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Background: The combination of immunotherapy and chemoradiotherapy has become
the standard therapeutic strategy for patients with unresected locally advance-stage non-
small cell lung cancer (NSCLC) and induced treatment-related adverse effects, particularly
immune checkpoint inhibitor-related pneumonitis (CIP) and radiation pneumonitis (RP).
The aim of this study is to differentiate between CIP and RP by pretreatment CT radiomics
and clinical or radiological parameters.

Methods: A total of 126 advance-stage NSCLC patients with pneumonitis were enrolled
in this retrospective study and divided into the training dataset (n =88) and the validation
dataset (n = 38). A total of 837 radiomics features were extracted from regions of interest
based on the lung parenchyma window of CT images. A radiomics signature was
constructed on the basis of the predictive features by the least absolute shrinkage and
selection operator. A logistic regression was applied to develop a radiomics nomogram.
Receiver operating characteristics curve and area under the curve (AUC) were applied to
evaluate the performance of pneumonitis etiology identification.

Results: There was no significant difference between the training and the validation
datasets for any clinicopathological parameters in this study. The radiomics signature,
named Rad-score, consisting of 11 selected radiomics features, has potential ability to
differentiate between CIP and RP with the empirical and a-binormal-based AUCs of 0.891
and 0.896. These results were verified in the validation dataset with AUC = 0.901 and
0.874, respectively. The clinical and radiological parameters of bilateral changes (p <
0.001) and sharp border (p = 0.001) were associated with the identification of CIP and RP.
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The nomogrammodel showed good performance on discrimination in the training dataset
(AUC = 0.953 and 0.950) and in the validation dataset (AUC = 0.947 and 0.936).

Conclusions: CT-based radiomics features have potential values for differentiating
between patients with CIP and patients with RP. The addition of bilateral changes and
sharp border produced superior model performance on classifying, which could be a
useful method to improve related clinical decision-making.
Keywords: radiomics nomogram, immune checkpoint inhibitor-related pneumonitis, radiation pneumonitis,
NSCLC, differential diagnosis
INTRODUCTION

Immune checkpoint inhibitors (ICIs) have established a new
paradigm for cancer therapeutic and created many breakthroughs
in clinical practice. Consolidation immunotherapy of immune
checkpoint inhibitors following concurrent chemoradiotherapy
(CCRT) is the current standard of care for patients with
unresectable locally advance-stage non-small cell lung cancer
(NSCLC) (1, 2). While the combination of ICIs and radiotherapy
(RT) has shown promising prospects, treatment-related
pneumonitis, including checkpoint inhibitor-related pneumonitis
(CIP) and radiation pneumonitis (RP) (3, 4), one of the most
frequent and clinically challenging adverse events in the
combination setting, should raise concerns.

CIP is a rare but seriously adverse event with incidence of
approximately 5% in any grade and <3% in grade 3 or higher level
for NSCLC patients who received ICIs (5). Meanwhile,
approximately 60% of patients with thoracic tumors receive RT at
some point during the course of the disease (6). RT contributed to
lung injury and induced pneumonitis. The incidence of radiation
pneumonitis ranges from 4 to 10% in grade 3 or higher in lung
cancer patients after radiotherapy within 6 months (7).
Differentiating a diagnosis between CIP and RP is a difficult
challenge in clinical practice. The clinical symptoms of CIP seem
to be non-specific as far as clinical manifestations are being
concerned. Clinical symptoms, such as fever, cough, and
shortness of breath, are found in both CIP and RP (8).
Additionally, the thoracic CT radiological findings of CIP are
similar to the RP model, especially in the early stage of the
disease course. Although some studies have reported the typical
radiological findings of CIP and RP, these manifestations are only
suggestive due to pneumonitis having a wide range of radiological
appearance (9). Furthermore, these patients are at risk for both ICI-
and RT-induced pneumonitis, and a differentiating diagnosis can
have an important effect on clinical management, such as the
decision to continue or restart the ICI treatment.

Radiomics is inspired by the combination of artificial intelligence
and medical imaging. High-throughput and quantitative images of
features reflect the underlying pathophysiology and reveal
information on pathogenesis and etiology (10). CT radiomics
analysis, as an interdisciplinary technique, has been widely
used in distinguishing between benign and malignant tumors
(11), predicting the prognosis of patients with a tumor (12),
monitoring therapeutic responses (13), and gene expression (14),
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yet scanty attention has been paid to investigating how to
distinguish between CIP and RP using radiomics features for
patients with NSCLC. Given the previous conclusions, whether
CT radiomics can be used for the identification of CIP and RP
becomes crucial and worth exploring. Theoretically, the
characteristics of pneumonitis provided by CT hide the potential
correlation with pneumonitis etiology and can be quantitatively
analyzed. It is expected that the high-throughput and high-
dimensional CT radiomics features play a vital role in
distinguishing between CIP and RP. We hypothesized that
constructing a model and developing a quantitative tool could
improve the diagnostic efficiency for CIP and RP via analysis of
CT radiomics features and clinical or radiological parameters.
MATERIALS AND METHODS

Study Design and Workflow
Firstly, NSCLC patients who were treated with ICIs or RT and
developed pneumonitis were enrolled in this study. Chest CT
images were collected for subsequent radiomics analysis. After
that, radiomics features were extracted from regions of interest
(ROIs). Then, radiomics features were selected based on their
effectiveness in differentiating the subtype of pneumonitis. Next,
Rad-scores and nomogram were constructed and evaluated in
the training and validation datasets.

Patient Selection
In this study, a total of 126 NSCLC patients who received
radiotherapy or immune checkpoint inhibitors and developed
pneumonitis between April 2018 and August 2021 at Shandong
Provincial Hospital Affiliated to Shandong First Medical
University were recruited. The inclusion criteria were as
follows: (1) pathological diagnosis of NSCLC by biopsy or
bronchofiberoscopy, (2) standard chest CT scans, and (3)
collection of CT images and clinical or radiological parameters
of patients who developed pneumonitis. The exclusion criteria
were as follows: (1) insufficient image quality, such as artifacts,
(2) with treatment history of thoracic surgery, and (3) with the
history of anti-tumor or anti-inflammatory therapy. In this
study, pneumonitis was defined as immune checkpoint
inhibitor-related and radiation pneumonitis which did not
occur owing to other confirmed reasons such as bacterial and
virus infections. The subtype of pneumonitis was determined by
April 2022 | Volume 13 | Article 870842
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the following procedures. Patients with CIP were identified by a
history of using immune checkpoint inhibitors, nonproductive
cough, fever, and other clinical symptoms. Varied radiographic
findings, such as from chest CT imaging, should be considered,
such as cryptogenic organizing pneumonia, pneumonitis
presenting as acute interstitial pneumonia, acute respiratory
distress syndrome, etc. The RP datasets that consisted of 69
patients were randomly enrolled from NSCLC patients who were
treated with thoracic radiotherapy and developed RP within 6
months after RT. The symptoms include shortness of breath,
nonproductive cough, fever, and other clinical symptoms. The
definitions of CIP and RP were consistent with the previous
guidelines (15, 16). Clinical factors, including gender, age,
smoking history, histology, and radiological findings—such as
number of lobes, volume of lung, bilateral changes, and sharp
border—were recorded.

CT Image Acquisition
CT images were collected from all enrolled patients. All CT scans
were acquired from a 128-row CT scanner (Philips iCT 128,
Philips Medical System, The Netherlands). The CT scans were
acquired with the following protocols: tube voltage, 120 kV; tube
current, ranging from 300 to 400 mA; slice thickness, 3 mm;
matrix size, 512 × 512; in-plane resolution, 0.8142 × 0.8142 mm2;
and helical scanning mode.

Region of Interest
The ROIs, defined as the lung injury region visualized on the
lung parenchyma window of CT images, were delineated by two
experienced radiologist and oncologist in all CT scans using
AccuContour software (version 3.0, Manteia Medical
Technologies Co. Ltd., Xiamen, China). Given that a larger
variability existed in the border of the pneumonitis region,
cylindrical ROIs of diameter 20 mm and height 15 mm
(consecutive five slices) were contoured to ensure that the
features are valuable and correct. Then, the contoured ROIs
were checked and modified slice by slice by another experienced
radiologist. Examples of contoured ROIs on the lung
parenchyma window of CT images are depicted in Figure 1.
Frontiers in Immunology | www.frontiersin.org 3
Feature Extraction
Radiomics features were extracted using embedded radiomics
computational module-based PyRadiomics packages that enable
feature calculation in the 3D slicer (version 4.11.2, www.slicer.
org) software. In this study, 93 radiomics features were extracted
from original CT images, including (1) 18 first-order intensity
histogram (IH)-based features and statistical matrix (SM)-based
features divided into (2) 24 gray-level co-occurrence matrix-
based features, (3) 16 gray-level run-length matrix-based
features, (4) 16 gray-level size zone matrix-based features, (5) 5
neighboring gray-tone difference matrices, and (6) 14 gray-level
dependence matrix features. Moreover, 744 wavelet-based
features (including IH and SM features) were extracted from
eight wavelet decompositions.

Radiomics Signature and
Nomogram Construction
Before radiomics signature building, feature selection was
implemented to keep the signature more robust and effective.
In this study, least absolute shrinkage and selection operator
(LASSO) (with a binary regression model, a five-fold cross-
validation method, an “auc” loss measurement, and using non-
normalized data) was performed to determine the most
predictive features. After feature selection, a radiomics
signature, also termed Rad-score, was established from a linear
combination of selected features and corresponding coefficients
derived from LASSO.

Moreover, to explore whether clinical or radiological
parameters will add more benefit for differentiating subtypes of
pneumonitis, nomograms were constructed by incorporating
Rad-score and clinical factors compared to Rad-score alone.
Notably, the clinical factors used for nomogram establishment
were tested via univariate analysis.

Validation of Radiomics Signature
and Nomogram
The correlation between the Rad-score and subtype of
pneumonitis was evaluated using the receiver operating
characteristic curve (ROC) and area under the curve (AUC).
FIGURE 1 | Examples of regions of interest for two subtypes of pneumonitis. (A) Checkpoint inhibitor-related pneumonitis on routine CT and (B) radiation
pneumonitis on routine CT.
April 2022 | Volume 13 | Article 870842
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Due to the limited sample size of patients, inevitable bias exists in
the uneven appearance of the empirical ROC, which will result in
a lower or higher estimated performance. Therefore, ROC curves
may perform poorly for evaluation despite a superior AUC when
the positive and negative data used for building a prediction
model are imbalanced. Therefore, a precision–recall curve (PRC)
that plots the positive prediction value against the true positive
rate across all thresholds was recommendable for such case. It
represents a more accurate method to assess established
classification models, and the area under PRC is defined as
average precision (AP). Consequently, the a-binomial model-
based ROC curve and PRC proposed by Brodersen et al. to plot
smooth curves were used to address the above-mentioned issues
in this study (17). The discrimination of nomogram was
evaluated by a-binomial model-based ROC curve and PRC.
Meanwhile, the agreement between the actual CIP probability
and predicted CIP probability was assessed by a calibration
curve, and Hosmer–Lemeshow test was utilized to determine
the agreement; a p-value >0.05 indicates good agreement. Finally,
the Rad-score and the nomogram were compared using decision
curve analysis with regards to clinical utility.

Statistical Analysis
Statistical analyses were performed in R software (version 3.3.1).
Comparisons, calibration curve, decision curve analysis, and
univariate analyses were implemented in R with the “stats” and
“rms” packages. Chi-square test or Fisher’s test was used to analyze
the categorical variables. Mann–Whitney U-tests were employed
to compare the patients’ continuous characteristics where
appropriate. In this study, univariate analysis was performed by
Spearman’s correlation test, and a coefficient higher than 0.85
indicates that the clinical factors are correlated to the subtype of
pneumonitis. LASSO was performed in R with the glmnet package.
The reported statistical significance levels were all two-sided. The
statistical significance level was set to 0.05.
RESULTS

Patient Characteristics
In total, 126 consecutive patients were enrolled in this study and
were divided into training and validation datasets with a ratio of
7:3, including 88 and 38 patients, respectively. The clinical and
radiological factors are summarized in Table 1. There were no
significant differences between these factors in the two sets,
including gender, age, and radiological findings.

Radiomics Signature Construction
and Validation
After feature selection using LASSO binary regression model, 11
radiomics features remained with non-zero coefficients, and the
results are illustrated in Figure 2. A Rad-score was established
using a linear combination of selected predictive features and
corresponding coefficients. The formula for calculating the Rad
Frontiers in Immunology | www.frontiersin.org 4
score is as follows:

Rad − score = wavelet : LLH : ngtdm :Coarseness� 4:901552 

þ wavelet : LHL : glcm :ClusterShade� 0:001658 

þ wavelet : LHL : glrlm : LRHGLE� 0:00095 

þ wavelet : LHL : glszm :ZoneVariance� 1:87E − 06

+ wavelet : LHH : firstorder :Median� 0:104804

− wavelet :HLL : firstorder :Kurtosis� 0:03584 

þ wavelet :HLL : firstorder : Skewness� 0:53657

− wavelet :HHL : firstorder :Mean� 1:27905

− wavelet :HHL : firstorder : Skewness� 0:73588

− wavelet :HHH : gldm :DependenceEntropy � 0:20179 

þ wavelet : LLL : firstorder :Minimum� 1:03E − 05

We plotted box plots to show the statistical distribution of Rad-
scores in the training and validation datasets, as shown in Figure 3.
There were statistically significant differences between the training
and validation datasets (all p-values <0.0001). The empirical and a-
binormal-based ROC curves and PRCs of the established Rad-score
are displayed in Figure 4. The empirical and a-binormal AUCs and
TABLE 1 | Clinical and radiological parameters of patients with pneumonitis in
the training and validation datasets.

Characteristic Training
dataset

Validation
dataset

p

Gender 0.502
Male 47 21
Female 41 17

Age (years) 0.424
Mean 57.1 59.4

Smoking history 0.351
Yes 58 23
No 30 15

Number of lobes 0.236
≤3 54 20
>3 34 18

Volume of lung 0.310
<10% 21 14
10%≤ X <50% 42 16
≥50% 25 8

Histology 0.547
Adenocarcinoma 61 26
Squamous cell carcinoma 27 12

Radiological elements 0.398
Ground-glass opacities (GGO) 33 12
Consolidation 16 11
GGO + consolidation 39 15

Bilateral changes 0.498
Yes 40 18
No 48 20

Sharp border 0.350
Yes 42 16
No 46 22

Subtype of pneumonitis 0.549
Checkpoint inhibitor-related

pneumonitis
40 17

Radiation pneumonitis 48 21
April 2022 | Vo
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APs of Rad-score are summarized in Table 2. The Rad-score
achieved a good performance for making a distinction between
CIP and RP in NSCLC patients with AUCabin = 0.891 (95%CI,
0.876–0.906) and AUCemp = 0.896 (95%CI, 0.879–0.913),
respectively. Similar results were committed in the validation
dataset; the above-mentioned Rad-score showed a favorable
assessment efficacy with AUCabin = 0.901 (95%CI, 0.855–0.947)
and AUCemp = 0.874 (95%CI, 0.843–0.905) for discriminating
between patients with CIP and RP. The results of Rad-score had
achieved a satisfactory performance.

Nomogram Construction and Validation
Before nomogram construction, univariate analyses were
performed for clinical factors and radiological features using chi-
square test or Mann–Whitney U-tests. In the training dataset, the
differences of clinicopathological characteristics and radiological
findings between the patients with CIP and RP are shown in
Table 3. The median age of patients with CIP and RP were 56.8
and 57.4, and there was no discrepancy in the subtype of
pneumonitis by gender (p = 0.313) and smoking history (p =
0.200). Moreover, there was a trend towards more lung lobes (p =
0.184) and volumes (p = 0.101) infected in patients with radiation
pneumonitis compared with patients with CIP. We did not figure
out the values of histology (p = 0.067), radiological elements (p =
0.910), and other factors for classification between CIP and RP.
The variables of bilateral changes (p < 0.001) and sharp border (p
= 0.001) were considered independent biomarkers and had a
statistically significant difference between CIP and RP.

To determine the benefits for prediction performances of
radiomics features, the Rad-score, bilateral changes, and sharp
border were incorporated into the radiomics nomogram, as
shown in Figure 5. In Figure 6, the nomogram model displayed
the highest discrepancy between CIP and RP with the empirical and
Frontiers in Immunology | www.frontiersin.org 5
a-binormal-based AUC of 0.953 and 0.950 in the training set. In the
validation samples, the nomogram yielded the greatest AUC (0.947,
95% CI: 0.912–0.982; 0.936, 95%CI: 0.905–0.967), which confirmed
that the nomogram model achieved better differential capacity than
the Rad-score. As illustrated by the results, an obvious separation
between CIP and RP was detected in the validation dataset with AP
of 0.943 and 0.887 (as shown in Table 2).

The calibration curve manifested sufficient consistency
between estimated CIP probability using the nomogram and
the actual observed outcome in Figure 7. The closer the
calibration curve was to the diagonal, the better the predictive
ability of the nomogram. The P-value of Hosmer–Lemeshow test
for subtype of pneumonitis was 0.511. To determine the clinical
utility, decision curves were plotted for Rad-score and radiomics
nomogram (shown in Figure 8). It showed that the radiomics
nomogram produced a greater net benefit than the Rad-score.
DISCUSSION

With the evolution of immunotherapy, the combination of
immunotherapy and radiotherapy became increasingly important
in guiding NSCLC treatment according to the latest NCCN
guidelines (18). However, the widespread utilization of ICIs has
contributed in off-target immune-related adverse events, especially
CIP. In this retrospective study, we developed and validated a
classification model based on CT radiomics for distinguishing
between CIP and RP. Radiomics nomograms were extracted and
showed good performance on the training and validation datasets
with AUC = 0.953 and 0.947, which proved that the CT-based
radiomics nomogram was feasible. In the radiomics nomogram,
Rad-score has the largest weight and is more important for
distinguishing subtypes of pneumonitis. All features used to
A

B

FIGURE 2 | Feature selection using the least absolute shrinkage and selection operator (LASSO) with a binary regression model. (A) The LASSO coefficient
profile was plotted using coefficients against log(l). (B) Tuning parameter against parameter log(l). The areas under the curve were depicted with corresponding
l. The vertical lines are maximum and 1-standard error (1-se) criteria, respectively. As a result, 12 radiomics features with nonzero coefficients were selected
using 1-se criteria.
April 2022 | Volume 13 | Article 870842
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construct the Rad-score were wavelets; the reasonable hypothesis
was that the similar pixel intensity of different pneumonitis derived
from original images provide limited differentiation power in the
modeling process. However, multiple frequency decomposition of
the original CT image can decode the hidden difference of
phenotype between CIP and RP (19). As far as we are
concerned, this is the first study that uses comprehensive
information by including both radiomics, clinical, and
radiological factors in the classification of CIP and RP.

Previous studies demonstrated the safety of thoracic RT in
patients receiving ICIs (20). Nevertheless, current evidence has
suggested that radiotherapy had immune stimulating effects,
Frontiers in Immunology | www.frontiersin.org 6
which could potentially enhance the effectiveness of ICIs and
increase the risk of relevant immune-related adverse events (21).
Preliminary studies mentioned the radiologic appearances and
clinical symptoms of CIP, which were similar with RP
characteristics (22). The clinical symptoms of pneumonitis
after immune checkpoint inhibitors or radiotherapy included
cough, dyspnea, fever, and shortness of breath. Moreover, the
most frequent CT image findings are ground-glass opacities or
consolidative opacities in subpleural regions among patients with
CIP (23). Generally, distinguishing between CIP and RP has a
crucial impact on the treatment to pneumonitis and decision-
making on therapy in the near feature.
A

B

FIGURE 3 | Boxplots for subtypes of lung injury in the (A) training and (B) validation datasets, respectively. ****p-value <0.0001.
April 2022 | Volume 13 | Article 870842
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Since the occurrence of CIP, CT morphological features have
been treated as important clues for diagnosing CIP. Our present
study revealed that these features were valuable but not the only
strong clue for diagnosing CIP or RP. We noted that bilateral
changes and a sharp border showed significant difference for
identifying CIP and RP. ICI pneumonitis trended toward a
higher likelihood of bilateral CT changes (p < 0.001) than
pneumonitis from RT alone. Patients with CIP were less likely
to have a sharp border (p = 0.001) in comparison with RP. This
conclusion was consistent with previous studies (24). On the
other hand, the Rad-score and nomogram were evaluated by a-
binominal model-based ROC and PRCs and compared to
empirical curves. In this study, the results showed that no
significant difference was observed between the two types of
curve. Besides this, performance measures based on PRCs were
helpful to supplement and validate the ROC curves. It can
effectively address the practical limitations derived from
empirical curves (17). Furthermore, the decision curves
demonstrated that radiomics nomogram added more benefits
for differentiating CIP from RP than Rad-score. Generally, the
nomogram was robust and accurate for distinguishing the
subtype of pneumonitis.

Our result verified the values of quantitative radiomics features,
instead of qualitative radiological factors, to discriminate
pneumonitis etiology. Recently, a study performed a radiomics
analysis and extracted 1,860 features in a total of 290 patients who
were treated with immunotherapy (25). Radiomics features were
Frontiers in Immunology | www.frontiersin.org 7
identified and predicted subsequent immunotherapy-related
pneumonitis. In accordance with RP, some researchers stated
that the multi-region CT radiomics features can help to predict
grade ≥2 RP for NSCLC patients (26). As Du et al. proposed, a
radiomics model based on thoracic cone-beam computed
tomography had a potential value of RP prediction (27). The
radiomics features had an ability to assess the heterogeneity of
image intensities and highlight small differences that cannot be
recognized by the naked eyes. Yang et al. utilized CT-based
radiomics to differentiate COVID-19 from other pneumonias in
patients with accuracy of 89.83% and AUC of 0.940 (28).
Tabatabaei et al. inferred that radiomics features, conjoined with
random forest and neural network, appeared to yield promising
results in distinguishing between COVID-19 and H1N1 influenza
by CT scanning, with AUC = 0.970 (29).

As far as we know, few studies focused on this topic. Chen et
al. extracted radiomics features from CT images and only trained
29 patients with RT and 23 patients with ICIs (30). The classifier
has shown a performance on the training dataset with
AUC =0.79 and the validation dataset with AUC = 0.840. The
results were in line with ours, but the predictive efficacy of this
model was much lower. Cheng et al. collected the CT images of
73 NSCLC patients with ICI or RT and extracted only 3 types of
radiomics features (31). They figured out that the kind of bag-of-
word features achieved an AUC of 0.937. Despite the
encouraging results, there were some limitations in the above-
mentioned study. Firstly, the small sample size and limited
A B

FIGURE 4 | The performance of the developed Rad-score. (A) Receiver operating characteristic (ROC) curves. (B) Precision–recall curve (PRC). The subscripts emp
and abin mean empirical and a-binormal-based ROC or PRC, respectively.
TABLE 2 | Comparison of the performances of Rad-score and nomogram.

Performances Training cohort Validation cohort

AUCabin AUCemp APabin APemp AUCabin AUCemp APabin APemp

Rad-score 0.891 0.896 0.857 0.811 0.901 0.874 0.903 0.891
(0.876–0.906) (0.879–0.913) (0.836–0.878) (0.785–0.837) (0.855–0.947) (0.843–0.905) (0.860–0.946) (0.859–0.923)

Nomogram 0.953 0.950 0.949 0.926 0.947 0.936 0.943 0.887
(0.916–0.990) (0.941–0.959) (0.935–0.963) (0.900–0.952) (0.912–0.982) (0.905–0.967) (0.925–0.961) (0.860–0.914)

P-value <0.001z <0.001ϵ <0.001h <0.001q <0.001y <0.001s <0.001r <0.001m
April 20
22 | Volume 13 |
All the data in parentheses are 95% confidence interval (CI) values. The subscripts emp and abin means empirical-based and a-binormal-based area under the curve (AUC) or average
precision (AP), respectively. z, y—the comparison of AUCabin; ϵ, s—the comparison of AUCemp; h, r—the comparison of Apabin; and q, m—the comparison of APemp between Rad-
score and nomogram in both training and validation cohorts.
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radiomics features that resulted in this conclusion can be hardly
generalized. Secondly, no classification model, such as radiomics
signatures or nomogram, has been built for discriminating
between CIP and RP. Our results indicated that an integrated
model combined with radiomics features and clinical factors may
help to differ CIP from RP in NSCLC. Thirdly, there were no
clinical and laboratory parameters involved, which have been
Frontiers in Immunology | www.frontiersin.org 8
proved to reveal the mechanism of two kinds of pneumonitis to
some extent (32, 33).

This difference in the pathogenesis of pneumonitis remains to be
discussed. To our best knowledge, Chen et al. mentioned that
checkpoint inhibitor pneumonitis was more likely to involve
more lobes of the lung (24). Based on our wide clinical
experience and practice, RP was commonly limited in the
radiation field of the lung, while CIP was always irregularly
distributed in random fields of the lung. Moreover, lymphocytes
were predominant to the pathogenesis of pneumonitis. The
relationship between neutrophil-to-lymphocyte ratio and CIP may
provide a reasonable explanation (34). The value of inflammatory
cytokine in the diagnosis of CIP has not yet been completely
evaluated. IL-10, an anti-inflammatory cytokine, was maintained
at a lower level in RP patients at baseline (35). In contrast, lung
cancer patients with CIP, shown to have increased IL-6, were
associated with the occurrence of disease (36).

It is necessary to identify the mechanism of pneumonitis arising
from immunotherapy and radiotherapy. Radiotherapy could
directly damage DNA and reactive oxygen species generation,
then mediate intracellular signaling, and result in the release of
molecules and cytokines (37). The occurrence of acute pneumonitis
and chronic pulmonary fibrosis is mainly through the TGF-b/Smad
(38), HMGB1/TLR4 (39), and Nrf2/ARE signaling pathways (40).
Glucocorticoid drugs are the mainstay of RILI treatment in clinical
practices. Regarding IRLI, generalized immune activation owing to
checkpoint neutralization, preexisting autoantibodies, and off-target
effects of T cell-mediated immunity will lead to immune-related
lung injury (41). Immunosuppressive drugs such as glucocorticoids,
mycophenolate mofetil, and cytokine inhibitors were mainly used
for IRLI treatment (42). Zhang et al. reported the crosstalk among
signaling pathways in RILI and IRLI, which noted that the TGF-b
signaling pathway played an important role in the crosstalk between
IRIL and RILI (41); more exploration and discovery are required to
pinpoint the mechanisms of RILI and IRLI.

There are some limitations in this study. First, it is a
retrospective study with 126 patients. A larger sample size and
FIGURE 5 | Nomograms constructed in this study using the training dataset.
TABLE 3 | Clinical and radiological parameters of patients with checkpoint inhibitor-
related pneumonitis (CIP) and radiation pneumonitis (RP) in the training dataset.

Characteristic CIP RP p

Gender 0.313
Male 23 24
Female 17 24

Age (years) 0.481
Mean 56.8 57.4

Smoking 0.200
Yes 24 34
No 16 14

Number of lobes 0.184
≤3 22 32
>3 18 16

Volume of lung 0.101
<10% 10 11
10%≤ X <50% 23 19
≥50% 7 18

Histology 0.067
Adenocarcinoma 24 37
Squamous cell carcinoma 16 11
Radiological elements 0.910

Ground-glass opacities
(GGO)

15 18

Consolidation 8 8
GGO + consolidation 17 22

Bilateral changes <0.001
Yes 27 13
No 13 35

Sharp border 0.001
Yes 11 31
No 29 17
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FIGURE 6 | The performance of the developed nomogram. (A) Receiver operating characteristic (ROC) curves. (B) Precision–recall curve (PRC). The subscripts
emp and abin mean empirical and a-binormal-based ROC or PRC, respectively.
FIGURE 7 | Calibration curve of the radiomics nomogram presented as a solid red line. The diagonal dashed line indicates perfect agreement.
FIGURE 8 | The decision curves of the Rad-score, radiomics nomogram, and two extreme curves were plotted based on the validation dataset. It showed that the
use of the radiomics nomogram to predict CIP probability in patients with non-small cell lung cancer has a greater benefit than the use of Rad-score.
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prospective study are necessary to explore and validate in the near
future. Second, training and validation datasets were acquired
from a single institution, which resulted in a conclusion hardly
generalizable to other study centers. Further investigation will
concentrate on samples from various institutions as external
validation dataset. Third, no other laboratory parameters were
included in the analysis. We trust that the subsequent research
should be to develop a robust model.
CONCLUSIONS

In summary, there are many similarities of clinical symptoms
and radiological findings between immune checkpoint inhibitor-
related pneumonitis and radiation pneumonitis for patients with
NSCLC, which propose great management challenges in clinical
practice. Our results have successfully suggested that CT
radiomics features are capable of differentiating between CIP
and RP. Additions of bilateral changes and sharp border produce
a superior nomogram model performance. Our findings suggest
that a radiomics nomogram could be used for clinical decision-
making and providing an accurate diagnostic tool.
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