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Abstract 

Background:  The human epidermal growth factor receptor 2 (HER2) involved proliferation, angiogenesis, and 
reduced apoptosis in gastric cancer (GC), which is a common target for tumor therapy. HER2 is usually overexpressed 
in more than 15% GC patients, developing a reliable diagnostic tool for tumor HER2 detection is important. In this 
study, we attend to use polyethylene glycol (PEG) linked anti-HER2/neu peptide (AHNP-PEG) as a nuclear imaging 
agent probe for HER2 detection in GC xenograft animal model.

Methods:  The HER2 expression of human sera and tissues were detected in GC patients and normal subjects. GC cell 
lines NCI-N87 (high HER2 levels) and MKN45 (low HER2 levels) were treated with AHNP-PEG to assess the cell viability 
and HER2 binding ability. The NCI-N87 was treated with AHNP-PEG to observe the level and phosphorylation of HER2. 
The MKN45 and NCI-N87-induced xenograft mice were intravenous injection with fluorescence labeled AHNP-PEG for 
detecting in vivo fluorescence imaging properties and biodistribution. The AHNP-PEG was conjugated with dieth‑
ylenetriaminopentaacetic acid (DTPA) for indium-111 labeling (111In-DTPA-AHNP-PEG). The stability of was assessed 
in vitro. The imaging properties and biodistribution of 111In-DTPA-AHNP-PEG were observed in NCI-N87-induced 
xenograft mice.

Results:  The serum HER2 (sHER2) levels in GC patients were significantly higher than the normal subjects. The sHER2 
levels were correlated with the tumor HER2 levels in different stages of GC patients. The AHNP-PEG inhibited the cell 
growth and down-regulated HER2 phosphorylation in HER2-overexpressed human GC cells (NCI-N87) via specific 
HER2 interaction of cell surface. In addition, the GC tumor tissues from HER2-postive xenograft mice presented higher 
HER2 fluorescence imaging as compared to HER2-negative group. The HER2 levels in the tumor tissues were also 
higher than other organs in NCI-N87-induced xenograft mice. Finally, we further observed that the 111In-DTPA-AHNP-
PEG was significantly enhanced in tumor tissues of NCI-N87-induced xenograft mice compared to control.

Conclusions:  These findings suggest that the sHER2 measurement may be as a potential tool for detecting HER2 
expressions in GC patients. The radioisotope-labeled AHNP-PEG may be useful to apply in GC patients for HER2 
nuclear medicine imaging.
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Background
Gastric cancer (GC) is known as a highly lethal malig-
nancy and a serious public health issue worldwide [1–3]. 
It is the fifth most frequent cancer and the third lead-
ing cause of cancer-related deaths of the world, with 
more than 980,000 new cases and 840,000 deaths occur-
ring globally in 2013 [4]. Although the recent advances 
in diagnosis and therapeutic methods have been made, 
the advanced 5-year survival rates of GC patients are 
still less than 30% [5]. Moreover, it still remains difficult 
to cure as most GC cases are asymptomatic only until 
entering an advanced stage. Most of patients with ade-
nocarcinoma of gastric cardia (AGC) present no effect 
on chemotherapy and chemo-resistance, which leads to 
poor survival and the limited therapeutic options [6]. 
Therefore, an early diagnosis intervention is important 
to provide early treatment for improving the progno-
sis of GC patients. Conventional white-light endoscopy 
(WLE) is a most commonly technique for many gastric 
diseases of the world in the last two decades [7]. How-
ever, to date, the application of WLE is limited to detect 
subtle mucosal alteration in flat lesions. There is also no 
standardized learning system, which could be commonly 
applied to endoscopic screening for early GC diagno-
sis [8]. Although histology of biopsy specimens is a gold 
standard method for diagnosing gastric lesions [9], it 
possesses a major disadvantage that premalignant lesions 
may be occurred by multiple occurrences, which may 
cause the missed diagnosis from random biopsy sampling 
in 20–30% of cancer cases [10, 11]. Therefore, develop-
ment of noninvasive diagnostic methods such as nuclear 
molecular imaging with high specific biomarkers would 
be able to detect GC earlier and determine the therapeu-
tic responsiveness in AGC patients.

Human epidermal growth factor receptor 2 (HER2) 
is a member of HER family of receptor tyrosine kinases 
[12, 13]. HER2 is a 185-kDa transmembrane protein, 
which comprises an extracellular ligand binding domain, 
a lipophilic transmembrane domain, an intracellular 
tyrosine kinase domain, and a carboxyl-terminal signal-
ing domain [14, 15]. Unlike other HER family members, 
the high affinity ligand of HER2 has not been character-
ized [16]. It may be in an activated state constitutively 
or become active upon heterodimerization with other 
members of HER family such HER1 and HER3 [17, 18]. 
The homo- or hetero-dimerization of HER2 causes the 
autophosphorylation of the intracellular domain and 
triggers several downstream signaling cascades, includ-
ing mitogen-activated protein kinases (MAPKs) path-
way, the phosphatidylinositol-4,5-bisphosphate 3-kinase 
(PI3K)/AKT pathway for mediating cell proliferation, 
survival, differentiation, migration, and invasion, which 
are thought to be the signaling pathways responsible for 

the transforming potential of HER2-overexpressing can-
cers [19–24]. It has been recognized that overexpressed-
HER2 leads to increased proliferation, angiogenesis, and 
reduced apoptosis occurring in various cancers: breast 
cancer [25–27], GC [28], ovarian cancer [29], salivary 
gland carcinoma [30], colon [31], bladder [32], lung [33], 
and esophagus [34]. Till now, only patients with breast 
cancer are routinely tested for the HER2 status. It is not 
yet the case for HER2 testing in GC patients. Hence, 
development of specific systemic HER2 targeting probe 
for detecting HER2 status is helpful for the optimal care 
of patients with advanced GC and the correct use of first-
line drug therapy.

Trastuzumab, an anti-HER2 monoclonal antibody, 
has been employed as tumor-specific ligands for breast 
cancer and GC with HER2 overexpression in  vitro and 
in  vivo [35–37]. Trastuzumab has been approved by 
FDA for HER2-positive breast cancer therapy [37]. How-
ever, the intact antibodies as therapeutic or diagnostic 
molecules have limitations, including causing immune 
response, defects of resistance, low tumor penetration 
and high background noise [38, 39]. Compared to the 
shortcomings of macromolecules, utilization of tumor-
targeting peptides as an efficient tumor imaging probe is 
a more valuable procedure [40–42]. The anti-HER2/neu 
peptide (AHNP, a 1.5 KDa cyclic peptide mimic of trastu-
zumab) possesses high HER2-specific affinity, which has 
been demonstrated to have similar activity to the intact 
antibody trastuzumab against tumor growth in  vitro 
and in  vivo [43–47]. Nevertheless, there is currently no 
effective AHNP-based nuclear medical agent for HER2-
overexpressed gastric tumor imaging diagnosis in  vivo. 
Herein, we conjugated diethylenetriaminopentaacetic 
acid (DTPA) and polyethylene glycol (PEG) with AHNP 
(DTPA-AHNP-PEG) for targeted imaging of HER2 posi-
tive GC in vivo. DTPA is a cyclic chelator, which can be 
radiolabeled with many radiometals such as 111In, 64Cu, 
and 177Lu [48]. PEG can increase the molecular mass, 
while reducing the rate of kidney excretion to prolong the 
blood circulating time of the drug [49]. Therefore, in this 
study, we aimed to develop a radiolabeled HER2 targeted 
agent for detecting HER2-overexpressed GC tumors 
in vivo.

Methods
Reagents
HS-PEG-NH2 (average molecular weight: 5  kDa), 
fluorescein isothiocyanate isomer I (FITC) and cya-
nine5.5 NHS ester (Cy5.5) were purchased from Sigma-
Aldrich (St. Louis, MO, USA). Anti HER2/neu peptides, 
AHNP (sequence: FCDGFYACYMDV), AHNP-PEG, 
FITC-labeled AHNP-PEG (FITC-AHNP-PEG) were 
custom-made by AnaSpec (Fremont, CA, USA). The 
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p-SCN-Bn-DTPA was obtained from Macrocyclics 
(Plano, TX, USA).

Acquisition of the tissues and sera of GC patients
Clinical samples were acquired from Kaohsiung Medi-
cal University Chung-Ho Memorial Hospital (KMUH-
IRB-980382), and written informed consent and 
approved by the Institutional Review Board from healthy 
subjects and patients with gastric cancer. The primary 
and contiguous normal tissues from GC patients were 
harvested after surgery. Histology and pathological grade 
and stage of tumors were followed the criteria from the 
8th American Joint Commission on Cancer Staging 
Manual.

Cell culture
MKN45, a human GC-derived cell line, was obtained 
from RIKEN BioResource center (Tsukuba, Ibaraki, 
JAPAN). NCI-N87, another human GC-derived cell 
line, was purchased from the Bioresource Collection 
and Research Center (Hsinchu, Taiwan). Cells were cul-
tured in RPMI-1640 medium (Thermo Fisher Scientific, 
Waltham, MA, USA) added with 10% fetal bovine serum 
(FBS) (Thermo Fisher Scientific). Human primary stom-
ach epithelium cells (HPSEC) was obtained from Cell 
Biologics (Chicago, IL, USA), which were maintained in 
Cell Biologics’ Cell Culture Medium supplemented with 
10% FBS. All cells were under standard culture condi-
tions (37 °C humid incubator with 5% CO2).

Animals
The 8-week-old male BALB/c nude mice were purchased 
from BioLASCO (Taipei, Taiwan) and were housed under 
the controlled condition (a 12:12-h light: dark cycle at 
22 ± 2 °C) and received rodent laboratory chow diet and 
drinking water ad  libitum. All animal protocols were 
approved by the institutive ethical review committee and 
were in accordance with Taiwan regulations and National 
Institute of Health guidelines on the care and welfare of 
laboratory animals.

Human serum HER2 assay
Human serum HER2 (sHER2) levels from 36 GC patients 
and 32 normal subjects were determined by a Human 
HER2 enzyme-linked immunosorbent assay (ELISA) kit 
(Thermo Fisher Scientific) according to the manufactur-
er’s instruction.

Immunoblotting
Proteins of cells and tissues were extracted with the lysis 
buffer (the composition: 0.1% sodium dodecyl sulfate 
(SDS), 50  mM Tris–HCl (pH 8.0), 150  mM NaCl, 0.5% 
sodium deoxycholate, and 1% NP-40) and protein levels 

were determined by a Bradford protein Assay Reagent 
Kit (Bio-Rad, Hercules, CA, USA). The equal amounts 
of each protein samples were loaded in the 8% SDS pol-
yacrylamide gel electrophoresis (SDS-PAGE). Immun-
Blot® polyvinylidene difluoride membranes (Bio-Rad) 
were used to transfer proteins from SDS-PAGE. After 
blocking with specific blocking buffer (Goal Bio, Taipei, 
Taiwan) for 2 min at room temperature, membranes were 
probed with primary HER2 antibody (1:2000) (Sigma-
Aldrich) at 4  °C overnight. After washing membranes 
under standard washing procedure, membranes were 
probed with secondary antibody (dilution rate: 1:3000) 
(Sigma-Aldrich) at 4  °C for 1  h. The immunoreactive 
complexes were reacted with enhance chemilumines-
cence (Clarity™, Bio-Rad) and detected by using a LAS-
4000 mini luminescent image analyzer (GE Healthcare; 
Uppsala, Sweden). Band densitometry was quantified by 
Multi Gauge v3.2 software (GE Healthcare).

Histology and immunohistochemistry
Ten micrometer thick of GC tissues’ cryosections using 
a HM525 cryostat (Thermo Fisher Scientific) were 
mounted on gelatin-coated microscope slides and stained 
with hematoxylin and eosin for histological analysis. 
Cancerous lesions were performed by the methylene 
blue staining. The immunohistochemical analysis was 
performed on GC sections for HER2 and mki-67 stain-
ing with anti-human HER2 (1:200, Sigma-Aldrich) and 
anti-human mki-67 (1:200, Sigma-Aldrich) antibod-
ies. The immunoperoxidase secondary detection system 
(Merck Millipore; Billerica, MA, USA) was applied to 
signal detection according to manufacturer’s protocols. 
Histology images were obtained with the Olympus DP70 
microscope (Olympus, Tokyo, Japan) combined manu-
facturer’s digital imaging software (Olympus).

Cell viability assay
Cell counting kit-8 (CCK-8, Sigma-Aldrich) was used to 
determine the cellular viability. Briefly, cells were cul-
tured in 96-well plates at an optimized density under 
standard culture condition (37 °C, 5% CO2) for 16 h, and 
were then treated with AHNP-PEG and FITC-AHNP-
PEG (0–100 μg/ml) for 24 and 48 h. Each well was added 
10  μl of CCK-8 solution and incubated 1.5  h, and was 
measured the absorbance at 450  nm using a Bio-Rad 
microplate reader (Bio-Rad; Hercules, CA, USA).

Flow cytometry analysis
MKN45 and NCI-N87 cells were cultured at an opti-
mized density overnight, and then treated with 20  μg/
ml FITC-AHNP-PEG for 2  h, while cells of competitive 
group were pre-treated with 20  μg/ml AHNP-PEG for 
1 h. All cells were washed with PBS and collected for flow 
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cytometric analysis using a BD Bioscience FACSCalibur 
Flow Cytometer (BD Bioscience, San Diego, CA, USA).

Immunofluorescence staining
The AHNP-PEG binding assay of MKN45 and NCI-N87 
was determined by immunofluorescence staining. Briefly, 
both cells were cultured on Merck Millipore Millicell EZ 
slide under standard cultured condition (37 °C, 5% CO2) 
overnight. After washing and fixing, fixed-cells were 
blocked with ThermoFisher Scientific SuperBlock Block-
ing Buffers for 30  min at room temperature and were 
then probed with FITC-AHNP-PEG (20  μg/ml) for 2  h 
at room temperature. The non-FITC AHNP-PEG (20 μg/
ml) was as a competitor for competitive inhibition assay. 
The slides were counterstained with 0.2 μg/ml 4′,6-diami-
dino-2-phenylindole (Merck Millipore; Billerica, MA, 
USA) for 10 min at room temperature. The immunoflu-
orescence-digital images were captured using a BX53 
Olympus fluorescence microscope (Olympus) equipped 
with a charge-coupled device camera.

AHNP‑PEG and HER2 interaction assay
MKN45 and NCI-N87 cells (1 × 106 cells) were treated 
with 20 μg/mL FITC-AHNP-PEG with or without 20 μg/
ml non-FITC AHNP-PEG at 4 °C for 4 h, and then were 
lysed using an immunoblotting lysis buffer with protease 
inhibitors cocktail (Hycell International, Taipei, Taiwan). 
After centrifugation (14,000  rpm, 10  min, 4  °C), the 
supernatant was probed with or without 2  μg/ml bioti-
nylated-HER2 antibody (Novus Biologicals, Littleton, 
CO, USA)-presented streptavidin agarose beads (Sigma-
Aldrich) at 4 °C overnight. The fluorescence of immuno-
precipitates was detected by a Wallac 1420 VICTOR2™ 
Fluorescent ELISA reader (Perkin Elmer, Waltham, MA, 
USA).

The HER2 fluorescence imaging and distribution in GC 
xenograft mouse model
Tumor formation was established by subcutaneously 
inoculating MKN45 and NCI-N87 cells (2 × 106) into the 
flank of nude mice (n = 3 per each group) for 2  weeks. 
For HER2 imaging assay in  vivo, the AHNP-PEG was 
fluorescently labeled by Cy5.5 and intravenously injected 
into tail vein of MKN45 and NCI-N87-xenografted mice, 
respectively. After injection for 6  h, an in  vivo fluores-
cent imaging system (PerkinElmer) was used to capture 
images of the whole animal body, and all xenograft mice 
were then sacrificed and harvested the following organs 
for distribution fluorescent imaging detection: tumor, 
lung, spleen, stomach, brain, heart, liver, kidney, colon, 
and muscle.

DTPA labeled‑AHNP‑PEG synthesis and measurement
For preparation of DTPA conjugated-AHNP-PEG 
(DTPA-AHNP-PEG), AHNP-PEG and p-SCN-Bn-
DTPA (w/w 1:50) was soaked in sodium carbonate 
buffer at 25 °C for 8 h. The conjugated-compounds were 
then purified by Amicon ultra centrifuge filters (3  kDa) 
(Merck Millipore). For molecular weight measurement, 
AHNP-PEG and DTPA-AHNP-PEG were detected with 
the matrix-assisted laser desorption/ionization time-
of-flight mass spectrometry (MALDI-TOF MS; Bruker 
Daltonics, Billerica, MA, USA). The spectra were pro-
cessed using FlexAnalysis™ 3.0 software (Bruker Dalton-
ics). The DTPA-AHNP-PEG conjugation efficiency with 
indium-111 (111In-DTPA-AHNP-PEG) was evaluated 
by instant thin layer chromatography (ITLC) (AR-2000 
radio-TLC Imaging Scanner; Bioscan, Washington, DC, 
USA).

The stability assay of DTPA‑AHNP‑PEG 
and 111In‑DTPA‑AHNP‑PEG in vitro
For DTPA-AHNP-PEG stability assay, the freeze-dried 
DTPA-AHNP-PEG was deliquesced in aqueous solvent 
under different conditions (pH: 6.0, 7.4, and 8.0; 37  °C), 
and the variance of DTPA-AHNP-PEG levels for up to 
6 days was then evaluated. Samples were harvested from 
the stock solution and analyzed by using a high perfor-
mance liquid chromatography. For 111In-DTPA-AHNP-
PEG stability assay, the 111In-labeled compounds were 
incubated in human, fetal bovine, and mouse serum for 
144  h. The radiolabeling yields of 111In-DTPA-AHNP-
PEG were determined by ITLC every 24 h.

In vivo HER2 nuclear imaging
After subcutaneouly inoculating NCI-N87 cells (2 × 106 
cells) into male BALB/c nude mice for 2 weeks, mice were 
received 111In-DTPA, 111In-DTPA-AHNP, 111In-DTPA-
PEG, and 111In-DTPA-AHNP-PEG via intravenous injec-
tion with 1  mCi of indium-111. Nano Single-photon 
emission computed tomography/computed tomography 
(NanoSPECT/CT; Mediso Medical Imaging Systems; 
Budapest, Hungary) was applied to detecting HER2 dis-
tribution at 1, 4, 24, and 48 h.

Ex vivo bio‑distribution study
For tissue bio-distribution assay, NCI-N87 cells were 
injected into the right hind limb via the subcutaneous 
manner. Mice were intravenously received 111In-DTPA, 
111In-DTPA-AHNP, 111In-DTPA-PEG, and 111In-DTPA-
AHNP-PEG [0.55–0.67  MBq (15–18  μCi)] after inocu-
lation for 2  weeks. Mice were then sacrificed and the 
dissected organs were weighted at 1, 4, 24, and 48 h post-
injection. The radioactivity of samples was determined 
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by 1470 WIZARD gamma counter (PerkinElmer). Data 
points were corrected for radioactive decay. The per-
centage of injected dose per gram of tissue (%ID/g) was 
calculated.

Statistical analysis
Data are presented as mean ± standard deviation, and 
the significant differences between experimental groups 
(p value < 0.05) were considered by the following statisti-
cal analysis via GraphPad Prism V5.01 software (Graph-
Pad Software, San Diego, CA, USA). The relationship 
between GC patients and normal subjects were evalu-
ated by using the Chi squared test and Fisher’s exact test. 
Groups more than two were determined by one-way 
analysis of variance (ANOVA) followed by post hoc anal-
ysis with Bonferroni’s test.

Results
The overexpressed HER2 levels in serum and tumor tissues 
of GC patients
The sHER2 levels in patients with GC were signifi-
cantly higher than the normal subjects. And the sHER2 
levels at the stage 3–4 of GC patients were also signifi-
cantly higher than that in patients with stage 1–2 of GC 
(Fig. 1a). The clinical characteristics of both GC patients 
and normal subjects were shown in Table  1. Moreo-
ver, the correlation between sHER2 and tumor HER2 
in the individual GC patients was analyzed. The low-
level sHER2 was defined as lower than the mean in the 
stage 1–2 of GC patients. On the contrary, the high-level 
sHER2 was defined as higher than the mean in the stage 
3–4 of GC patients. The results of immunoblot analysis in 
tumors showed that the tumor HER2 protein expressions 

Fig. 1  HER2 levels in sera and tumors of GC patients. a The changes of serum HER2 (sHER2) levels in healthy subject (n = 32) and GC patients with 
stage 1–2 (n = 15) and stage 3–4 (n = 21) detected using an ELISA assay. *P < 0.05, **P < 0.01. b The HER2 protein expression in gastric tumor tissues 
responding the sHER2 levels. The tissues were selected from three high- and three low-level sHER2 of GC patients. c The HER2 protein expression in 
gastric tumors (T) and non-tumor tissues (NT) from the individual GC patients with high sHER2 levels. In b, c the protein expression was determined 
by Western blotting and quantified by densitometry and normalized by GAPDH levels. Data are presented as mean ± SEM (n = 3). *P < 0.05, versus 
low sHER2 levels of GC patients (b); *P < 0.05, versus non-tumor (c). d The sHER2 levels were correlated with the HER2 protein expressions in tumor 
tissues of GC patients. P < 0.01, tumor HER2 versus sHER2
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were higher in high-level sHER2 patients than in low-
level sHER2 patients (Fig. 1b). In the individual patients 
with high-level sHER2, the higher HER2 protein expres-
sions were observed in tumor tissues than in non-tumor 
tissues (Fig. 1c). As shown in Fig. 1d, the positively cor-
relation between sHER2 levels and tumor HER2 levels 
(P < 0.05, r2 = 0.5601, Fig.  1d) was also observed. These 
results indicate that the sHER2 levels are capable of 
reflecting the tumor HER2 levels, which may be as a ref-
erence during cancer therapy.

Histological and immunohistochemical analysis of tumor 
and non‑tumor tissues of GC patients
The morphological changes of tumor and non-tumor tis-
sues of GC patients were observed by using hematoxylin 
and eosin stain. The strong staining of nuclei of epithe-
lial cells was exhibited in the mucosa and stroma of GC 
tumor compared to non-tumor tissue (Fig.  2a–c). To 
confirm the cancerous tissue, the methylene blue stain-
ing was performed. As shown in Fig. 2d–f, the degree of 
deterioration in GC tumor at stage 3–4 was significantly 
stronger than in GC tumor at stage 1–2 and non-can-
cerous tissue. To investigate the distribution of HER2 in 
clinical specimens, the immunohistochemical assay was 
performed. As shown in Fig. 2g–i, HER2-positive stain-
ing was obviously presented in the cancerous gastric 
mucosa. No staining was observed for HER2 in human 

non-cancerous gastric mucosa. Moreover, the expression 
of mki-67, a proliferation marker, in GC tumor at stage 
3–4 was higher than in GC tumor at stage 1–2 (Fig. 2j–l).

Effects of AHNP‑PEG on cell viability and HER2 binding 
in HER2‑overexpressed GC cells
We next investigated whether PEG-conjugated AHNP 
(AHNP-PEG) has the therapeutic potential on GC cells 
with high-level HER2 expression (NCI-N87 cells) or low-
level HER2 expression (MKN45 and HPSEC cells). The 
protein expressions of HER2 in GC cells were shown in 
Fig.  3a. Moreover, AHNP-PEG significantly decreased 
the cell viability in NCI-N87 cells, but little or no effects 
on cell viability of MKN45 and HSPEC cells (Fig.  3b). 
FITC-AHNP-PEG had similar effect with AHNP-PEG on 
cell viability (Fig. 3c). There was no significant difference 
between AHNP-PEG and FITC-AHNP-PEG groups.

In order to confirm the HER2 binding ability of AHNP-
PEG, a flow cytometric analysis was performed in 
NCI-N87 and MKN45 cells. The fluorescence of FITC-
AHNP-PEG was markedly and significantly presented 
in NCI-N87 cells, but not in MKN45 cells, compared to 
FITC-PEG treatment (Fig.  4a). Pretreatment with non-
FITC AHNP-PEG significantly decreased the binding 
efficiency of FITC-AHNP-PEG in NCI-N87 cells (Fig. 4a). 
We further confirmed the binding ability of FITC-
AHNP-PEG to HER2 in GC cells by using immunofluo-
rescence. As shown in Fig. 4b, the fluorescence imaging 
was prominently increased in NCI-N87 cells, but not in 
MKN45 cells. The fluorescence imaging was significantly 
inhibited by pretreatment with non-FITC AHNP-PEG 
in NCI-N87 cells. To confirm that AHNP-PEG binds to 
the HER2 on the surface of GC cells, the immunopre-
cipitation assay was performed with HER2 antibody. As 
shown in Fig. 4c, FITC-AHNP-PEG could bind to HER2 
in NCI-N87 cells, but not in MKN45 cells. The increased 
FITC-AHNP-PEG binding could be reversed by pretreat-
ment with non-FITC AHNP-PEG. Moreover, we also 
observed that AHNP-PEG did not affect the total pro-
tein expression of HER2, but significantly decreased the 
phosphorylation of HER2 in NCI-N87 cells (Fig.  4d). 
Moreover, the structural and shape characteristics of the 
DTPA-AHNP-PEG were tried to observe by Scanning 
electron microscope (Fig. 4e) and Transmission electron 
microscope (Fig. 4f ). Because of the small molecular size 
(~ 7  kDa), the substances produced image might not be 
obtained for structure and shape analysis.

HER2 imaging in the tumors and organs of GC 
cells‑induced xenografts in mice
To assess whether AHNP-PEG can be used as a diag-
nostic probe for GC detection, the GC xenograft mod-
els were established. The fluorescent signaling was 

Table 1  Clinical characteristics of  normal volunteers 
and GC patients

Characteristics GC patients 
(N = 36)

Normal subjects 
(N = 32)

P value

N % N %

Age (years)

 ≤  50 14 38.89 18 26.25 0.224

 >  50 22 61.11 14 43.75

Gender

 Male 20 55.56 19 59.37 0.809

 Female 16 44.44 13 10.63

Differentiation

 1–2 19 52.78

 3–4 17 47.22

TMN stage

 1–2 15 41.67

 3–4 21 58.33

Tumor size (cm)

  ≤ 5 17 47.22

  > 5 19 52.78

Metastasis

 Yes 20 55.56

 No 16 44.44
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significantly increased in the flank of NCI-N87 xeno-
graft mice; but no fluorescent signaling was detected in 
MKN45 xenograft mice (Fig. 5a). We further observed 
the bio-distribution of HER2 in several organs in NCI-
N87 and MKN45 xenograft mice. As shown in Fig. 5b, 
the fluorescent signaling for HER2 was significantly 
accumulated in tumor tissue compared to other organs 
in NCI-N87 xenograft mice. In addition, the HER2 pro-
teins were overexpressed in tumor tissue compared 
to other organs in NCI-N87 xenograft mice (Fig.  5c), 
which was consistent with the results of HER2 bio-
distribution imaging. The expression of HER2 in tumor 
tissue of NCI-N87 xenograft mice was higher than in 
tumor tissue of MKN45 xenograft mice (Fig. 5d).

The 111In‑DTPA‑AHNP‑PEG synthesis and stability assay
The above results suggest that AHNP-PEG may be used 
as a reliable probe for HER2 detection in HER2-overex-
pressed GC cells. DTPA has been extensively used as a 
metal chelator for isotope labeling in the development 
of radiopharmaceuticals. Therefore, the DTPA-con-
jugated AHNP-PEG (DTPA-AHNP-PEG) compound 
was synthesized for indium-111 labeling. The con-
struct of the AHNP-based nuclear imaging agent is 
illustrated in Fig.  6a. During synthesis process, the 
DTPA-AHNP-PEG compound was analyzed using mass 
spectrom-etry to confirm the molecular weight of con-
jugation. As shown in Fig. 6b, DTPA were successfully 
conjugated with AHNP-PEG. The labeling efficacy of 

Fig. 2  Histological and immunohistochemical analysis for HER2 expression in human GC. a–c Gastric tumor and non-tumor sections were stained 
with hematoxylin and eosin (HE). d–f Histopathological conformation of non-tumor and cancerous tumor tissues of gastric specimen were stained 
with methylene blue (MB). g–l Representative IHC staining images of GC sections for HER2 and mki-67 expressions. The nuclei of GC cells were 
clearly stained. HER2 (g–i) and mki-67 (j–l) were obviously expressed in stage 1–2 and stage 3–4 gastric tumor tissues, but weakly expressed in 
adjacent non-cancerous tissues. Magnification: ×400, scale bar: 50 μm
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Fig. 3  AHNP-PEG decreased cell viability in HER2-overexpressed GC cells. a The protein expressions of HER2 in GC cells (NCI-N87 and MKN45) 
and human primary stomach epithelium cells (HPSEC) were shown. Protein expressions were determined by Western blotting and quantified 
by densitometry and normalized by GAPDH levels. The data are presented as mean ± SEM (n ≥ 3). *P < 0.05, versus MKN45 cells. b The effect of 
AHNP-PEG on cell viability. The NCI-N87, MKN45 and HPSEC cells were treated with AHNP-PEG (0–100 μg/ml) for 24 and 48 h. Data are presented as 
mean ± SEM (n = 5). *P < 0.05, versus control; NS non-significant. c The effect on cell viability between AHNP-PEG and FITC-AHNP-PEG. The NCI-N87, 
MKN45, and HPSEC cells were treated with AHNP-PEG and FITC-AHNP-PEG (0–100 μg/ml) for 24 h. Data were presented as mean ± SEM (n = 5). 
*P < 0.05, versus control; NS non-significant
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Fig. 4  AHNP-PEG targeted to HER2 and reduced HER2 phosphorylation in GC cells. a AHNP-PEG binding assay was determined by flow cytometry 
in GC cells. MKN45 and NCI-N87 cells were treated with FITC-AHNP-PEG (20 μg/ml) for 2 h. In competitive group, NCI-N87 cells were pre-treated 
with AHNP-PEG (non-FITC; 20 μg/ml) for 1 h and then treated with 20 μg/ml FITC-AHNP-PEG for 2 h. Data are presented as mean ± SEM (n ≥ 3). 
*P < 0.05, versus FITC-PEG. #P < 0.05, versus FITC-AHNP-PEG. b AHNP-PEG binding assay was observed by using fluorescent microscopy in GC 
cells. NCI-N87 and MKN45 cells were treated with FITC-AHNP-PEG (20 μg/ml) for 2 h. The nuclei were stained with 4′,6-diamino-2-phenylindole. 
Magnification: ×400, scale bar: 50 μm. c AHNP-PEG and HER2 interaction assay. NCI-N87 and MKN45 cells were treated with FITC-AHNP-PEG (20 μg/
ml) for 4 h at 4 °C. The supernatant of lysates was incubated with or without biotinylated-HER2 polyclonal antibody (2 μg/ml) in the presence of 
streptavidin agarose beads at 4 °C overnight. The fluorescent signaling of immunoprecipitates was detected by using ELISA reader. The AHNP-PEG 
(non-FITC; 20 μg/ml) was pretreated for competitive inhibition assay. Data are presented as mean ± SEM (n ≥ 3). *P < 0.05, versus FITC-PEG. #P < 0.05, 
versus FITC-AHNP-PEG. d The protein expressions of total and phosphorylated HER2 in AHNP-PEG-treated GC cells. NCI-N87 cells were treated with 
AHNP-PEG (10 and 20 μg/ml) for 24 h. Protein expressions were determined by Western blotting and quantified by densitometry and normalized 
by GAPDH levels. The data are presented as mean ± SEM (n ≥ 3). *P < 0.05, versus control group (Ctrl). e, f The structural and shape characteristics 
of the DTPA-AHNP-PEG by Scanning electron microscope (e; magnification: ×300 K, scale: 100 nm) and Transmission electron microscopy (f; 
magnification: ×100 K, scale: 100 nm)
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indium-111 onto the DTPA-AHNP-PEG was confirmed 
by instant thin layer chromatography and radioactivity 
detection, which indium-111 and indium-111-labeled 
DTPA-AHNP-PEG (111In-DTPA-AHNP-PEG) could be 
separated. As shown in Fig. 6c, the labeling efficacy of 
111In-DTPA-AHNP-PEF was more than 99%. The levels 
of DTPA-AHNP-PEG were preserved more than 98% 
for 6  days in various pH conditions (pH 6.0, 7.4, and 
8.0) (Fig.  6d). Moreover, the stability of 111In-DTPA-
AHNP-PEG in serum of human, fetal bovine, and 
mouse was measured in a 144-h period. As shown in 
Fig.  6e, the radioactivity of 111In-DTPA-AHNP-PEG 
in these three species serum was preserved more than 
97% for 6 days.

111In‑DTPA‑AHNP‑PEG as a nuclear imaging agent 
for HER2‑overexpressed GC tumor detection 
in vivo
In order to evaluate the efficiency of 111In-DTPA-AHNP-
PEG in vivo, the HER2-expressed imaging in GC tumor 
was detected in NCI-N87-induced xenografts mice. After 
1, 4, 24, and 48  h injection with 111In-DTPA-AHNP-
PEG, the radionuclide signals in tumors were remarkable 
increased in treated group compared to control groups 
(11In-DTPA, 111In-DTPA-AHNP, and 111In-DTPA-PEG) 
(Fig.  7a, b). The blocking study of 111In-DTPA-AHNP-
PEG in NIC-N87 tumor xenograft mice was also tested 
and showed in Fig.  7c, d. We further investigated the 
bio-distributions of 111In-DTPA-AHNP-PEG in several 

Fig. 5  HER2 imaging in tumors and organs of NCI-N87- and MKN45-induced xenograft mice. a The HER2 imaging detection in NCI-N87 and MKN45 
xenograft model. Both NCI-N87 and MKN45 cells (2 × 106) were subcutaneously inoculated into the right flank of nude mice for establishing a HER2 
high- and low-expressed xenograft model, respectively. The Cy5.5-conjugated AHNP-PEG was intravenous injected into mice for 6 h and detected 
by using IVIS. b The distribution of HER2 imaging in tumors and various organs (brain, heart, lung, liver, spleen, kidney, stomach, colon, and muscle) 
of NCI-N87 xenograft mice. The Top panel showed the HER2 imaging in various organs. Button panel showed the quantitation of fluorescent signals. 
c The protein expressions of HER2 in tumors and various organs of NCI-N87 xenograft mice. Protein expressions were determined by Western 
blotting. All data are presented as mean ± SEM (n = 3). d The HER2 expressions in tumors of NCI-N87- and MKN45-induced xenograft mice. Protein 
expressions were determined by Western blotting and quantified by densitometry and normalized by GAPDH levels. All data are presented as 
mean ± SEM (n = 3). *P < 0.05, versus MKN45-induced xenograft mice
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Fig. 6  The 111In-DTPA-AHNP-PEG preparation and stability assay. a The flowchart of 111In-DTPA-AHNP-PEG synthesis was illustrated, where 
AHNP-PEG was conjugated with DTPA for indium-111 labeling. b The molecular weight assay for PEG, AHNP-PEG, and DTPA-AHNP-PEG. 
The molecular weights of PEG, AHNP-PEG and DTPA-AHNP-PEG were detected by using mass spectrometry. c The labeling efficiency of 
111In-DTPA-AHNP-PEG. The DTPA-AHNP-PEG was labeled with indium-111 in PBS for 1 h. ITLC was performed to analyze the radio-labeling efficiency. 
d The stability of 111In-DTPA-AHNP-PEG in various pH buffers. The DTPA-AHNP-PEG was incubated at different buffer conditions (pH 6.0, 7.4, and 8.0) 
for 6 days at 37 °C and detected by HPLC. The results indicated that the levels of DTPA-AHNP-PEG was preserved more than 98% for 6 days. Data 
are presented as mean ± SEM (n = 5). *P < 0.05, versus day 0. e The stability of 111In-DTPA-AHNP-PEG in human, fetal bovine and mouse serum. The 
radioactivity of 111In-DTPA-AHNP-PEG was estimated in human, fetal bovine, and mouse serum for 144 h at 37 °C. The radioactivity was determined 
by ITLC. Data are presented as mean ± SEM (n = 5)
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Fig. 7  The nuclear imaging agent of 111In-DTPA-AHNP-PEG for gastric tumor detection in vivo. a The gastric tumor nuclear imaging analysis in 
NCI-N87-induced xenograft model. The 111In-DTPA, 111In-DTPA-AHNP, 111In-DTPA-PEG, and 111In-DTPA-AHNP-PEG were intravenous injected into 
mice for 1, 4, 24, 48 h and observed by using nanoSPECT/CT. b The oval-shaped labeling displayed the tumor site of gastric tumor xenograft mice 
for imaging quantification. Data are presented as mean ± SEM (n ≥ 3). *P < 0.05, versus 111In-DTPA, 111In-DTPA-AHNP, or 111In-DTPA-PEG group. c The 
blocking study of 111In-DTPA-AHNP-PEG in NIC-N87 tumor xenograft mice. After tumor xenograft animals were intravenous injected AHNP-PEG 
(0, 10, 50 mg/kg) for 4 h, 111In-DTPA-AHNP-PEG (1 mCi/per mouse) was intravenous injected into all mice for 24 and 48 h and observed by using 
nanoSPECT/CT. d The oval-shaped labeling displayed the tumor site of gastric tumor xenograft mice for imaging quantification. Data are presented 
as mean ± SEM (n ≥ 3). *P < 0.05, versus 10 mg/kg AHNP-PEG group, #P < 0.05, versus 0 mg/kg AHNP-PEG group
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organs of NCI-N87-induced xenografts. As shown in 
Fig.  8a, the tumor tissue presented higher radionuclide 
signal than other organs. We also evaluated the ratios 

of tumor-to-muscle (T/M) and tumor-to-blood (T/B) in 
111In-DTPA, 111In-DTPA-AHNP, 111In-DTPA-PEG, and 
111In-DTPA-AHNP-PEG-injected NCI-N87-induced 

Fig. 8  a Tissue biodistribution of 111In-DTPA-AHNP-PEG in gastric tumor xenograft mice. After 111In-DTPA, 111In-DTPA-AHNP, 111In-DTPA-PEG, and 
111In-DTPA-AHNP-PEG intravenous injection for 1, 4, 24, and 48 h, NCI-N87-induced xenograft mice were sacrificed and acquired tumor, blood, 
brain, heart, lung, liver, kidney, spleen, muscle, stomach, and colon. The radioactivity was determined by a gamma counter. Values are expressed as 
the percentage of injected dose per gram organ (% ID/g). Data are presented as mean ± SEM (n ≥ 3). *P < 0.05, versus 111In-DTPA, 111In-DTPA-AHNP, 
or 111In-DTPA-PEG group. b Comparison of tumor-to-muscle (T/M) and tumor-to-blood (T/B) ratios among 111In-DTPA, 111In-DTPA-AHNP, 
111In-DTPA-PEG, and 111In-DTPA-AHNP-PEG injected mice after 1, 4, 24, and 48 h injection. Data are expressed as mean ± SEM (n ≥ 3). *P < 0.05, versus 
111In-DTPA, 111In-DTPA-AHNP, or 111In-DTPA-PEG group
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xenografts. The 111In-DTPA-AHNP-PEG-treated 
group showed higher ratio in T/M and T/B compared 
to 111In-DTPA-treated group (Fig.  8b), indicating that 
111In-DTPA-AHNP-PEG could target to HER2-expressed 
gastric tumor tissues and consequently improve the 
imaging efficacy.

Discussion
In this study, we have found that the levels of sHER2 in 
patients with GC are significantly higher than the normal 
subjects and are correlated with tumor tissue HER2 lev-
els. We also found that AHNP-PEG significantly inhib-
ited cell growth in GC cells with high-expression HER2. 
The AHNP-PEG directly and specifically bound to HER2 
on surface of HER2-overexpressed GC cells. In addition, 
we developed an agent as a nuclear imaging probe for 
HER2-overexpressed GC detection by using indium-111 
labeled AHNP-PEG-conjugated DTPA. We found that 
111In-DTPA-AHNP-PEG could successfully target to 
tumor site of HER2-overexpressed GC and captured 
tumor imaging in vivo.

Until now, chemotherapy is still the main treatment 
for GC patients with advanced stage [50, 51]. Many of 
patients are resistant to chemotherapy agents, including 
cisplatin [52, 53]. According to previous studies, HER2 
has been found to induce tumor resistance to the current 
chemotherapy regimens in gastric and breast cancers 
[54, 55]. The overexpressed-HER2-activated downstream 
signals, such as the PI3K/AKT/epithelial-mesenchymal 
transition (EMT) pathway, has been suggested to be as 
the basis of HER2-mediated drug resistance [54–58]. 
Trastuzumab can target to HER2 for breast cancer ther-
apy [59]. The patients with breast cancer received routine 
HER2 screening to decide whether carried out the pro-
cess of trastuzumab treatment. For patients with GC, the 
frequency of HER2 overexpression was detected with a 
mean of 17.9% [60–62]. Therefore, the HER2 screening 
may need to be included in routine testing for GC to help 
the physicians to determine the best therapeutic strategy. 
The current standard HER2 screening method in clinical 
practice is assessed by immunohistochemistry (IHC) or 
fluorescent in  situ hybridization (FISH) [63]. Although 
the characteristics of IHC are time-effective, low-cost 
and easy-to-perform for protein detection, it still has 
numerous limitations, including subjective interpreta-
tion of results, semi-quantitation, and variability depend-
ent on fixation procedure, stain protocol, and antibody 
selection, which may result in low reproducibility and 
accuracy. Moreover, FISH is considered a gold standard 
method with highly sensitive and specific characteristics 
in detecting HER2 expression of tumor samples. How-
ever, it is not only expensive and time-consuming, but 
also needs a well-trained technologist. At present, most 

of the samples can be obtained through endoscopic gas-
tric biopsy, but the unobvious cancerous tissue and low 
levels of HER2 expression in early stage of GC (stage 1–2) 
leads to a wrong diagnosis. In this study, we found that 
the sHER2 levels in GC patients was positively correlated 
with the tissue HER2 expression (r2 = 0.5601). Therefore, 
it may be used as a non-invasive blood screening method 
for a large-scale screening and reduce human error by 
the accurate analysis of instruments. In addition, we also 
developed a nuclear medicine molecular imaging agent 
for HER2 level detection. Therefore, both serum and 
nuclear medical image screening for HER2 may apply to 
detect the GC in early stage and monitor the progress of 
GC.

Nuclear medical imaging is a commonly used diag-
nostic tool in clinical. It has high sensitivity and can be 
immediately monitored for observing the changes at 
the lesion by physicians. It has been used for many dis-
ease diagnoses, including cardiovascular disease, bone, 
brain, and tumors. The usage of nuclear medical images 
is increasing yearly, which indicates the importance of 
this diagnostic tool and the potential for development. 
Nuclear medical imaging is characterized by the use 
of specific biomarkers as the subject at the lesion. The 
imaging reagent is designed as a target probe, which is 
conjugated with radioactive material for reaching the 
location of lesion via blood circulation. The radioac-
tive material can be detected by special instrument for 
observing the location and distribution of lesions. The 
prostate-specific membrane antigen (PSMA) overexpres-
sion has been demonstrated to be a correlation between 
PSMA level and severity in prostate cancer [64, 65]. It has 
been further shown that the stage and grade of prostate 
cancer can be predicted by PSMA-based nuclear medi-
cal imaging [66]. In this study, we found that the expres-
sion of HER2 in GC was positively correlated with the 
tumor deterioration. The development of HER2 diag-
nostic agent 111In-DTPA-AHNP-PEG would be useful 
to obtain the information of distribution and levels of 
HER2 in tumors for determining the statue of GC. Both 
positron emission tomography (PET) and single-photon 
emission computed tomography (SPECT) are the main 
nuclear imaging systems in clinical practice. They are 
usually combined with computed tomography (CT) to 
acquire sequential images from both devices in the same 
session. Even though PET has highly resolution and sen-
sitivity compared to SPECT, it still has numerous limi-
tations, including required high-cost cyclotrons, high 
diagnostic cost, low market share, and limited half-life of 
radiopharmaceuticals. In recent years, the resolution of 
SPECT has gradually increased, which is getting closer 
to the PET. Near-infrared (NIR) fluorescence imaging 
system has been utilized in clinical practice for providing 
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image-guided surgery, traumatic brain injury, and breast 
cancer detection [67–69], however, the limitations of tis-
sue penetration and extra-cerebral contamination let 
it unable to visualize the deep tissue regions [68, 70]. In 
general, it seems difficult to replace nuclear medicine 
imaging for cancer patients at present.

The high specificity binding of molecules, such as 
antibodies, anti-peptides, and pharmacological inhibi-
tors, could be a probe for targeting therapy and diag-
nosis. Trastuzumab is a specific HER2 antibody that is 
clinically used for HER2-overexpressing breast cancer 
therapy [71]. In addition, the high affinity HER2 bind-
ing antibody radio-labeled with zirconium-89  was also 
applied for diagnosing HER2-positive metastases in 
patients with HER2-negative primary breast cancer and 
advanced HER2-positive breast cancer [72, 73]. Even 
though antibody-based probe is the most frequently used 
for obtaining cancer imaging, the macro-molecule is no 
longer widely available for current in vivo imaging devel-
opments due to the size limitation and immunogenicity 
[74]. Although the modified antibody derivatives, such 
as mini-antibody, diabody, and scFv, improve the tumor 
tissue and blood vessel penetrability, the time to tumor 
localization, and the blood circulation clearance, but 
the protein engineering processes lead to the compli-
cated manufacturing processes requirement [74]. In con-
trast, peptide agents are small molecules that have less 
immunogenicity, faster rates for tumor localization than 
antibodies, easy to synthesis, and contrast conjugation 
process. In this study, we have found that the AHNP pep-
tides have the ability to bind to the target protein. AHNP 
is a small molecule of peptide-based imaging agent that 
could improve the physical property limitation of tras-
tuzumab for clinical applications. In addition, the PEG-
conjugated AHNP peptide solved the shortcomings of 
rapid excretion of imaging agent in  vivo and enhanced 
the accumulation in tumor.

Nanoparticles are known to accumulate in the 
tumor site through enhanced permeability and reten-
tion  effect. PEG-covered liposomal doxorubicin has 
been shown to increase tumor toxic effects on HER2 
over-expression breast cancer in  vitro and in  vivo 
[75]. In addition to increasing the accumulation of 
tumor sites, the nanoscale drug carrier also accu-
mulated in liver, spleen, and heart that may result in 
side effects. The quite large volume of liposome easily 
leads to phagocytosis by macrophage and accumula-
tion in the reticuloendothelial system. Moreover, in 
order to increase the specificity of tumor binding for 
tumor therapy and diagnosis, the nanoparticles-con-
jugated tumor specific target probes have been con-
sidered. AHNP-conjugated iron oxide nanoparticles 

significantly increased the accumulation in tumor area 
after intravenous injection for 48  h in breast cancer 
xenograft mouse model [76]; however, the in vivo fluo-
rescent imaging analysis  has indicated that drugs still 
accumulate in other organs for up to 96  h. Yang et  al. 
recently developed a dual-targeting hybrid nanopar-
ticles system for GC detection [77]. The nanoparticles 
was made of biodegradable polymer and coated with 
a lipoid shell prepared by conjugating the AHNP pep-
tides and n-hexadecylamine to the carboxyl groups 
of hyaluronic acid. In the study of Yang et  al. the bio-
distribution assay showed that the nanoparticles sig-
nificantly accumulated not only in tumor area but in 
other organs, such as liver, lung, spleen, and heart. The 
long-term blood circulated nanoparticles may result in 
side effects during tumor therapy. In the present study, 
we found that the PEG-conjugated AHNP significantly 
accumulated in tumor site, but reduced the accumula-
tion in other organs.

The previous studies reported that HER2 triggered 
the activation of downstream molecular pathway and 
caused cancer cell proliferation and invasion in HER2-
positive cancers [78, 79]. Faltus et  al. observed that 
the proliferation of HER2-overexpressed breast cancer 
cells could be inhibited by using siRNA to downregu-
late HER2 gene expression [80]. It has been found that 
the application of antibody-engineered multifunctional 
nanoparticles downregulates the protein expression 
of HRE2 on the cell surface of breast cancer cells [81]. 
Li et  al. recently indicated that the biparatopic HER2-
targeting antibody could significantly promote HER2 
receptor clustering, internalization, and lysosomal 
degradation [82]. In addition to antibodies, AHNP has 
also been found to induce rapid HER2 receptor inter-
nalization and reduce HER2 expression in HER2-trans-
fected mouse fibroblasts cells (NIH-HER2+) [83]. They 
showed that the dimeric peptide ligand AHNPbivalent 
significantly induced about 18% reduction in sur-
face HER2 density and enhanced cytotoxicity in NIH-
HER2+ cells. However, the monomeric peptide ligand 
AHNPmonovalent did not cause HER2 internalization. It 
has been considered that the helical segments struc-
ture and receptor dimers stabilization are two possible 
mechanisms for peptide-induced receptor internaliza-
tion. Interestingly, the current study observed that the 
HER2 receptor expression did not change, but phos-
phorylation of HER2 was significantly decreased after 
24 h ANHP-PEG treatment in GC cells. Therefore, our 
results suggest that the AHNP-HER2 complex may 
decrease phosphorylation and interrupt the HER2 
downstream signals to inhibit cell viability in GC cells. 
The AHNP-PEG might be designed as a theranostic 
agent for tumor diagnosis and therapy in the future.
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Conclusion
In this study, we demonstrated that the sHER2 levels 
are positively correlated with tissue HER2 expression 
in GC patients, suggesting that sHER2 may be a useful 
tool for detecting tissue HER2 expressions. AHNP-PEG 
specifically bound to HER2-overexpressed GC cells and 
inhibited cell proliferation in vitro. We successfully syn-
thesized DTPA-AHNP-PEG with high stability and spe-
cific HRE2 targeting in vivo. It can be radiolabeled with 
In-111 for measuring and analyzing HER2 imaging by 
using nanoSPECT/CT in GC xenograft mice with HER2 
overexpression. Therefore, 111In-DTPA-AHNP-PEG 
may be a potential nuclear imaging agent for diagnosis 
of HER2-overexpressed GC. The HER2 bound AHNP-
based nuclear imaging may provide to monitor patients 
with a history of GC after surgery or drug treatment.
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