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Abstract: Photodynamic therapy (PDT) is a clinical treatment for cancer or non-neoplastic diseases,
and the photosensitizers (PSs) are crucial for PDT efficiency. The commonly used chemical PSs, gen-
erally produce ROS through the type II reaction that highly relies on the local oxygen concentration.
However, the hypoxic tumor microenvironment and unavoidable dark toxicity of PSs greatly restrain
the wide application of PDT. The genetically encoded PSs, unlike chemical PSs, can be modified using
genetic engineering techniques and targeted to unique cellular compartments, even within a single
cell. KillerRed, as a dimeric red fluorescent protein, can be activated by visible light or upconversion
luminescence to execute the Type I reaction of PDT, which does not need too much oxygen and surely
attract the researchers’ focus. In particular, nanotechnology provides new opportunities for various
modifications of KillerRed and versatile delivery strategies. This review more comprehensively
outlines the applications of KillerRed, highlighting the fascinating features of KillerRed genes and
proteins in the photodynamic systems. Furthermore, the advantages and defects of KillerRed are
also discussed, either alone or in combination with other therapies. These overviews may facilitate
understanding KillerRed progress in PDT and suggest some emerging potentials to circumvent
challenges to improve the efficiency and accuracy of PDT.

Keywords: photodynamic therapy; genetically encoded photosensitizers; KillerRed; delivery strategies;
nanotechnology

1. Introduction

Photodynamic therapy (PDT), as a non-invasive modality with spatiotemporal selec-
tivity, has been used to treat a variety of cancers as well as non-oncological indications like
infections and dermatoses [1–5]. Light, photosensitizers (PSs), and oxygen are the three key
elements for PDT, which lack toxicity in individual conditions but produce toxicity when
they work together. After exposing PSs to a particular wavelength of light, photochemical
reactions produce reactive oxygen species (ROS) that can cause irreversible oxidization
on essential cellular components and result in neoplastic cell death through apoptosis,
necrosis, autophagy, degeneration, and inflammatory response in the treated area [6,7]. In
the photoactivation process, the excited triplet state of PSs either interact with biomolecules
in the surrounding environment by transferring electrons and result in free radical genera-
tion such as superoxide ion and hydroxyl radical that destruct biomolecules (called type I
reaction), or directly transfer energy from the triplet PSs towards oxygen, resulting in the
production of singlet oxygen (1O2) (type II reaction) (Figure 1) [6]. The contributions of
type I and type II mechanisms are affected by a variety of factors including pH value, tissue
dielectric constant, oxygen concentration, and the properties of PSs. Since PDT can rapidly
consume lots of tissue oxygen and also shut down the blood vessels that deliver oxygen,
the treatment may induce more serious hypoxia in tumor environment [8]. Although the
details of how oxygen involves in type I reaction are still unclear, many studies suggest
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that type I PDT works well even under scarce oxygen conditions. Thus, type I may provide
new solutions to overcome the hypoxia dilemma in neoplasms treatment [9].
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but they tend to aggregate in biological media because of the enhanced π-stacking of mac-
rocycles. Based on this, nanophotosensitizers including various types of nanoparticles 
such as organic liposomal porphysome, inorganic titanium dioxide nanoparticles, and 
other nanohybrids have been developed in recent years. Nevertheless, the nanosized PSs 
with complicated fabrications are still a long way from clinical use. Moreover, most of the 
synthesized PSs are thought to act through type II reactions to cause oxidative cellular 
damage, while the type I PSs may be able to produce more effective PDT effects within an 
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Excitedly, some fluorescent proteins including GFP, KillerRed, KillerOrange, Ta-
gRFP, SuperNova, miniSOG, and their ramifications have been proved to possess photo-
sensitive properties at different levels (Figure 2, Table 1). More importantly, by using ge-
netic modification techniques, they can be genetically encoded to achieve precise cell/tis-
sue distribution and perform PDT reactions [11]. Unlike conventional fluorescent proteins 
like GFP and TagRFP with inefficient photosensitization properties, KillerRed is the first 
phototoxic fluorescent protein designed by Bulina’s team in 2006 [12]. KillerRed is derived 
from the non-fluorescent chromoprotein in anm2CP via the substitutions Thr145Asp and 
Cys161Gly, which creates a water-filled channel connected with chromophore through 
the center of β-barrel. This structure is unique to KillerRed and may be the principle for 
its superior phototoxicity. It has been reported that KillerRed can target a particular orga-
nelle or compartment by fusing a localizing sequence (e.g., leader peptides or antibodies). 
Moreover, CALI (chromophore-assisted light inactivation) and photoablation studies 
have also made extensive use of KillerRed to investigate the subcellular structure and 
function by optogenetics. To further develop the functions and applications of KillerRed, 

Figure 1. The different mechanisms of photosensitization processes and the resultant variable cell
death modes (software: CorelDraw 2020, 22.0.0.412). *: Electronic excited state.

PDT is clinically appealing owing to its minimal invasiveness, locoregional therapies,
limited side effects, repeatable stimulation, and negligible resistance. Undoubtedly, PSs
are crucial for the highly efficient PDT and many efforts have been devoted to develop-
ing photosensitive compounds. PSs have evolved from the first-generation PSs such as
haematoporphyrin derivative (HpD) and Photofrin to the second-generation PSs such as
chlorines, phthalocyanines, and some dyes, or even the third-generation PSs centered on the
development of substances that have a stronger affinity for tumor tissue [10]. Some of the
previous PSs have been approved for clinical application, but they are still demonstrated
several shortcomings. For instance, most porphyrins have good photophysical properties,
but they tend to aggregate in biological media because of the enhanced π-stacking of
macrocycles. Based on this, nanophotosensitizers including various types of nanoparticles
such as organic liposomal porphysome, inorganic titanium dioxide nanoparticles, and
other nanohybrids have been developed in recent years. Nevertheless, the nanosized PSs
with complicated fabrications are still a long way from clinical use. Moreover, most of the
synthesized PSs are thought to act through type II reactions to cause oxidative cellular
damage, while the type I PSs may be able to produce more effective PDT effects within an
anoxic tissue environment.

Excitedly, some fluorescent proteins including GFP, KillerRed, KillerOrange, TagRFP,
SuperNova, miniSOG, and their ramifications have been proved to possess photosensitive
properties at different levels (Figure 2, Table 1). More importantly, by using genetic
modification techniques, they can be genetically encoded to achieve precise cell/tissue
distribution and perform PDT reactions [11]. Unlike conventional fluorescent proteins
like GFP and TagRFP with inefficient photosensitization properties, KillerRed is the first
phototoxic fluorescent protein designed by Bulina’s team in 2006 [12]. KillerRed is derived
from the non-fluorescent chromoprotein in anm2CP via the substitutions Thr145Asp and
Cys161Gly, which creates a water-filled channel connected with chromophore through the
center of β-barrel. This structure is unique to KillerRed and may be the principle for its
superior phototoxicity. It has been reported that KillerRed can target a particular organelle
or compartment by fusing a localizing sequence (e.g., leader peptides or antibodies).
Moreover, CALI (chromophore-assisted light inactivation) and photoablation studies have
also made extensive use of KillerRed to investigate the subcellular structure and function
by optogenetics. To further develop the functions and applications of KillerRed, this review
will focus on the structure, reaction mechanism, and physiological function of KillerRed as
both endogenous and exogenous PS for cancer therapeutics and imaging. The phototoxicity
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and future perspectives of KillerRed, as well as the combination with chemotherapy/gene
therapy/nanoparticles, has also been discussed.
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Table 1. Properties of the fluorescent proteins.

Category Protein
Photosensitizer No. AA Chromophore λex [nm] λem

[nm]
Fluorescence

Quantum
Yield [ϕF]

1O2 Quantum
Yield [ϕ1O2]

Photosensitized
O2− Formation

Fluorescent
protein
vatiant

KillerRed 239 QYG [13] 585 610 0.25 [12] 0.000 [14] Y [15,16]
KillerOrange 248 QWG [17] 512 555 0.42 [18] -1 -
SuperNova 271 QYG [19] 579 610 0.30 [19] - Y [19]

TagRFP 237 MYG [20] 555 584 0.48 [21] 0.004 [22] N [22]

Flavin-
binding
protein

miniSOG 106 - 448 528 0.37 [14] 0.03 [23,24] Y [25]
SOPP 106 - 440 487 0.43 [26] 0.25 [26]/0.39 [27] Y [27]

Pp2FbFPL30M 148 - 449 495 0.25 [28] 0.09 [29] Y [28]

2. Basic Features of KillerRed
2.1. Structure and Property of KillerRed

KillerRed is a dimer consisting of GFP-like β-barrel with a typical chromophore
(Gln65-Tyr66-Gly67) through the β-barrel axis, wherein a unique water-filled channel
forms there (Figure 3a). The chromophore can absorb 540~580 nm wavelength green
light and emit a longer 610 nm red light (Figure 3b,c), which facilitates the production of
ROS trough exchanging oxygen and ions with the surrounding environment to induced
phototoxicity [13,15,30]. It is shown that the maximum fluorescence excitation/emission
of KillerRed is 585/610 nm, and the fluorescence quantum yield of KillerRed is 0.25,
which is 62.5 times higher than that of GFP. Furthermore, the phototoxicity of KillerRed
has exceeded other fluorescent proteins by at least 1000-fold [15]. At present, the type I
photoreaction induced by KillerRed is widely approved, suggesting that KillerRed may be
adaptable to the hypoxic microenvironment in tumor tissues.

2.2. Illumination Factors of KillerRed

Lasers emitting precise amounts of light are widely used in phototherapy. As the
wavelength stretches, the time required to achieve the same effect increases. Since PDT
consumes oxygen, it is critical to use an acceptable irradiance. Otherwise, a high irradiance
will consume the oxygen molecules too quickly, resulting in a decrease in efficiency [7].
Furthermore, the photodamage to cells is influenced by the various laser parameters used
in the experiments, such as repetition rate, pulse frequency and light intensity. Experiments
revealed that a pulsed laser (584 nm, 10 Hz, 18 ns) induced major histopathological changes
and slowed the growth of a CT26 transplanted tumor, while a continuous laser (593 nm)
had little effect [31]. Meanwhile, KillerRed can also present different cellular responses
after treatment by disparate light intensities. For example, KillerRed expressed on the
surface of lysosomes triggered cell necrosis via a higher light intensity (700 mW/cm2,
5 min), but mediated cell apoptosis at a lower light intensity (75 mW/cm2, 20 min) [32].
Based on the above studies, it could be postulated that low light intensity is feasible in
KillerRed-mediated PDT for cell death.
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3. Applications of KillerRed as an Endogenous Photosensitizer

With the development of modern biomedicine, researchers have been devoted to
investigate precision PDT strategies. It knows that ROS has a short life span, which makes
it only react with biomolecules within a micron range. Therefore, the therapeutic effeciency
and mechanisms are highly dependent on the intracellular localization of PSs. In this
regard, the location of KillerRed can be readily modified by the genetic engineering to
enhance oxidative damage of specified organelles.

3.1. Distinct Targeting Strategies of KillerRed In Vitro

PDT damages cancer cells not only directly by apoptotic and non-apoptotic (necrosis,
autophagy) pathways, but also indirectly by disrupting tumor vasculature that supports
cancer cells with nutrients and oxygen. Therein, the type of PS and localization are crucial
for the different damage pathways induced by PDT. Previous studies have showed that
PSs located in mitochondria are more likely to cause apoptosis and PSs distributed in the
plasma membrane and lysosomes cause necrosis. Unlike chemical PSs, genetically encoded
PSs can be modified and targeted to a specific cellular compartment or cell type using
genetic engineering techniques [32]. Enhancing the spatiotemporal interaction between
PSs and their designated target will significantly improve PDT therapeutic efficacy. In
this section, we will introduce different targeting strategies and related applications of
KillerRed (Table 2).

https://www.ncbi.nlm.nih.gov/Structure/icn3d/full.html?&mmdbid=81360&bu=1&showanno=1&source=full-feature
https://www.ncbi.nlm.nih.gov/Structure/icn3d/full.html?&mmdbid=81360&bu=1&showanno=1&source=full-feature
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Table 2. Different targeting strategies of KillerRed in phototherapy.

Different
Target Sites Targeting Signal Experimental

Model
Parameters of Killerred Illumination

Ref.Wavelength Optical Powers Duration

Membrane
Inserting membrane

localization signal (MLS)

Zebrafish 535–575 nm 80 mW/cm2 2 h [33]
Zebrafish Greenlight - 0.5–1 h [34]
zebrafish 546–558 nm 100 W 20 min [35]

Xenopus laevis 545 nm 90 mW/cm2 18 h [36]
Xenopus laevis 545–565 nm 200 W - [37]

C. elegans 426–593 nm 0.57–
46 mW/cm2 0.1–2 h [38]

C. elegans 540–580 nm 269 mW/cm2 2 h [39]

Mitochondria
Inserting mitochondria
target sequence (MTS)

C. elegans 550–590 nm 100 mW/cm2 1 h [40]

C. elegans 543–593 nm 200–300
mW/cm2 1 h [38]

Rat and mouse
hippocampal

neuronal
Greenlight 120 W 1 h [41]

Mouse
hippocampal
neuronal and

N2a
neuroblastoma

cells

561 nm - 30 s [42]

HeLa cells Visible light - 1 h [43]
HEK293T and

HeLa cells 530–610 nm 100 mW/cm2 20 min [40]
HeLa and

SH-SY5Y cells 561 nm - - [44]

Nuclear

Histone 2B HeLa and Hela
Kyoto cells Greenlight 200 mW/cm2 15 min [43]

Histone 2A/Lamin B1 Hela and
DU145 cells Visible light - 3 h [45–47]

Tet-
repressor/Transcription

activator
U2OS TRE and

263 cells 559 nm 150 mW/cm2 10 min [48,49]

Telomere-binding
protein TRF1

U2OS, HeLa,
MCF7, IMR90,

and MCF7 cells
559 nm 15 W 0.33–4 h [50,51]

Telomere-binding
protein TRF1/2

U2OS, 293,
HeLa, and
293FT cells

Visible light - 0.33–1 h [35]

3.1.1. Membrane-Targeted KillerRed

The plasma membrane plays a crucial role in maintaining cellular homeostasis, cell
integrity, and nutrient transport [52]. Cellular life will undoubtedly come to an end if
the plasma membrane’s integrity is compromised [52]. ROS can lead to unsaturated
lipid peroxidation then cause lipid membrane conformational changes and eventually
programmed necrosis. As a result, membrane-targeted PDT will be a potent strategy for
disrupting cellular integrity.

Oxidative stress is linked to a variety of diseases, including cardiovascular, cancer, and
neurodegenerative diseases. In previous studies, the standard approach caused oxidative
stress has been applicating ROS-generating reagents globally which may bring systemic
side effects and safety issues. Thus, specific neuronal ablation is necessary to kill cells
as quickly as possible without collateral damage to adjacent cells and tissues [38]. To
achieve this, combining photosensitizing proteins with PDT opens up a novel therapeutic
modality. Optogenetics is an emerging field to accurately manipulate cells activity by
using molecular genetics to express light-sensitive proteins [33]. It also achieves advanced
temporal and spatial regulation of oxidative stress production. Studies suggested that
ROS can regulate the degeneration and ablation of motor neurons and sensory neurons in
zebrafish and Caenorhabditis elegans by establishing modelsin vivo and expressing real-time
visualized membrane-targeted KillerRed (mem-KR) selectively (Figure 4). The results hint
that oxidative stress has close relation with neurodegeneration and KillerRed-mediated
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optogenetics is useful for behavioral analysis and genetic research [33,38,39]. Optogenetics
also provides new opportunities for exploring the mechanism of biological development,
regeneration, and repair. Photo-activated mem-KR can induce changes in heart rate and
contractility of zebrafish. Moreover, it can produce oxidative stress in X.laevis tadpoles
and help to investigate the conserved mechanisms of cardiac repair during natural heart
morphology reconstruction [34,36]. It can affect cell viability and function of the zebrafish
embryo as well as induce apoptosis in specific organs and tissues of Xenopuslaevis for
studies of ROS during embryogenesis [35,37].
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ing cellular internalization by acidic endo/lysosomal compartments [53,54]. However, en-
coded membrane-targeted KillerRed can overcome different biological obstacles and 

Figure 4. (a) The membrane localization signal (MLS) directs KillerRed (KR) to the intracellular cell
membrane of MNs (mnx1 promoter). Following green light illumination, KR produces ROS and
photo-bleaching occurs. (b) A transgenic zebrafish can express KR in individual neurons. (c) Photo-
bleaching occurs after 60 min of illumination for KR. (d) A schematic representation of mem-KR
activation in zebrafish. (e) Time-lapse imaging after KR activation showed A5 (a physiological marker
of apoptosis) accumulation. Scale bars 25 µm. Reproduced with permission from Ref. [33]. Copyright
2018 Elsevier.

In cancer therapy, the plasma membrane remains an essential target for novel drugs,
as the majority of exogenous substances are readily stuck in enzyme degradation following
cellular internalization by acidic endo/lysosomal compartments [53,54]. However, encoded
membrane-targeted KillerRed can overcome different biological obstacles and achieve
efficient PDT without endocytosis. Therefore, we can expect in further studies that mem-
KR will play an important role in targeting tumor ablation.

3.1.2. Mitochondria-Targeted KillerRed

As the essential organelle in cell energy metabolism, ROS formation and the control of
programmed cell death (PCD) [55,56], mitochondria are very vulnerable to ROS because
their contents are likely to cause oxidative damage in the matrix [44,57]. Multiple PSs
such as porphyrin derivatives, chlorin e6 (Ce6), curcumin, Zn (II) Phthalocyanine (ZnPc),
cyanine dyes, etc. have been designed to accumulate in mitochondria by combining with
targeting agents [58]. Compared to the above synthetic compounds, the fluorescent protein
KillerRed can be easily modified to target mitochondria by inserting an MTS (mitochondria
localization signal) sequence into the genome of KillerRed.

Neuronal mitochondria play important roles in neuronal physiology, but the relation-
ship between neuronal and mitochondrial dysfunction is still unclear. One research has
indicated that mitochondria-targeted KillerRed (mt-KR) and mem-KR function through
two different pathways: Photoactivated mt-KR resulted in organelle fragmentation without
killing the cells, while mem-KR caused cell death via lipid peroxidation [38]. Several po-
tential reasons may contribute to this phenomenon of mt-KR. First, the antioxidant system
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in mitochondria can counteract oxidative stress, and induce a low rate of effective ROS
diffusion and rapid quenching of ROS. Second, the defective mitochondria show a lower
motility and fusion, and avoid the propagation of oxidation in the neuron by “quarantin-
ing” themselves [42]. Third, the function of proteasomes degrades the activated caspase-3
to limit the spread of caspase-3 activity and cell death [41]. Additionally, the mitochondrial
damage induced by mt-KR-mediated PDT further results in impaired muscle function and
interference to feeding and development of C. elegans larvae [40].

Except in the neurons and nematodes, mitochondria are also closely related to cancer
cells survival and death. Mt-KR has shown remarkable effects against cancer cells through
different pathways such as caspase-dependent or -independent cell apoptosis, and cell
autophagy. The mechanisms can be summed up as the following points: First, oxidative
stress caused by photo-stimulated mt-KR can increase the permeability of mitochondrial
membrane and release cytochrome C to activate the caspases pathway, which finally leads
to cell apoptosis [40,41,43]. Second, mt-KR can induce caspase-independent cell death after
illumination via mitochondrial membrane depolarization, the generation of ROS increase
and mitochondrial rupture/dysfunction [40]. Third, mt-KR-mediated phototoxicity can
initiate PARK2/PARKIN-dependent mitochondrial autophagy, leading to autophagic cell
death [44]. Moreover, studies have shown that linear mitochondria are more resistant to
mitophagy than broken mitochondria by unclear mechanisms.

Overall, mt-KR-mediated PDT is a promising therapeutic strategy for various diseases
because it can overcome additional barriers such as the nuclear membrane and avoid
unexpected leakage. It is still beneficial to explore the mechanism of different cell death.
However, it has been reported that basal expression of mt-KR in the muscle cells of worms
can cause mitochondrial stress and induce delayed growth and development, even in
the absence of irradiation with light, which is a limitation for the mt-KR application [40].
Therefore, ensuring the safety of mt-KR expression and improving treatment efficiency are
still major challenges.

3.1.3. Nucleus-Targeted KillerRed

The cell nucleus is the main target for many therapies such as chemotherapy, gene
therapy, PDT, and PTT. The endogenous KillerRed can be designed to target the nucleus
by fusing various nuclear localization sequences. After light stimulation, ROS generated
from nucleus-targeted KillerRed (nuc-KR) can directly cause DNA damage with precise
temporal and spatial control when compared to chemical PSs.

Studies have indicated that the photoactivated nuc-KR can induce premature senes-
cence. Compared to oncogene-induced senescence (OIS) and senescence induced by DNA-
damaging agents, nuc-KR with light activation can avoid interference to the cell culture
and side effects of small-molecule drugs [51]. By expressing KillerRed in series with histone
2B (H2B) within the HeLa cells, the fusion protein H2B-KR can induce DNA damage and
further lead to cell senescence after illumination. Telomeres are also strongly associated
with aging, but the studies of realizing precise oxidative damage to telomeres remain
inadequate [50]. Telomere-targeted KillerRed (tel-KR) provides a new targeting strategy
for exploring the relationship between telomeric oxidative damage and aging. Li Lan et al.
have designed tel-KR by fusing KillerRed with TRF1 (telomeric repeat-binding factor 1)
to induce specific telomeric oxidative damage and revealed the mechanism of telomere
protection: TRF1 is phosphorylated and preserved in a functional shelterin complex at
telomeres by the Nek-7 (one of the never-kinase family Mitotic gene A) [35,50,51].

In addition to cellular senescence, oxidative stress caused by activated nuc-KR is also
an efficient approach for tumor elimination. Previous studies have demonstrated that
KillerRed fusing with histone 2A (H2A) or nuclear lamina protein B1 can trigger cell cycle
arrest, increase the rupture of the DNA strand, and eventually kill the tumor cell [45,46,59].
Moreover, nuc-KR fusing with a tet-repressor (tetR) or transcription-activator (TA) in
U2OS cells can produce ROS and cause heterochromatin or euchromatin damage after
illumination. Since the ROS-induced DNA damage can be repaired by the base excision



Int. J. Mol. Sci. 2021, 22, 10130 8 of 20

repair (BER) pathway, nuc-KR is useful to investigate how the BER protein is recruited to
DNA damage sites in cells [47,48].

The nucleus is an effective target of PDT because the DNA double-strand damage is
lethal to cells [49]. Notably, compared to other exogenous photosensitizers, endogenous
nuc-KR can achieve specific DNA damage. However, how the KillerRed precisely induced
DNA damage and the regulated mechanism are yet to be fully elucidated.

3.2. Diverse Delivery Strategies of KillerRed Gene In Vivo

Nowadays, using chemical and physical methods to transfect specific genes in vitro
has become more and more mature. However, an efficient and relative safe strategy of
gene transfection in vivo is still a challenge. Since bare DNA cannot enter into cells due to
its hydrophilic property, large size, and negative charge [60]. Recently, several promising
approaches have been developed for transfecting the KillerRed gene into specific cells,
including viral and non-viral delivery strategies (Figure 5).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 9 of 21 
 

 

 
Figure 5. Advantages of diverse delivery strategies of KillerRed gene. 

3.2.1. KillerRed Gene Delivery Based on Viral Vectors 
Viral vectors with high transfection efficiency provide a promising method for tem-

porary or permanent expressing genetic material into desired cells. Viral vectors are di-
vided into integration vectors and non-integration vectors, depending on the presence/ab-
sence of the viral genome in the host cell [61]. Non-integrating vectors such as adeno-
associated virus (AAV) vectors and adenovirus (Ad) vectors can avoid irreversible ge-
nomic-incorporation-caused DNA aberrations, and they have been widely used for gene 
transfection in pre-clinical experiments. Nowadays, researchers have proved that the de-
livery and infection of the KillerRed gene are precisely achieved in host species by non-
integrated vectors. 

Kiyoto Takehara et al. have designed a telomerase-specific recombinant adenovirus 
vector (TelomeKiller) to express KillerRed when it is activated by human telomerase re-
verse transcriptase (hTERT) promoter. Their studies have demonstrated that intratumor 
injection of TelomeKiller can inhibit the growth of non-small cell lung cancer and elimi-
nate metastasis after the illumination of yellow-orange light (590 nm, 180 mW/cm2, 60 
min) [62]. This recombinant vector is also efficient in eliminating human malignant mela-
noma after light stimulation (589 nm, 300 mW/cm2, 45 min) [63]. Moreover, a müller cells-
specific adeno-associated virus vector expressed KillerRed in the vitreous of mice has been 
used to explore the changes in the structure and function of the retina after light stimula-
tion (540–580 nm, 1000 lux, 60 min). The results shows that the activation of KillerRed 
leads to the loss of müller cells and then causes retinal degenerative disease. Meanwhile, 
it also suggests that KillerRed delivered by AAV vectors in müller cells may be useful to 
establish models of retinal dystrophies in large animals [64]. 

Viral vectors can deliver genetic materials into target cells due to their natural infec-
tivity. However, the translation of specific genes is limited by insufficient capsid capacity, 
potential immunogenicity of the viral capsid, and insertional mutagenesis [65]. Thus, non-
viral vectors for gene delivery have been attempted to overcome these roadblocks. 

3.2.2. KillerRed Gene Delivery Based on Non-Viral Vectors 
Generally, non-viral vectors can be broadly defined as an assembly of cations that 

complex DNA into small-sized particles. Non-viral vectors have many advantages includ-
ing simple preparation, low production cost, easy molecular structure manipulation, less 
immunogenicity, no restriction of genome material transmission, and no viral recombina-
tion potential [66], which is very efficient for gene delivery in vivo. Different categories of 
KillerRed gene delivery by non-viral vectors have been attempted. 

Cationic polymers such as chitosan and polyethylene are important carriers for neg-
ative genes delivery among varied non-viral gene vectors. They can interact with nega-
tively charged KillerRed gene and further form positively charged particles. Chitosan (CS) 
can protect KillerRed gene from nuclease degradation, and poly (γ-glutamic acid) (γPGA) 
can enhance the expression of KillerRed by accelerating the intra-cellular unpackaging of 

Figure 5. Advantages of diverse delivery strategies of KillerRed gene.

3.2.1. KillerRed Gene Delivery Based on Viral Vectors

Viral vectors with high transfection efficiency provide a promising method for tem-
porary or permanent expressing genetic material into desired cells. Viral vectors are
divided into integration vectors and non-integration vectors, depending on the pres-
ence/absence of the viral genome in the host cell [61]. Non-integrating vectors such as
adeno-associated virus (AAV) vectors and adenovirus (Ad) vectors can avoid irreversible
genomic-incorporation-caused DNA aberrations, and they have been widely used for
gene transfection in pre-clinical experiments. Nowadays, researchers have proved that
the delivery and infection of the KillerRed gene are precisely achieved in host species by
non-integrated vectors.

Kiyoto Takehara et al. have designed a telomerase-specific recombinant adenovirus
vector (TelomeKiller) to express KillerRed when it is activated by human telomerase
reverse transcriptase (hTERT) promoter. Their studies have demonstrated that intratumor
injection of TelomeKiller can inhibit the growth of non-small cell lung cancer and eliminate
metastasis after the illumination of yellow-orange light (590 nm, 180 mW/cm2, 60 min) [62].
This recombinant vector is also efficient in eliminating human malignant melanoma after
light stimulation (589 nm, 300 mW/cm2, 45 min) [63]. Moreover, a müller cells-specific
adeno-associated virus vector expressed KillerRed in the vitreous of mice has been used
to explore the changes in the structure and function of the retina after light stimulation
(540–580 nm, 1000 lux, 60 min). The results shows that the activation of KillerRed leads to
the loss of müller cells and then causes retinal degenerative disease. Meanwhile, it also
suggests that KillerRed delivered by AAV vectors in müller cells may be useful to establish
models of retinal dystrophies in large animals [64].

Viral vectors can deliver genetic materials into target cells due to their natural infec-
tivity. However, the translation of specific genes is limited by insufficient capsid capacity,
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potential immunogenicity of the viral capsid, and insertional mutagenesis [65]. Thus,
non-viral vectors for gene delivery have been attempted to overcome these roadblocks.

3.2.2. KillerRed Gene Delivery Based on Non-Viral Vectors

Generally, non-viral vectors can be broadly defined as an assembly of cations that
complex DNA into small-sized particles. Non-viral vectors have many advantages includ-
ing simple preparation, low production cost, easy molecular structure manipulation, less
immunogenicity, no restriction of genome material transmission, and no viral recombina-
tion potential [66], which is very efficient for gene delivery in vivo. Different categories of
KillerRed gene delivery by non-viral vectors have been attempted.

Cationic polymers such as chitosan and polyethylene are important carriers for nega-
tive genes delivery among varied non-viral gene vectors. They can interact with negatively
charged KillerRed gene and further form positively charged particles. Chitosan (CS) can
protect KillerRed gene from nuclease degradation, and poly (γ-glutamic acid) (γPGA)
can enhance the expression of KillerRed by accelerating the intra-cellular unpackaging
of CS/DNA complexes via electrostatic repulsion. Thus, the photosensitizing ternary
complex consist of CS/pKillerRed/γPGA has been synthesized through an ionic-gelation
method [65]. The study shows a decrease in both cell viability and membrane integrity of
KillerRed-positive cells after irradiation (540–560 nm, 55 mW/cm2, 30 min) (Figure 6) [67].
Notably, the phototoxic reaction of KillerRed in cells gradually becomes negligible along
with time, suggesting the biodegradability and safety of KillerRed. Except for chitosan,
polyethylene (PEI) has also been used for KillerRed gene transfection. To enhance the
cellular uptake of p53 and pKillerRed at acidic tumor microenvironment, researchers have
designed the pH-responsive complex composed of plasmid DNAs, branched PEI and
PEG-His-PEG-Glu. Evidence shows that a single administration dramatically decreased
the development of tumors and increases the median animal lifespan from 28 days to 68
days with the illumination (593 nm, 100 mW/cm2, 20 min) [68].
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However, cationic surface charge-mediated toxicity, incompatibility, and nonspecific
interactions with blood components limit the application of cationic polymers [69]. Thus,
cationic derivatives of natural polymers possess great application potentials for KillerRed
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gene delivery because of their low immunogenicity and toxicity. Pullulan is a well-known
natural, neutral, and linear homopolysaccharide with availably chemical modification
in hydroxyl groups. Jie Zhou et al. have synthesized cationic dendronized pullulan
decorated with guanidine to improve KillerRed expression and ROS production to suppress
cancer cell proliferation after photoactivation (532 nm, 4 W/cm2, 10 min) [69]. Moreover,
the polysaccharide hydroxyethyl starch (HES) is also commonly used in hydrophilic,
biocompatible, and biodegradable delivery systems [70,71]. CD-PGEA has the feature
of excellent biocompatibility, non-immunogenicity, and low toxicity [72]. So, a genetic
self-assembly nanosystem (HES@PGEA/pKillerRed-p53) has been designed to deliver
pKillerRed-p53 and achieve the synergistic effect of p53 and KillerRed. Studies shows that
the complex expressed better anti-tumor efficiency than monotherapy in 4T1 models after
illumination (540–560 nm, 70 mW/cm2, 20 min) [73].

Although some progress has been made, further exploration of non-viral KillerRed
gene delivery is still needed. As the transfection efficacy of non-viral vectors is often
related to their toxicity [66], achieving safe and effective transfection is a key objective in
the development of non-viral KillerRed gene delivery.

4. Applications of KillerRed Protein as an Exogenous Photosensitizer

As mentioned previously, KillerRed can indeed serve as an endogenous photosensi-
tizer and express at specific sites via gene delivery. However, gene therapy with endoge-
nous KillerRed faces a problem of serious gene toxicity because of potential alteration of
genetic composition. In contrast, using KillerRed protein as an exogenous photosensitizer
can avoid such risks. For instance, studies have showed an effective inactivation of K562,
NB4, and THP1 leukemia cells by purified KillerRed triggering cell apoptosis under light
stimulation (400–780 nm, 80 mW/cm2, 20 min) [74]. Moreover, by injecting the Escherichia
coli expressing KillerRed (KR-E.coli) into tumor tissue and illuminating with an appropriate
wavelength (540–580 nm, 30 min), the CNE2 and HeLa tumors become necrotic and are
eliminated without recurrence in two months [75]. However, there are still challenges for
KillerRed protein delivery, such as instability during blood streaming or degradation by
enzymes [76]. Various multifunctional nanoplatforms with tumor targets, deep tumor
penetration, and effective cellular uptake have been developed to overcome these obstacles
(Figure 7). In this section, the recent progress in the KillerRed protein delivery strategies
will be separately described.
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4.1. KillerRed Protein Delivery Based on Inorganic Nanoparticles

With technological development, nanoparticles have been designed using multiple
agents from natural to synthetic materials [61]. Nanoparticles have many advantages



Int. J. Mol. Sci. 2021, 22, 10130 11 of 20

such as high loading, good stability, and functional diversity modified with functional
groups [77–80]. Therein, inorganic vehicles are using broadly in PDT to increase the
selectivity and bioavailability of photosensitizers because of their high chemical stability
and corrosion resistance under physiological conditions. The development of inorganic
nanocarriers provides a new opportunity for KillerRed protein delivery.

4.1.1. Mesoporous Silica Nanoparticles (MSNs)

As promising nanocarriers for multiple therapies, MSNs offer many ideal drug deliv-
ery properties including biocompatibility, biodegradability, flexibility in size and shape,
and porous structure for high payloads [81]. To achieve efficient and safe protein delivery, a
multi-purpose selective system has been designed (Figure 8). The positively and negatively
charged MSNs are prepared via an amine or carboxyl modification on their surface. Thus,
several proteins including KillerRed can be loaded effectively into various MSNs through
electrostatic interaction and pore absorption [82]. As an example, ROS can be detected by
activating KR-MSN after LED illumination (10 mW/cm2, 60 min). This charge selective
system achieves various proteins delivery in vitro. However, the short penetration depth of
visible light limits the application of many photosensitizing proteins like KillerRed in vivo.
Thus, more effective strategies still deserve to be explored.
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protein-loaded MSN−. (c) H2O2 output from KR, KR-MSN/LP (KR content: 180 µM) after various
periods of irradiation with LED light (10 mW/cm2). Reproduced with permission from Ref. [82].
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4.1.2. Upconversion Nanoparticles (UCNPs)

The major obstacle of the application of KillerRed in biological tissues is the short
excitation wavelength (~585 nm). The penetration depth of green light is typically less
than 3 mm, which cannot achieve efficient tissue penetration [83]. The combination with
upconversion nanoparticles (UCNPs) is one of the options to excite KillerRed with longer
wavelengths. During the anti-stock emission process, UCNPs can convert low-energy light
into high-energy light to achieve deep tissue penetration, minimal autofluorescence back-
ground, and diagnostics and biomedical imaging performance [84]. Nowadays, KillerRed
has already been designed to covalently link with green-emitting UCNPs to enhance the
therapeutic depth under NIR stimulation (Figure 9). NaYF4:Yb3+/Er3+ nanospheres emit
visible luminescence at ~540 nm under NIR irradiation, and then the photon energy is
transferred to KillerRed to generate ROS.
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spectra of emissions (red line) and UCNPs (black line) emission spectrum under 980 nm excitation.
(c) KillerRed (black line), PAA-UCNP (blue line), and KillerRed UCNP (orange line) emission
spectrum under 980 nm of arousal. (d) MDA-MB-231 cells treated with KillerRed-UCNP (200 µg/mL)
irradiated for 30 min with various pork-tissue thicknesses mounted at the cell chamber, using a
NIR laser (0.5 W/cm2) and yellow laser (0.2 W/cm2). Reproduced with permission from Ref. [85].
Copyright 2017 Elsevier. *: p < 0.05; ***: p < 0.001.

The results shows that after irradiation with NIR light (980 nm, 0.5 W/cm2, 30 min),
the efficacy of PDT with KR-UCNP can reach about 70% at approximately 1cm tissue
depth, while KillerRed only can just achieve about 7% [85]. The combination of KillerRed
and UCNPs indeed presents new opportunities for the application of KillerRed in vivo.
However, how to improve the loading efficiency of KillerRed, increase light-conversion
efficiency, and reduce illumination time remain problems which limit the development of
UCNP and photosensitizing proteins.

4.2. KillerRed Protein Delivery Based on Lipo/Membrane Nanocarriers

Liposomes, as common drug-encapsulating materials that consist of one or more
bilayers of hydrophobic phospholipid around the core, present several distinctive char-
acteristics including high biocompatibility, low immunogenicity, self-assembly ability,
loading capacity for both hydrophilic and hydrophobic agents, and protection against
cargo in physiological conditions [86]. Different liposomes have so far been widely studied
as carriers of many agents, such as proteins or peptides, to improve cargo stability, extend
systemic circulation and improve the accumulation of tumors [74]. Meanwhile, clinical
applications of liposomes have been proved to be the most beneficial.

Liposomes have been applied widely for their unique advantages. Meanwhile, drug
encapsulation in a liposome can ensure the regular use of drugs as the pharmacokinetic and
pharmacodynamic properties can be controlled [86]. However, unexpected drug leakage
from liposomes in vivo circulation may exert cytotoxic side effects and lead to failure of tu-
mor eradication. The targeting moieties integrated into liposomes always require multiple
chemical reactions and formulation processes that inevitably pose problems of low stability,
poor reproducibility, and complicated assessments [87]. To overcome this limitation, Kim
HY et al. have hybridized liposomes with the KillerRed-embedded cancer cell membrane
(Lp-KR-CCM) where KillerRed cannot leak and ensure the cell source cancer is homotypic
binding. In the case of homotypic tumor-bearing mice following green radiation (532
nm, 60 min), they embed LP-KR-CCM lipids adjuvants to promote an anticancer immune
response [87]. The disadvantage of this approach lies in the weak penetration capacity of
green light, which limits its application clinically and in deep tumors.

5. Comprehensive Therapy

Tumor complexity, diversity, and heterogeneity severely limit the therapeutic potential
of treatment. Multiply strategies such as chemotherapy, surgery, and immunotherapy
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have been widely used to treat a variety of neoplasms and have achieved excellent results.
However, it cannot be completely ignored that the drawbacks of the single treatment such
as the toxic side effects, tolerance of chemotherapeutic drugs, the incomplete surgical
resection of surgery, and the weak efficacy of immunotherapy have limited the efficacy
of cancer treatments [88]. As a non-invasive treatment approach, PDT has been applied
to remove residual tissue in clinic because of its significant targeting and less damage
to surrounding tissues. Photodynamic combinational therapies are continuously under
development and provide new ideas for the diagnosis and treatment of cancer (Figure 10).
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5.1. KillerRed-Mediated PDT Combined with Virotherapy

Virotherapy is an emerging approach by using biotechnology to convert viruses into
therapeutic agents [89]. Compared to plasmid-based gene delivery, viral vectors can offer
high infectivity and stable gene expression [90]. The U.S. Food and Drug Administration
has approved clinical virotherapy use in cancer therapy [88]. However, most clinical trials
of virotherapy are executed via intertumoral injection, which hinders the treatment of
deep or metastatic tumors [91]. As a result, achieving efficacious and accurate systemic
delivery is critical and will also promote the development of KillerRed in combination
with virotherapy.

To achieve systemic delivery, several approaches have been attempted. At both the
preclinical and clinical stages, recombinant adeno-associated virus serotype 2 (AAV2) has
shown a good development prospect [92]. Furthermore, functionalized AAV2 nanopar-
ticles can decrease the using dose, the risks of AAV-directed immune response, ectopic
expression, and oncogene activation. Magnetic nanoparticles (MNPs) can accelerate vector
accumulation at target sites and enhance virion infectivity via magnetic-field-enforced
delivery [93]. As a result, a recombinant AAV2 carrying the KillerRed gene (AAV2-KR)
chemically conjugated with iron oxide nanoparticles is designed to be guided in a magnetic
field. The results show that PDT (laser, 1.5 mW/mm2, 20 min) with magnetic guid-
ance significantly reduces tumor growth by inducing apoptosis [88]. This approach also
proves that ironized AAV2-KR combined with PDT can successfully inhibit the growth of
chemotherapy-resistant cancer cells [94]. Furthermore, a hypoxia-responsive carrier based
on lactate production has been reported, which is self-assembled from hyaluronic acid
(HA), 6-(2-nitroimidazole) hexylamine, lactate oxidase (LOX) and magnetized AAV2-KR.
Within hypoxic and lactate-rich tumor microenvironments, LOX and magnetic fields can
provide specific release. Meanwhile, LOX can catalyze lactate oxidation and produce H2O2
as end products that can induce bioreduction of HA and electrostatically dissociate the
carrier to release AAV2-KR. Compared to control, the results show a significant limitation
in tumor growth and a 2.44-fold reduction in tumor weight after a 2-week course after
illumination (laser, 1.5 mW/mm2, 20 min) in vivo (Figure 11) [95].
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There have been some attempts to combine PDT with virotherapy and improve
therapeutic effectiveness. Actually, MNPs offer multiple opportunities for systemic delivery
of viral vectors. However, as the low transfection efficiency remains an important factor
limiting virotherapy development, further efforts are still demanded to develop efficient
and safe gene delivery carriers.

5.2. KillerRed-Mediated PDT Combined with Immunotherapy

Some tumor cells can be elimination in conventional therapies and escape when they
are resistance to the antitumor immune response. Immunotherapy, which is based on
tumor escape mechanisms, manipulates the immune system to reactivate the antitumor im-
mune response and overcome the pathways leading to escape [96]. Immunotherapy is now
a powerful clinical strategy for cancer treatment and the number of new immunotherapy
drugs approved each year is increasing with numerous treatments in clinical and preclinical
development [97]. However, single immunotherapy still faces many challenges, including
the low response rates to immunotherapy, unexpected autoimmunity, and nonspecific in-
flammation after the broad implementation of immunotherapy. It has been established that
PDT can cause the release of antigen and immunogenic factors from dying tumor cells, such
as damage-associated molecular patterns (DAMPs), which can promote DC maturation
and activate an immune response against tumors. The distinct advantage of PDT makes it
an appealing option compared with immunotherapy in cancer treatment [98]. Meanwhile,
multifunctional nanoparticles have been proved efficient to improve immunotherapy po-
tency, reduce toxic side effects, increase the accumulation within diseased tissues, and
reduce off-target adverse effects. Thus, combining PDT with immunotherapy is of great
significance for developing efficient and safe therapeutic approaches.

Previous studies have demonstrated that the expression of KillerRed can increase im-
munogenicity, providing a new idea for the combination of KillerRed-PDT and immunother-
apy [99,100]. 4D5scFv-KillerRed has been designed with a specific anti-p185HER−2-ECD an-
tibody fragment 4D5scFv fused with KillerRed to retain both parts’ functional properties:
high affinity to antigen and photodynamic activity. The results show that the recombinant
protein has a good targeting property and can efficiently kill p185HER−2-ECD-expressing cancer
cells when exposed to light (white light, 1 W/cm2, 10 min). Based on these results, further
combination of cisplatin and the immunogenicity of KillerRed can activate the immune re-
sponse and bring a remarkable additive effect to eliminate remaining malignant cells [101]. As
mentioned previously, Kim HY et al. have hybridized liposomes with a cancer cell membrane
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embedded with KillerRed (Lp-KR-CCM). They then add monophosphoryl lipid A (MPLA),
a lipid adjuvant, to stimulate an immune response by targeting TLR4 and elicit the matu-
ration of dendritic cells (DCs). Maturated DCs are important in tumor killing because they
secrete inflammatory cytokines and present tumor-associated antigens to T cells [102]. The
primary tumor ablation and lung metastasis prevention have been observed after irradiation
(532 nm, 60 min). Their results show potent antitumor activity and immune-activating both
in vitro and in vivo experiments, indicating the promising prospect of PDT combined with
immunotherapy (Figure 12) [87].
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Figure 12. (a) Cancer treatment plan using lipocomplexes. (b) UV−vis spectra of the component
of Lp-KR-CCM-A. (c) Primary tumor growth in mice. (d) Primary tumor inoculation to the right
side, followed by Lp-KR-CCM-A-based PDT to ablate primary tumor and prevent lung metastasis.
(e) In a co-culture method, multiple therapies and irradiation of 4T1-Fluc cells resulted in vitro
BMDC maturation. (f) In vivo bioluminescence imaging was used to monitor the fate of inoculated
luciferase-expressing 4T1-Fluc cancer cells in mice following multiple therapies for primary tumor
ablation and lung metastasis prevention. Reproduced with permission from Ref. [87]. Copyright
2019 American Chemical Society. *: p < 0.05; ***: p < 0.001.

As an emerging photosensitive protein, KillerRed shows unique advantages and
opportunities in combination therapies. However, the insufficient penetration depths
and long-term irradiation increase the cost of KillerRed-PDT and also put forward higher
requirements in clinical application. Developing promising functionalized nanoparticles
with the advantages of “protection”, “responsiveness”, and “controlled release” may
achieve better effects for immunotherapy.

6. Conclusions

PDT is a promising therapeutic option for many diseases, particularly cancer. How-
ever, it has not yet gained acceptance as a first-line treatment option due to the shortcom-
ings of traditional PSs. KillerRed has shown more prominent advantages than traditional
chemical photosensitizers and other applied photosensitizing proteins, which is mainly
reflected in hydrophilicity, biocompatibility, better photostability, and higher ROS produc-
tion. The application of KillerRed will be a promising approach for future technological
breakthroughs in the field of PDT (Figure 13).
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Higher expectations are always met with stricter requirements. To promote and
accelerate the widely clinical applications of PDT in the future, there are still unresolved
scientific issues and technical challenges for KillerRed, listed as follows:

(1) Systemic injection and local drug delivery are both important modes of administra-
tion. Of course, directly intertumoral injection of KillerRed vectors is also retained.
Endogenous synthesis of KillerRed protein within the tumor can avoid side effects
of off-target organs and maximize the efficiency of the therapy at the lesion location.
Moreover, systemic administration offers unique advantages in the therapeutic pro-
cess against tumor metastasis or deep tumor. Designing nanoscale drug delivery
systems with tumor-targeting capability, controlled-release behavior, and responsive-
ness to the tumor microenvironment may be a good choice to efficiently utilize the
biological function of KillerRed.

(2) Poor tissue penetration limits therapeutic efficacy and applicability of conventional
PDT in the clinic. Combined with UCNP, KillerRed can be excited efficiently and
achieve fluorescence imaging under NIR laser irradiation (expanding the light pen-
etration depth to ≈1 cm). Meanwhile, the potential use of UCNP in UCL optical
imaging, MRI, and CT achieve multimodal imaging guidance to provide precise
structural information for unknown primary or metastatic tumor location, which
finally achieve effective anticancer.

(3) Compared to monotherapy, photodynamic combination therapy, which is used for
the majority of cancers, often yields better results. ROS generated by PDT can activate
an acute inflammatory response, increase tumor immune prototype, promote drug de-
livery, and heighten local cytotoxicity to improve the efficacy of immunotherapy and
chemotherapy. Mild photothermal therapy (mPTT) and sonodynamic therapy (SDT)
will increase membrane permeability, enhance PSs uptake in tumor cells, and improve
ROS aggregation to improve PDT efficiency. Meanwhile, combining with gene ther-
apy can effectively delivery KillerRed into the specific site. PDT with other therapies,
which has distinct benefits for primary cancers and peripheral metastatic tumors, can
make a significant contribution to a systematic approach for cancer treatment.
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