
RESEARCH ARTICLE

Analysis of statistical and standard algorithms

for detecting muscle onset with surface

electromyography

Matthew S. Tenan*, Andrew J. Tweedell, Courtney A. Haynes

United States Army Research Laboratory, Human Research and Engineering Directorate, Integrated

Capability Enhancement Branch, Aberdeen Proving Ground, MD, United States of America

* matthew.s.tenan.civ@mail.mil

Abstract

The timing of muscle activity is a commonly applied analytic method to understand how the

nervous system controls movement. This study systematically evaluates six classes of stan-

dard and statistical algorithms to determine muscle onset in both experimental surface elec-

tromyography (EMG) and simulated EMG with a known onset time. Eighteen participants

had EMG collected from the biceps brachii and vastus lateralis while performing a biceps

curl or knee extension, respectively. Three established methods and three statistical meth-

ods for EMG onset were evaluated. Linear envelope, Teager-Kaiser energy operator + lin-

ear envelope and sample entropy were the established methods evaluated while general

time series mean/variance, sequential and batch processing of parametric and nonparamet-

ric tools, and Bayesian changepoint analysis were the statistical techniques used. Visual

EMG onset (experimental data) and objective EMG onset (simulated data) were compared

with algorithmic EMG onset via root mean square error and linear regression models for

stepwise elimination of inferior algorithms. The top algorithms for both data types were ana-

lyzed for their mean agreement with the gold standard onset and evaluation of 95% confi-

dence intervals. The top algorithms were all Bayesian changepoint analysis iterations where

the parameter of the prior (p0) was zero. The best performing Bayesian algorithms were p0 =

0 and a posterior probability for onset determination at 60–90%. While existing algorithms

performed reasonably, the Bayesian changepoint analysis methodology provides greater

reliability and accuracy when determining the singular onset of EMG activity in a time series.

Further research is needed to determine if this class of algorithms perform equally well

when the time series has multiple bursts of muscle activity.

Introduction

In biomechanics, the off-line analysis of electromyography (EMG) is used to add a physiologic

context to observed patterns of movement [1] or specific events during movement, such as

heel-strike in walking [2]. During a defined movement, the EMG from two different muscles

may also be compared [3] if theory dictates that differential activation may cause or be a pre-

disposing factor towards injury. Generally, there are three parameters of interest: EMG
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amplitude, EMG frequency content, and EMG timing. Each of these measures may be influ-

enced by the determination of signal onset, depending on the methodologies employed.

As EMG signals are prone to noise, the precise identification of signal onset is difficult and

the earliest methods for detecting EMG onset involved visual inspection of EMG signals. With

this technique, determination of EMG onset is somewhat subjective and based on individual

differences in the perception of the signal. This difficulty is increased when the underlying

EMG signal is noisy and the contraction amplitude is low. Computational methods remove

the subjectivity and investigator variance from the analysis process. Many of the computa-

tional methods used are iterations of David Winter’s suggestions in his ubiquitous book Bio-

mechanics and Motor Control of Human Movement [4]. These methods commonly include

full-wave rectification of the signal, application of a low-pass filter, and use of a sliding window

to determine when the amplitude of the signal exceeds some predetermined threshold, typi-

cally 1–3 standard deviations over a baseline amplitude. Within this methodology, different

investigators select different low-pass filters, different window lengths for the sliding window,

and different amplitude thresholds. It has been demonstrated that preconditioning the EMG

signal with the Teager-Kaiser energy operator (TKEO) improves onset detection when applied

to variations of Winter’s methodology [5, 6]. A method using sample entropy (SampEn) with-

in a sliding window has also demonstrated results similar the Teager-Kaiser energy method,

but is more robust to spurious artifact data [7]. The wide-array of EMG onset algorithms

employed suggest that none of the currently used algorithms are sufficient for the breadth of

ways in which EMG is implemented in biomechanics. The new methodologies, TKEO and

SampEn, derive from the research areas of acoustics [8, 9] and electrocardiography [10, 11],

respectively. Therefore, it is reasonable to extend the search for EMG onset algorithms to those

typically employed in other signal processing arenas.

The computational onset methods are commonly validated against visual detection of sur-

face EMG [5, 12, 13]. In addition to being time consuming, visual detection has variability

inherent to both natural human error as well as error between researchers. Using simulated, or

modeled, surface EMG data, it is possible to create a known EMG onset; however, models are

not designed to be the “same” as reality, but instead a computational aide to understanding

reality [14, 15]. Furthermore, the modeling of surface EMG has been controversial [16–18]

and may lead to erroneous conclusions when compared to experimental data [19]. Therefore,

this study examines surface EMG onsets determined in a randomized double-blind visual

method as well as a simulated surface EMG signal which has been modified to have a known

onset. This two-pronged approach should assuage concerns both about the reliability of visual

detection as well as the use of modulated or simulated data to represent empirically collected

surface EMG.

The purpose of the present investigation is to systematically employ and validate a variety

of established algorithms and econometrics-based statistical algorithms for the determination

of EMG onset using experimental surface EMG data and experimental data which has been

modified to have a known onset (simulated EMG). The development of an algorithm or set of

algorithms that are consistently reliable for EMG onset determination should enable more

objective EMG onset detection across studies, providing a standard analytic method for clini-

cal research studies.

Materials and methods

Participants and ethical approval

Eighteen participants, 13 male and 5 female (33.3 ± 9.2 years), participated in the study. The

inclusion criteria for participation was the absence of neurologic, cardiovascular or metabolic
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disorders. Furthermore, they had no previous surgeries, current or recurring pain, or injury

on their dominant side. The study protocol was approved by the U.S. Army Research Labora-

tory Institutional Review Board and all participants gave their written informed consent in

accordance with the Helsinki Declaration.

Experimental protocol

Participants performed two independent and discrete movements as a part of the research

study: knee extension and elbow flexion of the dominant limb. The dominant limb was ascer-

tained by asking the participant which limb they would use to kick or throw a ball. In the

present study, all participants were right-side dominant. For the knee extension movement,

participants were seated in a stationary chair with their foot at least 10 cm from the ground

and a mass of 2.3 kg was attached to their ankle. A surface EMG electrode (B&L Engineering,

Tustin, CA; Ag/AgCl, circular 10mm diameter, interelectrode distance 35mm, Gain 330x,

>100MΩ, CMMR 95db, 10 Hz-3.13 kHz bandwidth) was attached to the vastus lateralis

approximately 2/3 the distance between the anterior superior iliac spine and the lateral side of

the patella. Manual muscle tests for simple hip flexion and leg abduction were performed to

limit cross-talk. For the elbow flexion movement, participants were seated in a chair with their

elbow supported in 90 degrees of flexion and a 2.3 kg mass attached to their wrist. A surface

EMG electrode was attached midway between the lateral epicondyle and the acromion on the

the short head of the biceps brachii as determined via palpation. Prior to the placement of the

EMG electrode for both movements, the skin was lightly abraded and cleaned with a 70% iso-

propyl alcohol solution. A 5 mm diameter adhesive pre-gelled Ag/AgCl surface electrode was

placed on the subject’s ipsilateral patella as a ground. All EMG was pre-amplified with a 330x

gain and A/D converted at 2048 Hz. After placement of the EMG electrodes, the process for

both movements was similar. The participant was asked to perform three repetitions of the

specific movement at a self-selected pace separated by at least 60 seconds of rest. No attempt

was made to standardize movement speed or EMG signal-to-noise ratio as the goal of the pres-

ent analysis is to determine an algorithm or class of algorithms which are valid for use in a

variety of conditions. Five trials were lost due to equipment malfunction, rendering 103 trials

of experimental EMG data for analysis. Since this same data was used for the creation of the

simulated EMG, this resulted in a net total of 206 time series’ of data for analysis.

Visual electromyography onset detection

A custom computer program was written in the R programming language which enabled all

three researchers to visually determine and record EMG onset in a randomized and double-

blind fashion. Within each researcher, the visual determinations were separated by at least 24

hours and the inter-determination period was never longer than 7 days. Prior to researcher

evaluation of the EMG, the signal was bandpass filtered (10–1,000 Hz) in line with previous

research to remove any substantial signal artifact [13]. The reviewing researchers were in-

structed to evaluate the time series for what they perceived to be the onset of muscle activity.

Each researcher evaluated every trial twice and was blinded to both the study identifier as well

as the movement performed. The reliability between and within investigators was high (ICC:

0.88 and 0.92, respectively); therefore, the mean of the six visual detections (two from each

researcher) was used as the ‘gold standard’ from which to evaluate the algorithms [5, 13].

Creation of simulated EMG

The experimental data collected was altered to obtain a known onset of EMG signal. A half-

second increment of data (1024 samples) was extracted from the obtained signal in a trial prior
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to muscle contraction. During this period the muscle was always quiescent. Since the greatest

singular investigator visual onset deviation from visual ‘gold standard’ was 0.32 seconds, active

EMG was obtained 0.5 seconds after the visual ‘gold standard’ determination. The length of

active EMG was 1 second (2048 samples). Thus, the length of all simulated trials was 1.5 sec-

onds (3072 samples) with an objective EMG onset at 0.5 seconds. While the onset in simulated

EMG is objective, this method renders a data series with an artificially profound onset since it

does not contain the gradual orderly recruitment of different motor units. However, the inabil-

ity to sufficiently determine an onset in the simulated EMG indicates that an algorithm is inad-

equate even when a clear EMG signal change occurs.

Algorithmic electromyography onset detection

A net total of 605 algorithm iterations were tested (Table 1 and Table 2). Prior to analysis by

any algorithm, the raw EMG waveform was bandpass filtered (10–1,000 Hz) to remove signal

artifact [13]. Three classes of standard algorithms were examined (Table 1), including sixty-

four iterations of the commonly applied linear envelope methodology [4]. The linear envelope

was also tested with the Teager-Kaiser Energy Operator (TKEO) pre-processing step since this

has been shown to increase accuracy [5, 6]. The Sample Entropy (SampEn) algorithm has also

been shown to have accuracy similar to TKEO while being more robust to artifact [7]. In addi-

tion to testing these 129 standard EMG onset algorithms, 476 statistical algorithms for time

series analysis were applied for use in EMG onset detection (Table 2).

The first general set of algorithms arose from the changepoints package in R [20]. These

algorithms test the time series for At Most One Change (AMOC) by examining either a change

in the mean of the time series, the variance of the time series, or both. For all three of these

sub-methods, the distribution of the data was assumed to be normal. The second set of statisti-

cal algorithms were the sequential and batch processing of parametric and non-parametric

methods from the cpm package in R [21]. In batch processing, the data is always retrospective

and changepoints are calculated from the data as a whole (i.e. all observations in the time

series). In sequential processing, the individual data points are received and processed over

time until a changepoint is detected (i.e. at each ordered observation, a decision is made

whether a change has occurred). The models used in both of these methodologies assume sta-

tistical independence between data points in the series, a criteria which may not be strictly met

with surface EMG, but was assumed to be true for the current purposes of EMG onset detec-

tion. The individual methodologies applied from both batch and sequential processing can be

viewed in Table 2. The third set of statistical algorithms were a Bayesian analysis of change

points in a time series [22, 23] as implemented in the bcp package in R [23, 24]. As opposed to

other methods tested in this study, Bayesian procedures do not produce a point estimate of the

Table 1. Standard EMG onset detection methodologies examined and the iterative settings used for each methodology.

Method Rectification Low Pass Filtering

or Windowing Parameters

Onset Threshold Number of

Algorithms

Notes

Linear Envelope Yes 2–20 Hz (incremented every 2 Hz), 25–50 Hz

(incremented every 5 Hz) cut off frequency

1, 2, 3 and 15 SD of

time series

64

Teager-Kaiser

Energy Operator

Yes 2–20 Hz (incremented every 2 Hz), 25–50 Hz

(incremented every 5 Hz) cut off frequency

1, 2, 3 and 15 SD of

time series

64

Sample Entropy No 32 ms windows, incremented every 4 ms 0.6 1 Zhang &

Zhou 2012

All of the statistical algorithms were tested with both raw EMG and after applying a full-wave rectification pre-processing step. The full-wave rectification

theoretically assists in the detection in waveform changepoints when the algorithm is based on detecting changes in the mean of the signal.

https://doi.org/10.1371/journal.pone.0177312.t001
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EMG onset; instead, a probability distribution is produced and the researcher can select their

probability level for onset determination. In this implementation, the posterior means are

updated after each partition within the time series. In the present study, the parameter of the

prior (hyperparameter γ or p0) is systematically varied so that the ability to detect a small num-

ber of changes (p0 low) and a large number of changes (p0 high) are examined [22]. In practice,

the parameter can alter the sensitivity and specificity of the algorithm for EMG onset detec-

tion. The method also has the capability of accounting for differing levels of signal-to-noise

(hyperparameter w0) which can theoretically be altered based upon the characteristics of the

underlying signal. This hyperparameter of the algorithm was set at 0.2 as prescribed by previ-

ous work in Bayesian changepoint analysis [22, 25].

Each general algorithm type has a number of parameters which alter how EMG onset is

determined and defined. The range of parameters within each algorithm are adapted from the

methods typically employed in the EMG literature (in the case of standard algorithms) or are a

systematic exploration of the iterative changes available within individual statistical packages

(in the case of statistically-oriented algorithms).

Statistical analysis & algorithm evaluation

Given the large number of EMG onset algorithms examined, an iterative process was used to

down-select appropriate algorithms for further analysis. The down-select process was identical

for experimental and simulated EMG except for step 3, which was omitted for simulated

EMG. The followings steps were used to down-select algorithms: 1) the root mean square

error (RMSE) between algorithm-determined EMG onset and visual onset was calculated and

Table 2. Statistical EMG onset detection methodologies examined and the iterative settings used for each methodology.

Method Rectification Parameters or

Models Used

Onset

Threshold

Number of

Algorithms

Notes

General Time Series

Mean/Variance

Both Changes in mean, variance or both N/A 6 Default algorithm

settings used

unless otherwise

noted

Sequential

Changepoint Detection

with Parametric

Methods

Both Models: Student, Bartlett,

Generalized Likelihood Ratio,

Generalized Likelihood Ratio for

Exponential Distributions,

Generalized Likelihood Ratio for

Exponential Distributions with Finite

Correction

N/A 10 ARL0 set to

50,000 to limit

false-positives

Sequential

Changepoint Detection

with Nonparametric

Methods

Both Models: Mann-Whitney, Mood, and

Cramer von Mises

N/A 6 ARL0 set to

50,000 to limit

false-positives

Batch Changepoint

Detection with

Parametric Methods

Both Models: Student, Bartlett,

Generalized Likelihood Ratio

N/A 6 Default alpha

level 0.05 used

Batch Changepoint

Detection with

Nonparametric

Methods

Both Models: Mann-Whitney, Mood,

Kolmogorov-Smirnov, and Cramer

von Mises

N/A 8 Default alpha

level 0.05 used

Bayesian Changepoint

Analysis

Both Prior of change point probability on

the probability of a change point in

the sequence (p0) =

(0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

0.8, 0.9, 1.0)

Posterior probability at which

changepoint occurs = (0.00, 0.05,

0.10, 0.15, 0.20, 0.25, 0.30, 0.35,

0.40, 0.45, 0.50, 0.55, 0.60, 0.65,

0.70, 0.75, 0.80, 0.85, 0.90, 0.95)

440

https://doi.org/10.1371/journal.pone.0177312.t002
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algorithms with the highest mean RMSE (top 90% of the 605 algorithm iterations) were

removed; 2) algorithms which either detected no EMG onset or detected EMG onset at the

first index point more than 25% of the time were removed; 3) for experimental EMG, a linear

regression model with algorithm-detected onset and EMG signal-to-noise ratio were used to

predict visual onset detection and any algorithms which had statistically significant (p < 0.05)

effects for signal-to-noise ratio were removed from further analysis. The signal-to-noise ratio

was calculated as the amplitude of the signal during ‘quiet’ EMG in the first 500 ms of data col-

lection in ratio to the maximum amplitude observed during the trial. Despite the uncompli-

cated nature of the movements performed, the low resistance (2.3 kg) resulted in a reasonable

range of signal-to-noise ratios (1.8–78.4). Step 3 was performed with the experimental EMG as

the goal of the present investigation was to determine a set of algorithms which produce accu-

rate results independent of signal quality. Any attempt to replicate this regression procedure

for the simulated EMG would have resulted in an invalid analysis due to a lack of variance in

the dependent variable (e.g. the variance of objective onset in simulated EMG is essentially ‘0’

since all EMG turns ‘on’ at 0.5 seconds).

The remaining algorithms for both experimental and simulated EMG datasets were

assessed by determining the mean difference between the algorithm’s determined onset and

the ‘gold standard’ visual onset (for experimental data) or objective onset (for simulated data)

and the associated parametric 95% confidence intervals. In each case, the accuracy of the algo-

rithm was assessed as the mean difference’s proximity to ‘0’ and the reliability was assessed by

examining the width of the 95% confidence intervals (more narrow intervals indicate greater

algorithm reliability). All statistical analyses were performed in R [26].

Results

The results of the algorithm down-selection process for experimental EMG and simulated

EMG can be seen in Fig 1 and Fig 2, respectively.

For experimental EMG, the down-selection process rendered 21 algorithm iterations (out

of 605) which were determined suitable for more in-depth analyses. The down-select process

for simulated EMG produced 15 algorithm iterations (out of 605) which were further assessed.

The mean difference from visual onset (± 95% confidence intervals) for the experimental

EMG and simulated EMG can be reviewed in Figs 3 and 4, respectively.

For experimental EMG, six of the algorithms were statistically indistinguishable from visual

determination, two TKEO algorithms and four Bayesian algorithms (Fig 3). However, the two

TKEO algorithms also had the widest confidence intervals contained within the final down-

select, suggesting that they have the lowest reliability of the algorithms in Fig 3. When com-

pared with visual determination of EMG onset, the Bayesian Changepoint method (p0 = 0.0)

used on rectified EMG performed best with the probability of onset threshold set within the

80–95% range.

The simulated EMG analysis indicated that only iterations of the linear envelope method

and Bayesian changepoint analysis returned even moderately suitable results (Figs 2 and 4).

After the final down-select, 11 algorithms were statistically indistinguishable from the objec-

tively known onset of EMG activity. However, all six of the linear envelope algorithms pro-

duced exceptionally wide confidence intervals, making them unsuitable for real-world

analysis. The algorithm with the most narrow confidence intervals which were also indistin-

guishable from known EMG onset was the Bayesian changepoint algorithm (p0 = 0.0) used on

rectified EMG with an onset probability of 65%. All Bayesian changepoint algorithms (p0 =

0.0) used on rectified EMG with an onset probability of 60–95% had suitably narrow confi-

dence intervals, indicating high levels of reliability (Fig 4). Example traces of surface EMG
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with their associated onset determinations for high-performing algorithms are displayed in

Figs 5 and 6.

Fig 1. Experimental EMG iterative down-selection process based on root mean square error (RMSE)

(Phase 1), clearly aberrant EMG onset detection (Phase 2), and algorithms impacted by the signal-to-

noise ratio (Phase 3). Abbreviations: Raw = raw band-pass filtered EMG; Rect = full-wave rectified EMG;

p0 = parameter of the prior on changepoint probability; Prob = posterior probability for EMG onset; LP = low

pass filter frequency; SD = standard deviation of time series for EMG onset.

https://doi.org/10.1371/journal.pone.0177312.g001

Fig 2. Simulated EMG iterative down-selection process based on root mean square error (RMSE)

(Phase 1) and clearly aberrant EMG onset detection (Phase 2). Abbreviations: Raw = raw band-pass

filtered EMG; Rect = full-wave rectified EMG; p0 = parameter of the prior on changepoint probability;

Prob = posterior probability for EMG onset; LP = low pass filter frequency; SD = standard deviation of time

series for EMG onset.

https://doi.org/10.1371/journal.pone.0177312.g002
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Discussion

The present study examines various iterations of previously-reported and novel statistical algo-

rithms for EMG onset. The goal was to discover an algorithm or class of algorithms that are

accurate, reliable and able to be used in the majority of cases where EMG is collected. While

previously reported algorithms produced reasonable results in some cases (Figs 3 and 4), the

present analysis suggests that the Bayesian changepoint analytic method produces the most

accurate and reliable results after the EMG signal has been full-wave rectified. This result holds

true regardless of whether consensus human visual detection is used as the gold standard or a

simulated EMG with a known onset is used.

Fig 3. Forest plot of the mean difference between visual EMG onset and algorithm-determined EMG onset for experimentally

collected surface EMG. Circle indicates mean difference and bands are the parametric 95% confidence intervals. The dashed line at ‘0’

corresponds to perfect agreement between methodologies. Intervals crossing ‘0’ indicate no statistical difference between methodologies.

Interval width corresponds to the reliability of the estimate. Abbreviations: TKEO = Teager-Kaiser energy operator preconditioning, Low

Pass = low pass filter frequency, Thresh = threshold for onset determination, Raw = raw EMG, Rect = full-wave rectified EMG, Seq = Sequential

analysis of data, Dist = Distribution, Corr = Correction, p0 = parameter of the prior on changepoint probability.

https://doi.org/10.1371/journal.pone.0177312.g003
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The initial algorithm down-select was coarsely performed by eliminating the top 90% of

algorithms with the highest mean RMSE. This step was not intended to determine the best

algorithms, but rather to eliminate the algorithms which clearly performed poorly. However,

this step alone suggested that the Bayesian changepoint algorithms were a promising analytic

technique since it produced 14 and 13 of the top 25 onset algorithms in the experimental and

simulated datasets, respectively. This clearly superior performance may be a result of the

unique product partition model used within the Bayesian changepoint algorithms to define

the different ‘blocks of data’. An imperfect analogy for this product partition model to stan-

dard EMG onset analyses would be an automated sliding window function which iterates until

an ‘ideal’ window length and overlap is determined for a particular time series. The secondary

down-select, determined a priori, was the elimination of algorithms that detected no muscle

activity or muscle activity at the first time point in the data-series, which is clearly aberrant.

The third down-select, performed only in experimental data, was driven by theory and the

goal of the present manuscript which was to determine algorithms which are valid irrespective

of the quality of surface EMG signal or collection methodology. Thus, multiple linear regres-

sion was used with algorithm-determined EMG onset and the signal-to-noise ratio of the

Fig 4. Forest plot of the mean difference between known EMG onset and algorithm determined EMG onset for simulated EMG. Circle

indicates mean difference and bands are the parametric 95% confidence intervals. The dashed line at ‘0’ corresponds to perfect agreement

between methodologies. Intervals crossing ‘0’ indicate no statistical difference between methodologies. Interval width corresponds to the

reliability of the estimate. Abbreviations: Low Pass = zero-lag low pass Butterworth filter, Thresh = threshold for onset determination, Raw = raw

EMG, Rect = full-wave rectified EMG, p0 = parameter of the prior on changepoint probability.

https://doi.org/10.1371/journal.pone.0177312.g004
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EMG time series as co-variates to predict the gold standard for EMG onset detection (i.e. visual

detection). If the regression analysis indicated that the signal-to-noise variable significantly

impacted the analysis (i.e. p< 0.05), that analytic technique was removed from further analy-

sis. Using null-hypothesis testing to eliminate an algorithm based on regression coefficients is

a coarse measure. For example, a more subjective but informative method may have been to

plot RMSE against the signal-to-noise data in either a histogram or scatter plot format. This

type of visual analysis is more informative as it will indicate which methodologies are highly

effective under various levels of signal noise. Methodologies in this vein were not performed as

they are inherently subjective, more time consuming, and the interest of the present analysis

was to find algorithms that performed well regardless of signal quality.

It is remarkable that both the experimental dataset and the simulated dataset suggest that

the same Bayesian changepoint algorithms with p0 = 0.0 and onset probability threshold rang-

ing from 60–95% produce highly reliable and generally accurate results when compared to

more standard approaches. It is the opinion of the authors that while accuracy and reliability

of an EMG onset algorithm are both important, it is generally more acceptable to have a

slightly biased algorithm which is highly reliable compared to an algorithm which is, on

Fig 5. EMG trace in a low noise environment with example onset determinations. Time series length has been substantially cropped, focusing on the

time of onset, in order to increase the visibility of onset determination for various methods. Abbreviations: Rect = full-wave rectified EMG; p0 = parameter of

the prior on changepoint probability; LP = low pass filter frequency; SD = standard deviation of time series for EMG onset; Thresh = threshold for EMG

onset.

https://doi.org/10.1371/journal.pone.0177312.g005
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average, more accurate but has wider confidence intervals. With that bias in mind, we believe

that the results in Figs 3 and 4 indicate that Bayesian changepoint analysis is a superior class of

EMG onset algorithms when comparing a singular change in the time series.

Bayesian changepoint analysis

The Bayesian changepoint analysis implemented in the current study is based on the original

work by Barry and Hartigan [22] and extended as the R package bcp [23]. These analytical

methods have been applied to a wide variety of fields, from genomics [24] to climate change

[27] and investigations of the National Hockey League demographics [28]. In general, the

analysis provides a posterior probability for the presence of a changepoint within a given

partition of the time series. The posterior probability is updated after each partition is iterated

and are conditional on the current partition. Two hyperparameters within Bayesian change-

point analysis can be ‘tuned’ to increase their efficacy for a given situation: p0 and w0. The

exact derivation and use of these hyperparameters is detailed in the original work by Barry and

Hartigan [22]; in the context of EMG onset, higher p0 values are effective when there are many

Fig 6. EMG trace in a moderate noise environment with example onset determinations. Time series length has been substantially cropped, focusing

on the time of onset, in order to increase the visibility of onset determination for various methods. Abbreviations: Rect = full-wave rectified EMG; p0 =

parameter of the prior on changepoint probability; LP = low pass filter frequency; SD = standard deviation of time series for EMG onset; Thresh = threshold

for EMG onset.

https://doi.org/10.1371/journal.pone.0177312.g006
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changepoints to detect and higher w0 values are effective when the signal-to-noise ratio of the

underlying EMG signal is low [22, 23]. Both p0 and w0 are bounded from 0–1.

In the confines of the present study, w0 was not systematically altered and the default 0.2

level was used as prescribed by previous work [22, 25]. The p0 hyperparameter was iteratively

changed from 0–1 (Table 2). Given the current study which only examined a singular “EMG

onset” or changepoint in a time series, it should be unsurprising that p0 = 0.0 rendered the

most reliable and accurate results. The present study also iteratively examined the most appro-

priate cut-point for the posterior probability, with various probabilities being more reliable in

different data sets (experimental vs. simulated, see Figs 3 and 4). In practice, the selection of an

appropriate posterior probability set-point may also be guided by the underlying theory and

belief of the researcher regarding the desired level of confidence in the data.

The clearly superior performance of Bayesian changepoint analysis for the determination of

surface EMG onset in both experimental and simulated data indicates that this methodology

deserves greater study. Research which examines multiple muscle onsets and offsets in dy-

namic tasks should provide evidence that the p0 hyperparameter needs to be varied depending

on the type of EMG data collected. The w0 hyperparameter may be able to be altered depend-

ing upon signal quality or the signal-to-noise ratio of the underlying EMG data. The differen-

tial fixation of these two hyperparameters will also impact the overall algorithm accuracy and

reliability. In theory, a function could be derived which modifies the hyperparameters based

upon the underlying characteristics of the EMG signal being evaluated. Future research should

explore this possibility as it may allow for the most reliable and flexible analysis of EMG onset

across laboratories and in clinical applications.

Future work

Many of the novel algorithms tested in the current manuscript arise from areas of economet-

rics, genomics and statistical changepoint analysis. The superior performance of the Bayesian

changepoint algorithms reinforce the notion that biomechanics and motor control researchers

should continually assess the state-of-the art in adjacent or seemingly unrelated fields to lever-

age the computational or experimental advances in those fields. Computational work in the

areas of non-linear dynamics [29, 30], recursive neural networks [31, 32] and network dynam-

ics [33] may be especially fruitful for extracting EMG onset timing.

Conclusions

The current study examined a large number of existing and statistical algorithm iterations for

use in determining surface EMG onset. While previously proposed linear envelope and TKEO

methods generally performed well, the Bayesian changepoint class of algorithms showed the

most promise. When only one muscle onset needs to be detected in a time series, as may be

the case in analyzing discrete movements (e.g. a drop-landing task, reaction time detection,

etc.) the Bayesian changepoint algorithm with hyperparameters p0 = 0 and w0 = 0.2 performed

best at the 60–90% confidence level. Future research needs to explore iterations of Bayesian

changepoint analysis in more complicated EMG waveforms with both EMG ‘onsets’ and ‘off-

sets’ to determine its viability in more complex tasks.
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