneity within immune subtype 2. (a) The immune landscape of OS: each
point represents a patient with colors corresponding to the immune subtype defined previously. (b) Patients of immune subtype 2 could be
further stratified into 2 subgroups based on their location in the immune landscape. (c) Gene module expression patterns were shown to
illustrate the intracluster heterogeneity of immune subtype 2. (d) The two subgroups of patients in immune subtype 2 as stratified by the
immune landscape were associated with distinct prognoses. Log-rank P value was calculated among subgroup stratification.

IS2B was dominated by highly immune-suppressive factors
such as TGF-p signaling and reactive stroma which had bad
prognosis. These data add to the accumulating evidence that
the suppressive factors are critical in determining prognosis.

The immune subtypes’ analysis relies on the immune-
related gene expression profiles to reveal the underlying

structures of the immune landscape within tumors, although
an individual-based model was used to develop predictive
and prognostic biomarkers. It is conceivable that a hierar-
chical model may be used to predict clinical outcomes by
stratifying patients into subgroups. The idea of “subtype-
specific” biomarkers has been successfully applied to



improve outcome prediction in breast, glioma, and colon
cancers [28-30]. Therefore, integrating subtype analyses and
the individual-based model would be a promising approach
to developing clinically relevant biomarkers.

On the other hand, our study has potential therapeutic
implications for the rational design of combination im-
munotherapy strategies. For patients with a favorable im-
mune microenvironment (e.g., subtype 1), immune
checkpoint blockade (ICB) may benefit these patients and
further improve their survival. As we described above, OS
has a high level of immune heterogeneity, and some tumors
expressing the programmed cell death protein-1 ligand (PD-
L1) may be potential sensitivities to inhibitors of the pro-
grammed cell death protein-1 (PD-1)/PD-L1 axis [31, 32].
However, it may be ineffective for treating patients in
subtype 5 with ICB alone due to the suboptimal immune
activation or presence of immune-suppressive mechanisms.
Therefore, combination of ICB with immune costimulatory
modulators such as mifamurtide (an approved macrophage
activator) and interleukin-2 may be used to boost the weak
immune response for patients in subtype 5 [10, 33]. For the
remaining patients in subtypes 2, 3, and 4, depending on
their specific immune cells infiltration and stromal micro-
environment, both nonspecific immunotherapy and tumor
specific immunotherapy might be used together with con-
ventional chemotherapy to improve patients’ prognosis [5].

Although the immune heterogeneity of different OS
immune subtypes have been initially studied by bio-
informatic and statistical analyses in our study, some lim-
itations should be elucidated. First, we cannot obtain the
treatment information from the TARGET database and GEO
dataset, which may influence the prognosis of OS patients.
Second, our approach is “unsupervised,” which means the
underlying structures of the immune landscape within tu-
mors rely on the immune-related gene expression profiles.
Third, the validation cohort was generated and confirmed
good reproducibility of the five immune subtypes in our
research. However, independent validation by a large cohort
is needed.

5. Conclusions

In conclusion, we identified 5 reproducible immune subtypes
of OS with distinct molecular characteristics and clinical
outcomes. The immune landscape of the tumor immune
microenvironment was investigated to demonstrate OS im-
mune heterogeneity. Our study provides a new perspective for
the study of immune heterogeneity of OS, allowing for un-
derstanding individual differences in immunotherapy.
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