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Background: Variations in the viral receptor human angiotensin-converting enzyme 2 (ACE2) may specify
the susceptibility of a certain population to severe acute respiratory syndrome coronavirus 2. Objective:
Evaluation of the affinity of severe acute respiratory syndrome coronavirus 2 spike glycoprotein to the
Iranian genetic variants of ACE2. Materials & methods: Single nucleotide polymorphisms of ACE2 among
the Iranian population were collected from the Iranome database. Missense mutations in the N-terminal
peptidase domain were selected for in silico analysis. Results: 17 missense single nucleotide polymorphisms
were found at ACE2. Viral glycoprotein had the lowest affinity to ACE2 mutant V485L. Discussion: The
V485L variant of ACE2 could be a natural resistance mutation among the Iranian population. In addition,
variant S331F can increase slightly the susceptibility to infection with the virus.
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The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly emerged coronavirus, first identified
in Wuhan, China, and has spread rapidly across the world with over 3 million cases and >200,000 deaths (www.
worldometers.info/coronavirus/) [1]. According to research, SARS-CoV-2 is closely related to SARS-CoV; ∼76%
of nucleotide sequences between SARS-CoV and SARS-CoV-2 are similar. A total of 94.4% similarity was also
found between SARS-CoV-2 and SARS-CoV by protein sequence analysis of seven preserved viral nonstructural
protein domains [2]. It is a novel enveloped, nonsegmented virus with a positive sense single-stranded RNA genome
(26–32 kb). The SARS-CoV2 proteins contain nucleocapsid (N), envelope (E), membrane (M) and spike (S) [3,4].
S protein is made up of S1 and S2 domains, which play an important role in the virus’ entry into the host cell and
is responsible for binding to its host cell receptor, angiotensin-converting enzyme 2 (ACE2) and fusion [5,6].

The ACE2 gene is located on chromosome Xp22 and its product is expressed in large amounts in human lung and
small intestine epithelia [7,8]. ACE2 is a Type I transmembrane protein which acts as a monocarboxypeptidase by
having a single catalytic active ectodomain, hydrolyzing different peptides [9]. ACE2’s C-terminal domain regulates
the transportation of amino acids to the cell surface, making ACE2 an effective receptor for the virus’ attachment
and entry into the cell [7,10–12]. By binding to ACE2, S protein cleaves into two separate subunits S1 and S2. The
S1 subunit contains a receptor binding domain that binds directly to the ACE2 peptidase domain (PD) and the
S2 subunit is used for membrane fusion [13,14].

ACE2 contains a structural transmembrane domain that connects the protein to the plasma membrane. In
addition, SARS-CoV-2 S protein interacts with the extracellular domain of ACE2 as a receptor [15]. Interaction
between the ACE2 receptor and the S protein is a critical step, as it is the path of absorption of the virus. The
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presence of variants in ACE2 may therefore reduce or increase its tendency to bind to S protein and may also affect
the sensitivity of the host to infection [16,17]. The pattern of expression of human ACE2 and its variations in different
populations may be diverse and clear information from all populations is not available. We have therefore decided
to provide novel knowledge on the impact of different ACE2 polymorphisms and the affinity of SARS-CoV2
spike glycoprotein. Such knowledge offers a deeper understanding of the virus attachment sensitivity to a certain
polymorphism in ACE2.

Materials & methods
Construction of SARS-CoV-2 glycoprotein
Prediction of 3D protein structures from amino acid sequence SARS-CoV-2 glycoprotein (accession numbers:
YP 009724390.1) was performed by using I-TASSER server (http://zhang.bioinformatics.ku.edu/I-TASSER) [18].
In comparison with homology-based tools, I-TASSER server generates full-length 3D protein structure that enables
one to make amino acid changes. The best model with highest confidence score was used for the study.

Retrieve of human ACE2 & reconstruction of the mutated proteins
The sequences and validated crystallographic structure of ACE2 was obtained from UniProt (www.uniprot.org)
and protein databank (PDB; www.rcsb.org/pdb) with ID:1r42, respectively [19,20]. The crystallographic structure
of ACE2 cleared for the presence of water atoms and other unnecessary extra chains by using UCSF Chimera
1.10.2 [21].

Iranome (www.iranome.com) [22], a database containing whole exome sequencing of 800 individuals from eight
major Iranian ethnic groups, was used to extract different ACE2 variants and their respective frequencies among
the Iranian population. Missense substitutions resulted in amino acid changes at ACE2 protein were used for
reconstruction of different receptor and molecular docking.

Dunbrak rotamer library was used to substitute targeted amino acids residues with those that are prevalent in
Iranian population [23,24]. The most probable amino acid conformation, which is provided by UCSF Chimera
software, was used for substituting desired amino acids. After mutagenesis, all atomic clashes were resolved using
UCSF-Chimera’s energy minimization.

Molecular docking & interaction analysis
The ClusPro web server (https://cluspro.org/login.php) [25] was used to dock the virus glycoprotein
with ACE2 variants. The results of energy parameter set is reported as a total interaction energy
(hydrophobic+hydrogenic+electrostatic). Models of docked macromolecules were ranked and reported by cluster
size with lowest score.

The results of docking SARS-CoV-2 glycoprotein with the ACE2 variants were analyzed by MGLTools 1.5.6
software (The Scripps Research Institute, CA, USA) for determining ACE2 amino acids residues involved in
interaction with the viral glycoprotein. The interaction analysis were done according to visual molecular dynamics
(VDW) scaling factor 1 Å and the amino acid position(s) of all binding sites were investigated and validated in
UniProt database regarding the molecular domains [26].

Literature review of ACE2 polymorphism at different geographical regions
The scholar databases, including Google Scholar, PubMed and Scopus. The search terms were polymorphism,
Population, ACE2 or ‘angiotensin I converting enzyme 2’, SNO or ‘Single nucleotide polymorphism’ (SNP). Furthermore,
ClinVar [27] and single nucleotide polymorphism database (dbSNP) [28] databases were searched for known variations
at ACE2. The results of literature search and further ACE2 variants was compared with the Iranian population
exome sequencing at Iranome database.

Results
Structure & polymorphisms of ACE2 gene among Iranian
Native human ACE2 crystallographic structure with 615 amino acid length containing SARS binding domains
were retrieved from PDB database. The protein comprised three regions responsible for interaction with SARS-CoV
spike glycoprotein. These were amino acids 30–41, 82–84 and 353–357 (Figure 1). Therefore, it was though that
same regions or neighboring amino acids would be involved in the interaction of ACE2 with SARS-CoV-2. In
addition, only missense mutations with amino acid substitutions at ACE2 protein were chosen for further study.
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Figure 1. Three severe acute respiratory syndrome coronavirus binding sites resides within ACE2. Right top: amino
acids 30–41 (DKFNHEAEDLFY), right bottom: amino acids 82–84 (MYP) and left center: amino acids 353–357 (KGDFR).

Table 1. Annotation of missense mutations at ACE2 gene located at chromosome X of Iranian population.
Variant Position Protein

consequence
Transcript
consequence

Exon n Allele
count

Allele n Number of
homozygotes

n of
heterozygotes

n of
hemizygotes

Allele
frequency
(%)

15591578 C/G 15591578 Val485Leu c.1453G �C 11 3 1600 0 3 -1 0.19

15607567 T/C
(rs750145841)

15607567 Tyr199Cys c.596A �G 5 2 1600 1 0 -1 0.13

15599413 G/A 15599413 Thr334Met c.1001C �T 8 3 1598 1 1 -1 0.19

15599422 G/A 15599422 Ser331Phe c.992C �T 8 1 1598 0 1 -1 0.06

15593877 A/C 15593877 Phe452Val c.1354T �G 10 1 1600 0 1 -1 0.06

15580089 A/G 15580089 Ile786Thr c.2357T �C 18 3 1598 1 1 -1 0.19

15618856 T/C
(rs759162332)

15618856 Gln60Arg c.179A �G 1 2 1600 1 0 -1 0.13

15591550 T/A
(rs765152220)

15591550 Asp494Val c.1481A �T 11 1 1600 0 1 -1 0.06

15607489 T/C 15607489 Asp225Gly c.674A �G 5 2 1600 1 0 -1 0.13

15582298 T/C
(rs41303171)

15582298 Asn720Asp c.2158A �G 17 10 1600 2 6 -1 0.63

15582334 G/A
(rs776995986)

15582334 Arg708Trp c.2122C �T 17 9 1596 4 1 -1 0.56

15582333 C/T
(rs769062069)

15582333 Arg708Gln c.2123G �A 17 3 1598 1 1 -1 0.19

Table 1 shows missense mutations, their annotation and frequency at ACE2 gene of Iranian genome database,
Iranome. Mutations T15582298C at exon 17 responsible of N334D and mutation C15582333T at exon 17
responsible for R786W with 0.63 and 0.56% were frequent polymorphisms. Only substitutions within the ACE2
crystallographic structure were used for reconstruction of the mutant protein. Accordingly, substitutions at position
beyond 661 were ignored.

Affinity & site of interaction of SARS-CoV-2 spike glycoprotein to human wild-type & mutant ACE2
The interaction energy and affinity of SARS-CoV-2 to mentioned ACE2 variants are demonstrated in Table 2. As it
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Table 2. Results of protein–protein docking and neighboring cluster members of severe acute respiratory syndrome
coronavirus 2 spike glycoprotein docked with human ACE2 receptor.
Variant Member Representative (weighted score†)

Center‡ (Kcal.mol-1) Lowest energy (Kcal.mol-1)

D225G 69 -1002.5 -1002.5

D494V 68 -1001.2 -1001.2

F452V 70 -1002.5 -1002.5

Q60R 68 -1002.5 -1002.5

S331F 74 -1000.9 -1003.7

T334M 68 -1002.5 -1002.5

V485L 56 -925.3 -972.2

Wild-type 70 -1002.5 -1002.5

Y199C 79 -1000.2 -1001.2

†E = 0.40Erep ± 0.4Eatt + 600Elec + 1.00EDARS (25).
‡Greedy clustering of ligand position with a 9 Å C-alpha’s rmsd radius for finding ligand position with the most ‘neighbors’ in 9 Å.
att: Lennard-Jones repulsive energies; DARS: Decoy as reference state; Elec: Electrostatic; rep: Lennard-Jones attractive energies; rmsd: Root-mean-square deviation.

Wild type

V485L

Figure 2. Schematic illustrations of interactions between severe acute respiratory syndrome coronavirus 2 and
human ACE2 receptors. The residues involved in the interaction between wild-type receptor and viral ligand with
<0.01 Å distance were Ser280, Leu156, Asp615 and Leu281 at ACE2. In addition, residues Asp597 and Gln598 were
involved in the interaction between V485L mutant receptor and viral glycoprotein.

is resulted, most of the ACE2 variants have same interaction energy with SARS-CoV-2 spike glycoprotein. However,
the virus glycoprotein has a slightly higher affinity to ACE2 variant S331F. Interestingly, it was found that SARS-
CoV-2 spike glycoprotein has much lower affinity to the human ACE2 polymorphism V485L (-972.2 Kcal.mol-1).
It was also found that fewer close contacts were established between SARS-CoV-2 spike glycoprotein and ACE2
V485L mutant. Figure 2 shows individual residues involved in the interaction between the wild-type and V485L
receptors and viral glycoprotein. The overlap residues within SARS-CoV-2 glycoprotein that are involved in the
interaction with wild-type and V485L mutant of ACE2 are given in Supplementary Tables 1 & 2.
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Table 3. Different polymorphisms of ACE2 in literatures from different populations and single nucleotide polymorphism
database.
Polymorphism of ACE2 Patient Control Population Ref.

rs1514283
rs4646155
rs4646176
rs2285666
rs879922

1024 (male, 510; female, 514) EH patients 956 (male, 296; female, 660)
NT controls

China, Han [29]

rs2074192
rs2106809

647 patients (347 females and 300 males) with newly
diagnosed mild-to-moderate EH

– China–Chinese Han [30]

rs4646127
rs2158082
rs5936011
rs6629110
rs4830983
rs5936029

– – EAS populations [31]

rs4343; GG and GA
genotypes

125 ACS patients with 77 men and 48 women kept on
captopril 25 mg twice daily dosage

125 patients with 76 men and
49 women received no
captopril (control study)

Iraq [32]

rs2074192
rs233575
rs2158083
rs233575
rs2158083
rs233575
rs2074192
rs2158083

Participants in the NDIT cohort study (n = 555) – In males of European descent
– In French Canadian males
–In females of European
descent

[33]

rs233566-rs233576
rs714205
rs757066
rs908004
rs963447
rs971249
rs971250
rs979848
rs1132186

– – – dbSNP

ACS: Acute coronary syndrome; dbSNP: Single nucleotide polymorphism database; EAS: East Asian; EH: Essential hypertension; NDIT: Nicotine dependence in teens; NT: Normotensive.

ACE2 polymorphisms & their clinical importance
The known SNPs of ACE2 among some populations is given in Table 3. Most polymorphisms are located
within introns regions (dbSNP data). In comparison with those provided in the present study, other populations
had different polymorphisms at ACE2 coding sequence. Accordingly, such SNPs were involved in hypertension
symptoms in patients.

Discussion
The SARS-CoV-2 is a novel virus that can cause severe respiratory disease in humans. The virus uses its glycoprotein
to bind to the cell surface receptor, ACE2 [29]. ACE2 is a critical regulator of the renin–angiotensin system (RAS)
that balances the amount of fluid in different organs such as the lungs [30]. ACE2 is a type I transmembrane
glycoprotein and consists of 805 amino acids. ACE2 has two domains that include amino-terminal catalytic
domain and the carboxyl-terminal domain. The catalytic domain of ACE2 is a zinc metallo-peptidase domain that
actually constitutes its active site [15]. According to Cryo-EM study of the SARS-CoV-2 spike glycoprotein, it was
shown that the virus had a higher affinity to ACE2 and binding to it is crucial for viral entrance [31]. The study
on the role of genetic vaiants of host factors in SARS-CoV-2 infection continues [32,33]. It has been reported that
certain genetic variations of ACE2 may affect the susceptibility to SARS-CoV-2 [34,35], the type of variants, their
frequency in different populations [36] and their effect on the affinity of viral glycoprotein are not well established.

The receptor binding domain of SARS-CoV-2 spike glycoprotein, S1 (residues 318–510) has a higher ACE2
affinity than the complete S1 domain (residues 12–672) [37]. Nonetheless, residues 479 and 487 are essential to the
successful link of the virus to ACE2. At ACE2, changes in lysine 31 and tyrosine 41, residues 82–84 and 353–357
affect its interaction with the S1 viral domain [38]. As a result, we examined the changes in ACE2 protein in the
Iranian population genome to assess the affinity of viral spike glycoprotein to the host receptor. Two variants,
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T15582298C and C15582333 T, located at exon 17 with 0.63 and 0.56% of allele frequencies, were prevalent
among the Iranian population. The literature review did not show any evidence of the same substitutions in other
populations. Given that these SNPs have been identified in the Iranian population, they may be important in
conferring natural resistance or have roles in the level of gene expression and function of ACE2. Although the
genetic basis of ACE2 and its function in different populations are not clear, variations in ACE2 can affect the
binding of the virus to ACE2 and the sensitivity of the host. Gomez et al. found no associations between ACE2
polymorphism and the disease outcome [33]. Nevertheless, the importance of ACE2 polymorphisms and their effects
on SARS-CoV-2 spike glycoprotein affinity remained to be investigated in a certain population.

In a systematic study of 1700 variants of ACE2 from the China Metabolic Analytics Project under review and
1KGP (1000 Genome Project) databases, the authors suggested that there was no proof of a natural resistant
ACE2 mutant in different populations [39]. In another analysis, it was also shown that rs73635825 (S19P) and
rs143936283 (E329 G) variants affect the interaction of ACE2 with SARS-CoV-2 spike protein [40]. Natural ACE2
variants have also reported that are supposed to alter the susceptibility of the host. Stawiski et al. investigated variants,
including S19P, I21V, E23 K, K26R, T27A, N64 K, T92I, Q102P and H378R, which increase susceptibility to
virus infection. On the other hand, other ACE2 variants such as K31R, N33I, H34R, E35 K, E37 K, D38V, Y50F,
N51S, M62V, K68E, F72V, Y83H, G326E, G352V, D355N, Q388L and D509Y reduced the binding affinity
of SARS-CoV-2 spike glycoprotein to ACE2. It should be noted that these variants are rare in populations [17].
In addition, the genetic factors and age of SARS-CoV-2 hosts can also affect the susceptibility to infection [29,41].
On the other hand, studies have shown that there is no association between ACE2 variants and SARS-CoV virus
susceptibility [42,43]. It is important to note that the expression of ACE2 may change under different circumstances,
including cigarette smoking, diet and certain diseases such as pulmonary and cardiovascular diseases [30].

We examined the affinity and interaction site of SARS-CoV-2 spike glycoprotein with human wild-type and
ACE2 mutants. According to our results, most ACE2 variants have the same interaction energy with SARS-CoV-2
spike glycoprotein. Nonetheless, the virus glycoprotein has a slightly higher affinity to ACE2 variant S331F (-
1003.7 Kcal.mol-1). S331F may therefore increase the susceptibility of a population to SARS-CoV-2 infection. In
addition, it was observed that viral glycoprotein had a far lower affinity to human ACE2 polymorphism V485L
(-972.2 Kcal.mol-1). There was a less close interaction between SARS-CoV-2 spike glycoprotein and ACE2 V485L
mutant in this regard. We propose that substitution of V485L for ACE2 may be a natural resistance mutation
among the Iranian population. This may be due to conformational changes in the binding site within peptidase
domain. All the studied variants of ACE2 were located at the N-terminal peptidase domain of ACE2. Our findings
are presented based on other studies, which have been conducted by cryo–electron microscopy of the full-length
human ACE2.

Conclusion
ACE2 variants of the Iranian population had the same interaction energy with SARS-CoV-2 spike glycoprotein,
most of which may not change the susceptibility to SARS-CoV-2 infection. In addition, S331F substitution can
increase the affinity of viral glycoprotein to ACE2. This is due to the proximity of S331 to hotspot residues.
This knowledge also suggests that the Iranian population with this particular variant is more susceptible to viral
infection. Our data also suggest that the V485L variant of ACE2 may be a natural resistance mutation among the
Iranian population. Considering the significance of these hotspots on ACE2, targeting these sites may be beneficial
for treatment strategies.

Summary points

• The study presents an in silico analysis of affinity of severe acute respiratory syndrome coronavirus 2 spike
glycoprotein to genetic variants of ACE2 in Iranian population.

• The virus glycoprotein had higher affinity to ACE2 variant S331F and people with same variants may experience
severe viral infection.

• Severe acute respiratory syndrome coronavirus 2 spike glycoprotein has much lower affinity to the human ACE2
polymorphism V485L (-972.2 Kcal.mol-1).

• The V485L variant of ACE2 could be a natural resistance mutation among the Iranian population.
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