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Omics data can be integrated into a reference model using various model extraction methods (MEMs) to
yield context-specific genome-scale metabolic models (GEMs). How to chose the appropriate MEM,
thresholding rule and threshold remains a challenge. We integrated mouse transcriptomic data from a
Cyp51 knockout mice diet experiment (GSE58271) using five MEMs (GIMME, iMAT, FASTCORE, INIT an
tINIT) in a combination with a recently published mouse GEM iMM1865. Except for INIT and tINIT, the
size of extracted models varied with the MEM used (t-test: p-value <0.001). The Jaccard index of
iMATmodels ranged from 0.27 to 1.0. Out of the three factors under study in the experiment (diet, gender
and genotype), gender explained most of the variability (>90%) in PC1 for FASTCORE. In iMAT, each of the
three factors explained less than 40% of the variability within PC1, PC2 and PC3. Among all the MEMs,
FASTCORE captured the most of the true variability in the data by clustering samples by gender. Our
results show that for the efficient use of MEMs in the context of omics data integration and analysis,
one should apply various MEMs, thresholding rules, and thresholding values to select the MEM and its
configuration that best captures the true variability in the data. This selection can be guided by the
methodology as proposed and used in this paper. Moreover, we describe certain approaches that can
be used to analyse the results obtained with the selected MEM and to put these results in a biological
context.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

The advent of high-throughput technologies generate large vol-
umes of omics data hence making it possible to study organisms at
the cellular level. These studies have enabled a better understand-
ing of the underlying biological processes of many diseases such as
diabetes [1,2] and asthma [3], yielded useful products such as insu-
lin [4,5] and antibiotics [6,7], and also improved production of
commercial products such as wines [8]. However, there is still a
big knowledge gap in the finer details of how organisms, unicellu-
lar or multicellular, are able to maintain life and how disruptions at
the molecular level affect their phenotypes.

The phenotypic characteristics of an organism are determined
by intricately connected reactions and consequently pathways that
generate energy and other forms of biological products necessary
to sustain life and organise organismal development. These path-
ways are connected to form and function as biological systems
and thus it is vital to study organisms at system level. The degree
of complexity of biological systems differs greatly among organ-
isms, for example, humans are far more complex than Drosophila
melanogaster despite the latter’s importance in modelling human
diseases [9–11]. It is extremely difficult, or even impossible for
higher level organisms, to study the entirety of their pathways
either in vitro or in vivo. However, mathematical tools such as
genome-scale models can be used to gain insight into how these
biological systems function [12].

Genome-scale metabolic models (GEMs) are increasingly
becoming a popular tool for studying biological processes in silico
[13–15]. GEMs are formulated to contain all known biochemical
reactions involved in maintaining the living state of a cell or an
organism (metabolism). Context-specific metabolic models (also
known as tissue-specific models) are GEMs in which inactive reac-
tions for a given condition (context) are removed [16] and thus
represent the context better since not all possible reactions are
active in different cell types and/or in different contexts. Moreover,
GEMs can be used to perform in silico studies and observe the
dynamical response of the system in a given condition using
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computer simulations. As such, they provide better understanding
of the organism as a functional system. One of the main problems
of using GEMs in a combination with omics data lies in the com-
plexity of the obtained models and the number of models pro-
duced. The obtained results are thus difficult to interpret in the
context of biology. Moreover, it is hard to select an appropriate
model extraction method (MEM) for a specific dataset. When the
appropriate MEM is selected, it also needs to be configured, e.g.,
gene activity thresholds and thresholding rules need to be defined
[17,18] to yield accurate and biologically relevant results.

We aim to address these problems by suggesting a methodol-
ogy for performing analyses of omics data using GEMs in combina-
tion with different MEMs. This methodology will serve as an
essential step towards the development of a pipeline that will
automatically select a suitable MEM for a specific dataset, perform
its configuration, and extract the models. Moreover, such a pipeline
could provide its users with a set of publication-ready figures and
tables, describing the results of simulations performed upon the
derived models as well as the results of different statistical and
enrichment analyses ready for a straightforward interpretation.

2. Materials and methods

In this section, we describe how a GEM is reconstructed from
available biological information to produce a reference model. This
is followed by a summary of the data integration algorithms that
were applied in our analysis. Finally, we describe our analysis of
the dataset used in our case study, namely, mouse diet experiment
data.

2.1. Genome-scale metabolic models: from reconstruction to
simulation

The construction of GEMs can be summarised in four main steps
as described by Feist and colleagues [19]. First, a draft reconstruc-
tion of the biological network of an organism is extracted using
information about reactions, enzymes, and pathways from data-
bases such as KEGG, BRENDA, etc. The second step is the manual
curation of the reconstructed draft model. This involves checking
and filling the gaps and correcting misplaced reactions. Here,
organism-specific databases and literature are used. Computa-
tional algorithms such as GAUGE [20], FastGapFill [21], and FBA-
Gap [22] can also be applied. The third step is the conversion of
the reconstructed model into a mathematical representation that
can be used for subsequent simulations. The final step is the refin-
ing, validation, and application of the model to inform decisions.
Here, the model outputs are compared with known information
to confirm consistency. Model validation can be done by testing
how well a model performs a set of tasks, comparing the simula-
tion results with experimental data for a particular objective such
as growth and use of gene essentiality analysis i.e. identification of
genes that are required for survival of an organism [23].

The most efficient approach for prediction of phenotype from
genotype using GEMs is constraint-based modelling [24,25]. Here,
it is common to assume that the system is in a steady state, i.e., the
concentrations of all metabolites involved are constant (see Eq. 1).
Constraint-based modelling is focused on predicting flux distribu-
tions while optimising a selected cellular function (or a set of func-
tions). Flux Balance Analysis (FBA) is the most widely used
technique to predict flux distributions in GEMs [26,27]. It requires
a mathematical representation of the model in the form of a stoi-
chiometric matrix S with rows representing metabolites and col-
umns representing reactions. We can evaluate a vector v of
fluxes through the observed metabolic reactions constrained by
the upper and lower flux bounds by using the equation
3522
XN

j¼1

Sij � v j ¼ 0;

8i 2 1;2; . . . ;Mf g;
8j 2 1;2; . . . ;Nf g;

ð1Þ
where M is the number of observed metabolites and N the number
of observed reactions. FBA reduces the problem to a linear program,
hence lowering the computational requirements involved [26].
However, there are certain limitations. First, FBA does not yield a
unique solution and is highly dependent on the choice of the objec-
tive function, i.e., a description of the phenotype relevant to the
problem being studied [28]. While in some cases biomass optimisa-
tion is a plausible biological objective (e.g., cancer cells, cell lines,
single cell organisms), different optimisation criteria need to be
applied depending on the question of interest. How to select an
appropriate objective function is an unanswered question. Algo-
rithms that can select the objective function automatically have
been proposed [29]. There is also increasing evidence that multiple
objective functions are required to allow metabolic flexibility and
improve accuracy of the model [30,31]. The other challenges are
that FBA is dependent on the choice of the solver (used to solve
the set of linear equations) and the quality of reconstruction
[27,32]. Variations of FBA have been proposed to ease these limita-
tions for example, parsimonious FBA (pFBA) [33] and Flux Variabil-
ity Analysis (FVA) [34], among others [27,35]. Another method for
predicting metabolic fluxes is flux sampling, which can be used to
estimate probability distributions of reaction fluxes without assum-
ing any particular cellular objective [36,37].
2.2. Computational approaches for experimental data integration

Model extraction methods can be classified as members of a
‘‘GIMME-like” family which minimises flux through reactions asso-
ciated with low gene expression, an ‘‘iMAT-like” family which finds
an optimal trade-off between keeping reactions whose genes are
highly expressed and removing reactions associated with low gene
expression, and an ‘‘MBA-like” family which retains a selected set
of core reactions [16,38]. Below is a summary of the data integra-
tion algorithms that were used in this analysis.
2.2.1. GIMME
Gene Inactivity Moderated by Metabolism and Expression

(GIMME) [16,39,40] uses gene expression data and one or more
objective functions to produce a context-specific model. The
GIMME algorithm takes three inputs, i.e., expression data, genome
scale reconstruction, and one or more required metabolic function-
alities (RMFs) that the cell is expected to achieve. The algorithm
first finds a flux distribution that optimises the given objective(s)
and then minimises the use of inactive reactions (reactions whose
expression is below a predefined threshold). The expression data is
used directly as weights in the objective function. A threshold is
used to determine if a weight in the objective is positive or nega-
tive. A weight of zero is assigned to reactions without expression
data. The method yields an inconsistency score i.e
(flux � ðthreshold� dataÞ), a score that shows the disagreement
between the expression data and the metabolic objective function.
The normalised version of this score shows how well each gene in
the expression data agrees with a particular metabolic function.
GIMME has been successfully used in studies such as [41] aimed
at understanding the impact of drought stress on Arabidopsis
thaliana.
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2.2.2. iMAT
The Integrative Metabolic Analysis Tool (iMAT) [42] takes three-

valued expression data as inputs. The data are categorised as lowly,
moderately, or highly expressed and coded as �1, 0, and 1, respec-
tively. A Boolean gene-to-reaction mapping is used to identify the
state of a reaction, i.e., if the genes encoding enzymes of the reac-
tion are low, moderate or highly expressed. This leads to classifying
the reactions in the model as either highly or lowly expressed. This
is followed by finding the steady state flux distribution that satis-
fies the stoichiometric and dynamic constraints and maximises the
number of reactions whose activity is consistent with their expres-
sion state. A reaction is considered active if it carries a significant
positive flux (or negative flux for reversible reactions) that is
greater than a threshold. A reaction is inactive if it carries a flux
of zero (0). The algorithm returns a vector showing the predicted
activity state (fluxes) of each reaction. iMAT performs a pathway
enrichment analysis and identifies up- and down-regulated genes
thus shedding light on the active pathways in the conditions under
study.

2.2.3. FASTCORE
FASTCORE [43] is a data integration algorithm that accepts a

core set of reactions that are known to be active in regard to the
context under study. The core set of reactions can be determined
by considering reactions in which highly expressed genes (genes
whose expression level is above a predefined threshold) are
involved. This is followed by a search for a flux consistent subnet-
work, i.e., a network in which each reaction has a non zero flux in
at least one feasible flux distribution. Such subnetwork presents a
context-specific model which contains no blocked reactions.

2.2.4. INIT and tINIT
Intergrative Network Inference for Tissues (INIT) [44] formu-

lates a mixed integer-linear problem (MILP) designed to use data
from the Human Protein Atlas (HPA) and other omics data as
inputs. INIT does not apply a strict steady state assumption for
all internal metabolites. Instead it allows a small positive net pro-
duction of metabolites which are given positive weights in the
optimization. Consequently, all reactions in the resulting model
are able to carry flux. The algorithm produces networks that are
snapshots of active metabolism [45]. tINIT is the task-driven ver-
sion of INIT. Here, a set of tasks that must be carried out by the
resulting model are defined first and then followed by the INIT
algorithm.

2.3. Case study using gene expression data from Cyp51 knockout mice

The mouse gene expression dataset was downloaded from the
GEO database (accession number GSE58271) and processed to
obtain normalised gene expression values. Briefly, this dataset
was generated from a study in which the mice were divided into
three groups and fed on three diets i.e. low fat without cholesterol
(LFnC), high fat without cholesterol (HFnC) and high fat with
cholesterol (HFC). Each diet group contained both wild type and
the Cyp51 knockout genotype in female and male mice. The
detailed description of the dataset can be found in [46].

Extraction of context-specific models was performed in Matlab
R2019b (MathWorks Inc., Natick, Massachusetts, USA) using nor-
malised gene expression data and each of the model extraction
methods (MEMs) above as described by their respective authors.
A recently published mouse model, iMM1865 was used as a refer-
ence model. This model has 10612 reactions, 5839 metabolites and
93 subsystems and has no dead-end metabolites or blocked reac-
tions [47]. Highly expressed genes for model extraction were

determined by setting the threshold values at the 50th;70th;75th,
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and 80th percentiles of the normalised gene expression data per
sample. The rationale of setting this threshold per sample is that
all individuals are biologically distinct even when under similar
conditions. They yield unique expression patterns implying that
their set of highly expressed genes may differ because of these
intricate biological differences. Additionally, we assessed the
impact of using thresholds set per each gene separately, i.e.,
thresholds defined within a gene. Here, we considered the

80th;90th;95th percentile and the mean for each gene within the
observed population. The thresholds were chosen based on the
trend of the variance explained by the first principal component
(PC1) (Fig. 1c and d). The extracted models from each algorithm
were compared with one another (pairwise comparison) using
the Jaccard index (distance) metric [48] to identify the distance
between models extracted under the same conditions.

Principal component analysis (PCA) was performed as described
in Opdam et al. 2017 [16]. For every MEM, a matrix showing if a
reaction was present (1) or absent (0) was generated. Reactions
that were present or absent in all observed models were removed,
and rowmeans of the matrix were zero-centered. Principal compo-
nent analysis on reactions was then performed. Furthermore, the
variance explained by each factor (MEM, diet, gender, genotype)
within a principal component was calculated by taking the square
of the maximum Pearson correlation coefficient (R2) of the compo-
nent scores across all possible orderings of the factors as described
in [16]. This was reported as a percentage. The validity of model
separation observed in PCA was confirmed using t-distributed
stochastic neighbour embedding (t-SNE), which is particularly
suitable for high-dimensional data [49].

To assess the dynamical response of the models, we performed
flux sampling using the artificial centering hit-and-run (ACHR)
algorithm [50] on the extracted models. 1000 flux samples were
generated for each of the models, and the mean flux of each reac-
tion was used to identify the reactions that are either down- or up-
regulated in pairwise comparisons of specific factors (diet, gender,
and genotype) according to Spearman’s rank correlation. The reac-
tions identified to be significantly changed were then used to per-
form the enrichment analysis of metabolic subsystems using the
hypergeometric test. The obtained p-values were adjusted for mul-
tiple testing using the Benjamini-Hochberg procedure. The imple-
mentation of the described analysis is available as a set of IPython
(IPYNB) notebooks at https://github.com/CompBioLj/GEMS_and_
MEMS.
3. Results

3.1. Thresholds affect the extracted models

Our results indicate that the models extracted with the iMAT
methodology were able to explain the highest amount of variance
in comparison to other model extraction methods (see Section 3.2
and Fig. 2d). We thus opted to use the iMAT GEMs to assess the
impact of thresholding on the extracted models. Two types of
thresholds were used. First, thresholds were considered for each
sample. This was done by taking a certain percentile of all the data
within each sample to get the cutoff for highly expressed genes in
that sample. This was achieved by taking a certain percentile of
data to get the cutoff for highly expressed genes in that sample.

The 50th;70th;75th and 80th percentile were considered. With the

exception of models extracted at the 50th percentile threshold,
the range and distribution of the Jaccard index and the size of
the models were generally similar (see Figs. 1a and b). The percent-

age of variance explained by the PC1 was the smallest at the 50th
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Fig. 1. Analysis of iMAT derived models extracted using different thresholding rules and values. Fig. 1 (a), (b), and (c) present the analysis of the models extracted by
thresholding per sample, where figure (a) shows the Jaccard index from the pairwise comparisons of all models for each threshold, figure (b) how these models are varied in
size, and figure (c) the percentage of variance explained by PC1 for each threshold. Figure (d) shows the variance explained by PC1 in the models extracted when thresholding
is performed per gene. PC1: first prin.cipal component.
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percentile threshold but similar for other threshold values (see
Fig. 1c).

The second type of thresholds was set per gene, i.e., by taking a
percentile per gene for all samples. In this case the same threshold
values were used for all samples, but were different among differ-

ent genes. We considered the 80th;90th and 95th percentile gene
expression for each gene as a cutoff to classify if a gene is highly
expressed or not. We also considered taking the mean of each gene
as a cutoff for the same purpose. From the perspective of principal
component analysis, the highest variance explained by PC1 was

17% (see Fig. 1d). Considering thresholds at 80th;90th and 95th per-
centile, the highest variance explained by PC1 was achieved at the

90th percentile threshold.
PC1s from models where the threshold was taken per sample

explained more variance than from models where the threshold
was taken per gene. In general, the choice of thresholding strongly
affected the content of the extracted models and their ability to
capture variance in the data. Thresholding per sample with an

80th percentile as a cutoff value was considered as the most appro-
priate and was used in further analyses.
3.2. Extracted models vary with algorithm

Context-specific models were extracted using the GIMME,
iMAT, FASTCORE, INIT, and tINIT model extraction methods
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(MEMs). We performed the extraction process using the COBRA
[51,52] and RAVEN Toolboxes [53] in Matlab R2019b (MathWorks
Inc., Natick, Massachusetts, USA) using the Gurobi solver [54].

The number of remaining reactions in an extracted model was
considered to represent the size of a model. Different MEMs gener-
ated models of different sizes (see Fig. 2a). iMAT-produced models
were significantly different in size from other MEMs (t-test: p-
value < 0.001). For each model within each MEM, we identified
reactions that were present (1) or absent (0) and calculated the Jac-
card index between all possible pairwise combinations to compare
the similarities between models. For GIMME, FASTCORE, tINIT, and
INIT, the Jaccard index was between 0.8 and 1.0, implying that
these models are very similar (see Fig. 2b). For iMAT, the Jaccard
index ranged from 0.27 to 1.0, indicating that GEMs extracted with
iMAT varied substantially (see Figs. 2 b,c). Furthermore, we per-
formed principal component analysis (PCA) on the matrix of reac-
tions for each MEM. The PC1 explained the highest variance in
iMAT derived models in comparison to PC1s of other MEMs (see
Fig. 2d).

In addition, we analysed how well do the clusters observed in
the feature space described by the first two principal components
(PC1 and PC2) comply with the groups defined by the experiment,
namely diet, gender, and genotype. The PCA plot (PC1 versus PC2)
of models extracted with iMAT did not show consistent clustering
of samples to predefined groups (see Supplementary Fig. 1). This
was similar for GIMME (see Supplementary Fig. 2). Separation by



Fig. 2. Comparison of models produced by different MEMs. Fig. 2 (a) summarizes the size of the models, (b) summarizes the Jaccard indices, (c) shows the Jaccard indices of
models produced by iMAT, and (d) shows the variance explained by PC1 of each MEM. PC1: first principal component; MEM: model ex.traction method.
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gender was consistent with the clustering by PC2 of INIT explain-
ing approximately 8% of variance, and at least partially consistent
with the clustering by PC2 of tINIT explaining approximately
7.4% of variance in the data (see Supplementary Figs. 3 and 4).
GEMs extracted using FASTCORE were appropriately clustered by
gender by the PC1 explaining approximately 13% of variance in
the data (see Fig. 3 and Supplementary Fig. 5). All PCA plots per-
formed on the FASTCORE extracted models are available as Supple-
mentary Fig. 5.

To verify the validity of the clustering obtained using PCA, we
additionally performed t-distributed stochastic neighbour embed-
ding (t-SNE) using different values of perplexity parameter [49].
Consistent clustering was obtained when the perplexity value
was at least 15. The observed separation of models complied with
the PCA results (see Supplementary Figs. 6 and 7). Separation of
models was consistent with gender in FASTCORE, INIT and tINIT,
whereas using the PCA separation by gender was observed in FAS-
TCORE and INIT and partially also in tINIT. Clustering by gender
and only by gender was also observed in the original study [46],
which confirms the adequacy of our analysis.
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We further assessed how much each of the factors (MEM, diet,
gender and genotype) contributes to the variation explained by the
first three principal components (PCs). This was evaluated by tak-
ing each factor and calculating the squares of Pearson correlation
coefficient (R2) of component scores across all possible orderings
of the factors [16]. Considering all factors, the selection of a MEM
explains the most variability in the PCs (Fig. 4a). Furthermore, in
FASTCORE (Fig. 4b) and and GIMME (Fig. 4c) extracted models,
gender explained the most variability in the PCs as was also
observed in the original study [46].

In the models extracted with iMAT (Fig. 4d), the observed three
factors, namely, gender, genotype, and diet, generally contributed
equally with genotype having a slight edge in comparison to diet
and gender. Gender explained the most variability in models
extracted with INIT and tINIT (Fig. 4e,f).
3.3. Enrichment analysis of metabolic subsystems

The models extracted with FASTCORE were able to capture the
largest amount of true variability of the observed data (see Fig. 3).



Fig. 3. PCA plot showing separation by gender performed on the FASTCORE extracted models. Blue colour indicates male and red colour female samples, respectively. PCA:
principal component analysis; F: female; M: male; LFnC: low fat without cholesterol; HFnC: high fat without cholesterol; HFC: high fat with cholesterol.
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We thus opted to perform further analysis only on these models.
Since the basic version of flux balance analysis (FBA) is unable to
provide unique solutions, we opted to analyse the activity of the
observed metabolic reactions using flux sampling using the artifi-
cial centering hit-and-run (ACHR) algorithm [50]. It was performed
on the models extracted with the FASTCORE algorithm to obtain
the mean values of reaction fluxes in each of the models. We per-
formed the flux sampling using COBRA [51,52] and the Gurobi sol-
ver [54] in Matlab R2019b.

We identified up- and down-regulated reactions between dif-
ferent groups of extracted models (e.g., wild type versus knockout
groups) and their combinations using Spearman’s rank correlation.
Genome-scale metabolic models are usually composed of several
subsystems containing metabolic reactions with a specific function
(e.g. cholesterol synthesis subsystem) [52,53]. Based on the identi-
fication of differentially regulated reactions, we further analysed
the enriched subsystems between different groups using the
hypergeometric test. We compared the models on the basis of diet
(see Fig. 5).

To check if the obtained models comply with our expectations,
we further observed how different diets affect the cholesterol syn-
thesis and metabolism subsystems. Fig. 5 shows that cholesterol
metabolism was enriched in mice on LFnC or HFnC diet compared
to HFC diet. However, cholesterol metabolism was down-regulated
in mice on LFnC diet compared to HFnC diet. Furthermore, Choles-
terol synthesis was up-regulated in female wild type mice on LFnC
diet compared to the HFC diet. In female knockout mice,
3526
cholesterol synthesis was down-regulated in mice on the LFnC diet
in comparison to the mice on the HFnC diet. In wild type mice,
cholesterol synthesis was up-regulated in mice on the HFnC diet
compared to the HFC diet. There was no significant subsystem
enrichment due to genotype or gender alone. A 5% level of signifi-
cance after the adjustment for multiple testing (p-value: < 0.05)
was considered in all analyses.

4. Discussion

The aim of this work was to highlight the factors that have the
strongest influence on the context-specific extraction of genome-
scale metabolic models, especially in relation to the model-based
analysis of omics data. Additionally, we proposed a methodology
that could be followed in such analyses (see Fig. 6). This is com-
posed of the following steps: (1) identification of the most suitable
reference model; (2) extraction of context-specific GEMs using dif-
ferent MEMs with different configurations; (3) identification of the
MEM and its configuration that is able to capture the variance of
the observed data as well as the groups defined in the experiment;
(4) analysis of obtained models using different approaches, such as
PCA, t-SNE, and metabolic subsystems enrichment analysis.

We extracted GEMs using five model extraction methods i.e.
GIMME, iMAT, FASTCORE, INIT and tINIT. The results show that
the choice of a MEM affects the structure and contents of the out-
put models. Additionally, the models varied greatly in size between
MEMs. INIT and tINIT are very similar algorithms and so are their



Fig. 4. Contribution of different factors, namely, MEM (yellow), diet (red), genotype (blue) and gender (green) to PC1, PC2 and PC3. Fig. 4 (a) shows the contribution of all
factors. Remaining figures show the contribution of diet, gender and genotype in models extracted with FASTCORE (b), GIMME (c), iMAT (d), INIT (e) and tINIT (f). MEM:
model extraction method; PC: prin.cipal component.

A. Walakira, D. Rozman, T. Režen et al. Computational and Structural Biotechnology Journal 19 (2021) 3521–3530
output models. These results are consistent with published reports
[16,17,18]. We used Jaccard index to assess how much the models
differed within each MEM and PCA to assess how much variance in
the data each MEM was able to capture. GIMME produced very
similar models and captured the least variability in the data. iMAT
captured the most variability in the data (46% by PC1) but was
unable to capture the true variability in the experiment. However,
FASTCORE with 13% of variance explained by PC1 in this example
was able to capture the largest amount of variability due to any
of the observed factors, namely gender. Similar clustering was also
observed in the original study [46]. This implies that it is important
to select a MEM that not only captures the largest variance in the
3527
data, but also captures the groups that are aligned with predefined
experimental groups. These groups could reflect different meta-
bolic signatures and thus have a potential to guide downstream
analyses. Our findings assert that the choice of a MEM greatly
affects the output models.

We further assessed the impact of using different thresholds on
the output models. Thresholds were set on gene expression data to
identify highly expressed genes. For each model extracted with
iMAT, we applied two kinds of thresholding, i.e., within a sample
and within a gene. Thresholding within a sample captured unique
individual differences in expression even if individuals were from
the same experimental group. We see that the type of thresholding



Fig. 5. Metabolic subsystems enrichment analysis between different diets. Subsystems that were differentially enriched between two groups and those associated with
cholesterol are shown. Cholesterol metabolism was enriched in mice on HFnC diet compared to HFC diet. The less than symbol (<) between the groups corresponds to down-
regulation and the more than symbol (>) corresponds to up-regulation. F: female; M: male; WT: wild type; KO: knockout; LFnC: low fat without cholesterol; HFnC: high fat
without cholesterol; HFC: high fat with cholesterol.

Fig. 6. Overview of the proposed methodology. PCA: principal component analysis;
t-SNE: t-distributed stochastic neighbour embedding.
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applied and the threshold values used strongly affect the output
models.

We performed subsystem enrichment analysis to assess how
cholesterol metabolism and synthesis varied between the groups
3528
separated by different diets. This is because knocking out the
Cyp51 gene interrupts cholesterol synthesis and metabolism
[46,55–57]. In our analysis, models extracted with FASTCORE
showed that cholesterol metabolism significantly changed
between groups with different diets. Cholesterol metabolism was
enriched in mice on LFnC or HFnC diet compared to HFC diet. How-
ever, cholesterol metabolism was down-regulated in mice on LFnC
diet compared to HFnC diet.

The proposed methodology, like other analyses using GEMs,
requires selection of a suitable reference model. The choice of a ref-
erence model strongly affects the output models. The model should
optimally describe the same tissue or at least the same organism as
the samples used in the experiment. Moreover, the model should
contain accurate gene-product-reaction (GPR) rules, which are
used by MEMs to connect the omics data with metabolic reactions.
In our case, we used the most recently published mouse model,
namely iMM1865 [47].

Different MEMs implement different algorithms for data inte-
gration. As such, the output models differ greatly in their contents.
In this analysis, we opted to use a selection of the state-of-the-art
MEMs, namely, GIMME, iMAT, FASTCORE, INIT, and tINIT. How-
ever, other algorithms, such as CORDA [58], mCADRE [59] and
MBA [60] could as well be applied. Selected MEMs also need to
be configured as required by a particular algorithm, e.g., with the
identification of the most suitable thresholding rules and values.
The choice of values for a particular configuration needs to be
guided by known knowledge and further analyses performed on
selected MEMs. Identification of the most suitable MEM(s) needs
to be based on the results from the analysis of the obtained models
using different approaches, such as PCA, t-SNE, various distance
metrics, and metabolic subsystem enrichment analysis. Ideally, a
MEM of choice will explain the most variance in the observed data-
set and will be able to separate the models in compliance with the
groups defined in the experiment. Moreover, the obtained results
of further analyses of the models extracted with the selected
MEM will reflect the biological relevance and will provide a plat-
form to generate novel knowledge and hypotheses. Such an ideal
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situation may not be obtained easily. When compromises are
required, the MEM that best captures the groups defined by the
experiment should be selected. In this context, the MEM that has
the largest percentage of explained variance within the PC1 for a
selected group should be selected (see Fig. 4).

Even though the proposed methodology was demonstrated
using only transcriptomics data, different omics data could as well
be used in the process. For example, metabolomics and lipidomics
data can be mapped into the context of metabolic reactions [61].
These can be used to identify a set of tasks or core reactions that
need to be executed by a model. Moreover, specific model extrac-
tion methods, such as tINIT, allow a direct integration of non-
transcriptomics data. Namely, tINIT algorithm accepts a list of
metabolites the model should be able to produce [45].

We propose that the analysis of omics data using GEMs should
be initiated with an extraction of different context-specific models
using different MEMs. This should be followed with the application
of various thresholding rules and different threshold values in the
process of reconstruction. The resulting models should then be
analysed to select the most appropriate MEM(s), threshold values
and thresholding rules that best capture the variability in the data
while capturing the known experimental groups.
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Režen T, Rozman D. Chronic disruption of the late cholesterol synthesis leads
to female-prevalent liver cancer. Cancers 2020;12(11):3302.

[57] Skubic C, Rozman D. Sterols from the post-lanosterol part of cholesterol
synthesis: novel signaling players. In Mammalian Sterols. Springer; 2020. pp.
1–22..

[58] Schultz A, Qutub AA. Reconstruction of tissue-specific metabolic networks
using CORDA. PLoS Comput Biol 2016;12(3):e1004808.

[59] Wang Y, Eddy JA, Price ND. Reconstruction of genome-scale metabolic models
for 126 human tissues using mCADRE. BMC Syst Biol 2012;6(1):153.

[60] Jerby L, Shlomi T, Ruppin E. Computational reconstruction of tissue-specific
metabolic models: application to human liver metabolism. Mol Syst Biol
2010;6(1):401.

[61] Poupin N, Vinson F, Moreau A, Batut A, Chazalviel M, Colsch B, Fouillen L, Guez
S, Khoury S, Dalloux-Chioccioli J, et al. Improving lipid mapping in genome
scale metabolic networks using ontologies. Metabolomics 2020;16(4):1–11.

http://refhub.elsevier.com/S2001-0370(21)00247-6/h0170
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0170
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0175
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0175
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0175
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0180
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0180
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0180
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0185
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0185
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0185
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0190
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0190
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0195
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0195
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0200
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0200
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0205
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0205
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0205
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0210
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0210
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0215
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0215
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0220
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0220
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0220
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0225
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0225
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0225
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0230
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0230
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0230
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0230
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0235
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0235
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0235
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0240
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0240
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0240
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0245
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0245
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0250
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0250
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0255
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0255
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0255
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0255
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0260
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0260
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0260
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0260
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0265
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0265
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0265
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0265
http://www.gurobi.com
http://www.gurobi.com
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0275
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0275
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0275
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0275
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0280
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0280
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0280
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0290
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0290
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0295
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0295
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0300
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0300
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0300
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0305
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0305
http://refhub.elsevier.com/S2001-0370(21)00247-6/h0305

	Guided extraction of genome-scale metabolic models for the integration and analysis of omics data
	1 Introduction
	2 Materials and methods
	2.1 Genome-scale metabolic models: from reconstruction to simulation
	2.2 Computational approaches for experimental data integration
	2.2.1 GIMME
	2.2.2 iMAT
	2.2.3 FASTCORE
	2.2.4 INIT and tINIT

	2.3 Case study using gene expression data from Cyp51 knockout mice

	3 Results
	3.1 Thresholds affect the extracted models
	3.2 Extracted models vary with algorithm
	3.3 Enrichment analysis of metabolic subsystems

	4 Discussion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supplementary data
	References


