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Adipose tissue represents a hot topic in regenerative medicine because of the tissue source abundance, the relatively easy retrieval,
and the inherent biological properties of mesenchymal stem cells residing in its stroma. Adipose-derived mesenchymal stem
cells (ASCs) are indeed multipotent somatic stem cells exhibiting growth kinetics and plasticity, proved to induce efficient tissue
regeneration in several biomedical applications. A defined consensus for their isolation, classification, and characterization has
been very recently achieved. In particular, bone tissue reconstruction and regeneration based on ASCs has emerged as a promising
approach to restore structure and function of bone compromised by injury or disease. ASCs have been used in combination with
osteoinductive biomaterial and/or osteogenic molecules, in either static or dynamic culture systems, to improve bone regeneration
in several animal models. To date, few clinical trials on ASC-based bone reconstruction have been concluded and proved effective.
The aim of this review is to dissect the state of the art on ASC use in bone regenerative applications in the attempt to provide a

comprehensive coverage of the topics, from the basic laboratory to recent clinical applications.

1. Introduction

Multipotent mesenchymal stem cells (MSCs) are non-
hematopoietic cells of mesodermal derivation residing in
several postnatal organs and connective tissues. They were
first described in the early 1960s, as an adherent, fibroblastoid
cell population with inherent osteogenic properties [1]. Since
then, an overwhelming number of studies have demonstrated
that MSCs are endowed with a higher plasticity, being able
to differentiate into cells of mesenchymal lineages, such as
adipogenic, osteogenic, and chondrogenic [2]. MSCs are also
capable of transdifferentiation towards epithelial cells, such
as alveolar epithelial cells [3], hepatocytes [4-7], epithelial
cells from the gastrointestinal tract [8, 9], and kidney cells
[10]. The question of possible neural transdifferentiation of
MSC:s is still debated and controversial [11-13]. Nonetheless,
converging evidence has indicated the capability of MSCs to
pursue a functionally and morphologically actual glial fate
[14-17]. The common origin of both mesenchymal cells and

neural cells from the neural crest, in the vertebrate embryo,
may in part explain the high degree of plasticity of MSCs
[18].

Bone Marrow (BM) was originally considered the ref-
erence source for MSCs isolation; to date they have been
isolated from a multitude of adult tissues, including muscle,
adipose tissue, connective tissue, trabecular bone, synovial
fluid [19], and perinatal tissues, such as umbilical cord, amni-
otic fluid, and placenta [20-24]. In particular, the ubiquity,
the ease of retrieval and the minimally invasive procedure
required for harvesting the adipose tissue (AT), make it an
ideal source for high yield MSCs isolation. Moreover, adipose
tissue-derived MSCs (ASCs) can be maintained longer in
culture and possess a higher proliferation capacity compared
to BM-derived MSCs. Indeed ASCs and BM-MSCs exhibit
virtually identical transcription profiles for genes related to
the stem cell phenotype, supporting the concept of a common
origin of the mesenchymal lineage from a wide variety of
tissues [2, 25].
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2. Fat as a Source of ASCs

Adipose tissue is a highly complex tissue comprising
mature adipocytes (>90%) and a stromal vascular fraction
(SVF), which includes preadipocytes, fibroblasts, vascu-
lar smooth muscle cells, endothelial cells, resident mono-
cytes/macrophages, lymphocytes, and ASCs [26-28]. The
density of the AT stem cell reservoir varies as a function of
location, type, and species. Within the white fat, a highest
number of ASCs reside in subcutaneous depots compared
to visceral fat, with the highest concentrations occurring
in the arm region and the greatest plasticity described in
cells isolated from inguinal AT [29]. Studies in the canine
model showed that the proliferative capacity of ASCs appears
to inversely correlate with donor age, while stemness, self-
renewal, and multipotency are progressively lost with culture
passages [30, 31]. Moreover, significant differences in molec-
ular profiles and immunophenotype have been described
in subcutaneous and visceral fat-derived ASCs [31, 32]. The
significant sexual dimorphism of adipose tissue distribution
and function reflect gender- and hormone-related differences
in cellular composition and molecular profiles, which should
be taken in due account [33, 34]. Finally, ASCs have been
described also in brown fat depots and are able to easily
undergo skeletal myogenic differentiation [35, 36].

3. Isolation and Ex Vivo Expansion of ASCs

Human ASCs can be isolated from adipose tissue collected
tissue through liposuction or during reconstructive surgery
through resection of tissue fragments. Current methods used
for isolating ASCs rely on collagenase digestion followed by
centrifuge separation of the SVFs from primary adipocytes.
ASCs are selected in vitro based on their plastic adherence
properties and display typical spindle-shaped fibroblastoid
morphology. They can be extensively subcultivated in mono-
layer culture on standard tissue culture plastics with a basal
medium containing 10% of fetal bovine serum [2, 4, 37].

Once a primary culture is established, ASCs are easily
and rapidly expanded ex vivo [2, 38]. The average frequency
of ASCs in processed lipoaspirate is 2% of nucleated cells
and the yield of ASCs is approximately 5,000 fibroblast
colony-forming units (CFU-F) per gram of adipose tissue,
compared with estimates of approximately 100-1,000 CFU-
F per milliliter of bone marrow [39], making AT an excellent
candidate source for regenerative therapy.

4. Characterization of ASCs

Although a minimal set of cell surface markers to be analyzed
for MSCs identification has been defined in 2006 [40],
the correct immunophenotype characterization of ASCs has
been debated for a long time. Due to the inherent SVF hetero-
geneity, a multiparameter flow cytometric analytic and sort-
ing strategy have been developed. Based on the hematopoietic
marker CD45, the endothelial marker CD3], the perivascular
marker CD146, and the stem-stromal markers CD34, CD90,
CD105, and CD117 (c-kit), four distinct populations have
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been defined in the SVF fraction in uncultured condi-
tions: putative ASCs (CD31-, CD34+/—, CD45-, CD90+,
CD105-, CD117- and CD146-), endothelial-progenitor cells
(CD31+, CD34+, CD45-, CD90+, CD105—, CD117+ and
CD146+), vascular smooth muscle cells or pericytes (CD31-,
CD34+/-, CD45-, CD90+, CD105-, CD117+ and CD146+),
and hematopoietic cells (CD45+) [41, 42]. Studies on whole
AT have revealed that the stem/progenitor components,
organized around small vessels in an annular fashion, are
dominated by a prevalent supra-adventitial layer of CD34+
cells displaying MSCs-like multipotentiality [41-43]. These
supra-adventitial adipose stromal cells (SA-ASC) surround
arterioles and venules, which are colonized on their sur-
faces by CD146+ perivascular cells or pericytes [42, 44]. A
component of proliferative CD34+ and CD31+ endothelial
progenitor cells is associated with the luminal layer [45].

Compared to extensively cultivated ASCs, freshly isolated
SVF cells and early passage ASCs express higher levels of
CD117 (c-kit), human leukocyte antigen-DR, and stem cell-
associated markers such as CD34, along with lower levels
of stromal cell markers such as CD13, CD29, CD34, CD54,
CD73, CD90, CD105, and MHC 1 [46, 47]. It seems that
CD34+ ASCs have a greater proliferative capacity, while
CD34~ ASCs exert higher plasticity [48, 49].

Recently, the International Federation for Adipose Ther-
apeutics and Science (IFATS) and the International Society
for Cellular Therapy (ISCT) have provided initial guidance
for the scientific community working with adipose-derived
cells defining the minimal criteria for the identification of
ASCs [50]. In the SVE, cells are identified by the combination
of the following markers: CD45—, CD31-, and CD34+.
Added information should be given with the analysis of
stromal/stem cell markers: CD13, CD73, CD90, and CD105.
In culture, like BM-MSCs, ASCs are positive for CD90,
CD73, CD105, and CD44, while negative for CD45 and CD31.
Unlike BM-MSCs, ASCs are positive for CD36 and negative
for CD106. Finally, to allow the identification of ASCs a
multilineage differentiation assay should be performed.

5. Osteogenic Potential of ASCs and
Their Role in Bone Regeneration

Cell-based approaches for bone formation and regeneration
are widely considered the most effective, as they are able to
efficiently sustain the physiologic osteogenic process in vivo.
Indeed, the most promising field for ASCs application is rep-
resented by bone reconstruction/regeneration [38, 51]. Bones
are dynamic organs, undergoing continuous remodeling to
maintain tissue homeostasis, modify shape and morphology,
and repair fractures [52]. The therapeutic options clinically
available are currently restricted to allografts, microvascular
bone, and osteomyocutaneous flaps taken from an autologous
donor site, and bone distraction for reconstructive purposes
[53-55]. In particular, bone “free flaps” harvested from fibula,
scapula, iliac crest, or rib represent the therapeutic gold
standard because they contain all the components needed
for regeneration, including differentiated bone cells, their
cellular precursors, and appropriate growth/differentiation
factors. The main disadvantage of this technique relates to
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the morbidity of the donor site, where a skeletal defect is
created. Furthermore, the complexity of autograft procedures
raises other technical issues: the maintenance of the arterial
and venous flow of the flap in the case of inadequacy of
the receiving site (e.g., previous radiation therapy); excessive
extension of the bone defect in need of repair; peripheral
vasculopathies; and poor general clinical condition [56].
Therefore, scientific research aims to bypass the need for
allografts or autologous tissue grafts in repairing large bone
defects (either posttraumatic or as a consequence of surgical
resection), for which a spontaneous recovery cannot be
expected. In vitro and in vivo models suggest that the use of
expanded ASCs improve bone healing through direct differ-
entiation into mature osteoblasts and paracrine effects that
facilitate migration and differentiation of resident precursors.
The secretome of the SVF [57, 58] and of the ASCs [59,
60] contains different endocrine factors (adipokines) with
bone remodeling activity [61-63]. Specifically, the vascular
endothelial growth factor (VEGF), present in the secretome
of both SVF and ASCs, plays a major role in the repair
of fractures or bone defects. The VEGF is able to acti-
vate the formation of a new network of blood capillaries,
which is required during the physiological process of bone
regeneration [64]. In addition, VEGF plays a direct role in
the recruitment of hematopoietic stem cells leading to the
formation of new bone [65, 66].

The cell osteogenic potential can be assessed in vitro,
through an induction assay based on a widely standardized
protocol, employing a culture medium supplemented with
ascorbic acid, dexamethasone, and beta-glycerol phosphate
[4]. Thereafter, to verify the acquisition of an osteogenic
phenotype, staining protocols are used to detect calcium
deposits and matrix mineralization (namely, Von Kossa and
alizarin red methods) [67].

6. ASCs-Based Gene Therapy
Osteoinductive Approaches

In recent years, cell-based osteoinductive gene-delivery tech-
niques have produced the most convincing results both in
vitro and in vivo models. Such methods use cells genetically-
engineered to express selected osteogenic factors to be
implanted into the anatomical site where bone regeneration
is required. To date, recombinant bone morphogenetic pro-
teins (BMPs) have been the most frequently studied and
used osteoinducing agents [51, 68-74]. Lately, several new
transcription factors involved in the osteogenic process have
been reported, including Runx2, vascular endothelial growth
factor (VEGF), the LIM mineralization protein (LMP), Sonic
Hedgehog (SHH), and Nell-1 [56, 75-81]. In a study per-
formed by Lee and colleagues [75], BMP-2 and RunX2
were coexpressed in ASCs, demonstrating that BMP2/Runx2-
ASCs show a significant increase in bone formation compared
to ASCs and BMP2-ASCs. Recently, Zhang et al. [77] studied
the osteogenic differentiation of ASCs in presence of VEGE,
BMP-6, or VEGF plus BMP-6, showing that the combination
of VEGF and BMP-6 significantly enhance the expression
of osteospecific genes like DIx5 and osterix and suggesting
a cross-talk between VEGF and BMP-6 signaling pathways

during the osteogenic differentiation of ASCs. Also, two pro-
osteogenic cytokine, Sonic Hedgehog (SHH) and Nell-1, have
been studied by James et al. [76], revealing the additive effects
of SHH and NELL-1 on the osteogenic differentiation of
ASCs.

7. Scaffolds for ASCs in Bone Repair

Scaffolds for osteogenesis should mimic bone morphology
and structure in order to optimize integration into the sur-
rounding tissue and to provide a suitable microenvironment
for MSCs adhesion, proliferation, and differentiation. The
micro- and macroarchitecture of the scaffold is known to
be highly dependent on the production process [82, 83].
A well-characterized biomaterial is hydroxyapatite (HA),
Ca,,(PO,)¢(OH),, which is currently used in clinical applica-
tions in different forms. HA is suitable for substituting or inte-
grating diseased or damaged bone tissues since it resembles
the mineralized bone phase and supplies fundamental ions
for the newly forming bone during resorption [84, 85]. Also,
beta-tricalcium phosphate (5-TCP), Ca;(PO,),, was thought
suitable for clinical use as a carrier for MSCs because of its
chemical and crystallographic similarities to the inorganic
phase of native bone [86, 87]. Biphasic calcium phosphate
(BCP) refers to homogenous composites of HA and 3-TCP
[88]. Properties like solubility and resorption capacity of BCP
formulations vary widely among different ratios of HA and f3-
TCP. Unfortunately, calcium phosphate ceramics tend to have
poor mechanical properties, predisposing them to brittleness
and fractures [89, 90]. In the last years, several in vitro and in
vivo studies highlight the osteoinductive role of biomimetic
scaffold on ASCs [91, 92]. In particular, a study performed
by Marino and collaborators [92] revealed that 3-TCP matrix
alone is sufficient to trigger the differentiation of ASCs
toward an osteoblastic phenotype, regardless of whether
the cells are grown in a proliferative or a differentiative
medium. Also, Liao et al. [91] compared the osteogenic
potential of porcine ASCs (P-ASCs) among three scaffold
(polycaprolactone, PCL; polycaprolactone and f-tricalcium
phosphate, PCL-TCP; collagen I coated-PCL-TCP, PCL-TCP-
COL), in order to find an optimal scaffold for bone tissue
engineering. The in vitro study demonstrated that pASCs
display the best osteogenic differentiation rate on PCL-TCP-
COL group scaffolds, as demonstrated by the highest ALP
activity, osteocalcin expression and mineralization [91]. Also,
the experiment in nude mice showed better woven bone
and vascular tissue formation in the PCL-TCP-COL group
than in the PCL group. In addition, the osteogenic ability
of pASCs was found to be enhanced by coating COL onto
the PCL-TCP scaffolds, both in vitro and in vivo. Moreover,
Arrigoni et al. [93] compared the neoformed bone tissues
achieved by treating critical tibial defects with either hydrox-
yapatite alone (HA, group I) or hydroxyapatite—autologous
ASC constructs (ASCs-HA, group II), investigating their
histomorphometric, immunohistochemical, and biomechan-
ical properties. The study displayed that tibial defects
treated with rabbit ASCs-HA showed an improved heal-
ing process when compared to naked scaffold-treated ones
[93].



Calcium-, magnesium-, and silicon-containing ceramics,
such as akermanite (Ca,MgSi,O,), show better mechanical
properties and degradation rates than other bioceramics and
are reported to enhance osteogenic commitment of MSCs
[86,87,94-96]. As shown by Liu and colleagues, human ASCs
attachment and proliferation were similar on akermanite
and B-TCP in vitro, and osteogenic ASCs differentiation was
enhanced on the akermanite over the 3-TCP after 10 days of
culture [86]. Recently, Zanetti and collegaues observed that
ASCs cultured for 21 days in osteogenic medium prior to
be seeded onto akermanite-based scaffolds produce greater
calcium deposition and osteocalcin expression, compared to
cells seeded on B-TCP and PCL [94].

Taken together, these data highlight the advantage of
using ASCs in combination with biomimetic scaffold provid-
ing a most effective strategy for treating bone defects.

8. Dynamic Culture Systems for
Cell-Scaffold Constructs

Tissue formation in three-dimensional scaffolds is signif-
icantly affected by nutrient transport, physical stress, cell
density, and gas exchange [97, 98]. For the best possible tissue
regeneration, postimplantation cell viability and homoge-
nous cell distribution throughout the scaffold are crucial
[99]. Dynamic systems like perfusion bioreactors facilitate
optimal seeding under controlled conditions [99]. The term
“bioreactor” refers to a wide variety of culture systems that
provide a mechanism to maintain cell-scaffold constructs in
a biocompatible environment during application of defined
chemical and physical stimuli. Perfusion bioreactors are cul-
ture systems in which nutrient medium is repeatedly forced
or “perfused” through cell-scaffold constructs. Therefore,
these are referred to as “dynamic” culture systems in order
to distinguish them from “static” cultures in which there is
no fluid motion (i.e., standard culture flask or plate). Such
culturing systems are aimed at allowing tridimensional cell
adhesion on the scaffold and inducing specific cell behavior
under controlled and repeatable conditions. This situation
mimics a complex natural environment, as the cell-scaffold
compound is exposed to common mechanical stimuli, deriv-
ing from the shear forces from nutrient medium motion and
enables generating constructs with increased functionality
and engraftment capacity [99, 100].

So far, few studies have described the possibility to
establish a 3D culture model for bone cells using mineralized
porous scaffolds as templates, which relies on the use
of a perfusion-based bioreactor device, highlighting the
synergism between a bioactive scaffold and the effect of
perfusion on cells and indicating the differentiation into an
osteogenic phenotype [100, 101]. In particular, in the study
by Frohlich and collaborators [102] ASCs were seeded on
decellularized native bone scaffolds, providing the necessary
structural and mechanical environment for osteogenic
differentiation, and cultured in a perfusion bioreactor. After
5 weeks of culture, the addition of osteogenic supplements
(dexamethasone,  sodium-beta-glycerophosphate,  and
ascorbic acid-2-phosphate) to culture medium significantly
increased the construct cellularity and the amounts of bone
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matrix components (collagen, bone sialoprotein, and bone
osteopontin), indicating that medium perfusion markedly
improved the distribution of cells and bone matrix in
engineered constructs [102]. Also, in the study performed
by Declercq and colleagues [103], After 6 weeks of dynamic
culture, scaffolds were highly colonized and the osteogenic
gene expression was higher compared to static cultures.
Recently, Silva and colleagues [104] demonstrated that
ASCs differentiate towards the osteogenic phenotype when
cultured in a bioactive glass scaffold, with the osteogenic Lei-
bovitz L-15 medium and a perfusion bioreactor, as indicated
both the significant increase in cell proliferation and viability,
the increased ALP activity, and the expression of osteospecific
protein (i.e., osteocalcin and osteopontin) 2-to-3 weeks after
culture. Furthermore, a coculture model of human osteoblast
and endothelial lineage cells has been established by seeding
and culturing cells freshly isolated from the SVF of AT
within porous 3D ceramic scaffolds [105]. This system was
reported to generate 3D constructs that, upon implantation
into nude mice, were able to generate bone tissue and fully
functional blood vessels [105, 106]. Also, a study performed
by Giiven and colleagues [107] remarks the efficiency of
SVEF cells to generate 3D-osteogenic constructs, compared
to ASCs, supporting the concept that vascular progenitors
derived from human SVF cells accelerate the engraftment of
critically sized osteogenic constructs, ultimately improving
the efficiency and uniformity of bone tissue formation.

9. Preclinical Evaluation of ASC
Osteoregenerative Potential

A huge amount of data in the literature demonstrates the
efficacy of ASC-based approaches for inducing bone regener-
ation/healing in vivo. Critical size-calvarial defects are widely
employed to study bone healing in animal models, mostly
rodents, allowing an easy quantification of the amount of
newly formed bone within a bidimensional defect [74, 108-
127]. An initial proof of principle of the in vivo osteogenic
potential of experimental constructs may be achieved using
local intramuscular injection to induce ectopic bone forma-
tion [75, 121, 128-133]. Also, segmental defects in long bones
of large animals are widely used as clinically relevant models,
as resembling the fracture healing process [93, 112, 134-147].

A number of published report indicates that the combi-
nation of recombinant human BMP2 (rhBMP2) with ASC
may increase the osteogenic potential in vivo (see Table 1),
although recent evidences are retracting this consolidated
dogma, suggesting that combining rhBMP2 with ASCs,
should not be considered the best viable strategy for inducing
bone healing.

Overall, the number of published data obtained from
animal models employed to study the bone healing properties
of ASCs is constantly growing. Although a comprehensive
and systematic categorization of all publications on this topic
may be quite impossible, Table 1 attempts to summarize the
study design of relevant preclinical studies. It is noteworthy
that successful results, in terms of bone healing, have been
achieved in different animal models, using either undifferen-
tiated ASC (i.e., in the absence of any prior ex vivo osteogenic
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TABLE 1: Preclinical studies on ASC osteoregenerative potential.
Experimental model  Species Scaffold/administration Additional ex vivo/in vivo treatment Graft type Reference
Rat PLGA Alendronate Xenogeneic [74]
Rabbit HA-PLGA, collagen sponge BV-BMP2/TGF f33 Allogeneic [120]
Mouse PLGA Dura mater Xenogeneic [117]
Rat B-TCP Lenti-miR-31 Allogeneic [110]
Mouse Custom scaffold NOGGIN shRNA-Knockout Xenogeneic [119]
Dog HA-PLGA None Xenogeneic [122]
Mouse Systemic injection None Allo/xenogeneic  [115]
Mouse Local injection None Xenogeneic [116]
Rat DBM, PLA None Xenogeneic [123]
Rat MAP-coated PCL/PLGA None Xenogeneic [111]
Calvarial defect Rat HA-B-TCP None Xenogeneic [126]
Rat PLGA None/osteogenic medium Xenogeneic [125]
Dog Coral Osteogenic induction Autologous [109]
Dog Coral Osteogenic induction Allogeneic [121]
Pig Collagen sponge Osteogenic induction Autologous [127]
Rat DBX Osteogenic induction Allogeneic [112]
Rat PCL-PLGA-B-TCP Osteogenic induction + HUVEC Xenogeneic [113]
Mouse pDA-PLGA rhBMP-2 Xenogeneic [114]
Rabbit Collagen sponge rhBMP-2 Allogeneic [124]
Mouse HA-PLGA Sonic hedgehog signaling Induction ~ Xenogeneic (18]
Rat Local injection VEGFa Xenogeneic (108]
Mouse PLGA BMP2/RUNX2 bicistronic vector Xenogeneic [75]
Mouse PRP + alginate microsphere None Allogeneic [131]
Mouse B-TCP None Xenogeneic [121]
Ectopic bone formation Rat HA None Xenogeneic [128]
Rat Matrigel Osteogenic induction Xenogeneic [133]
Rat DBM Osteogenic induction Xenogeneic [132]
Mouse Carbon nanotubes rhBMP2 Xenogeneic [130]
Rat PLDA rhBMP2 Xenogeneic [129]
Rabbit Local injection Bovine BMP Allogeneic [135]
Rat Fibrin matrix rhBMP2 Allogeneic [139]
Segmental defect Rat B-TCP Lenti-BMP2/7 Allogeneic [134]
Rabbit PLA/PCL + vascularized periosteum Ad-Cbfal Allogeneic [140]
Rabbits HA-PLA-COL Ad-hBMP2 Allogeneic [137]
Mouse Systemic injection None Allogeneic [140]
Rat Collagen gel None Xenogeneic [145]
Segmental defect Rabbit PLGA None/osteogenic medium Xenogene.ic [112]
Dog B-TCP None Allogeneic [138]
Rabbit HA None Autologous [93]
Rabbit Ceramics, biphasic materials None Allogeneic [136]
Mouse Local injection rhBMP6 nucleofection Xenogeneic [143]
Vertebral defect/fusion  Rat  Lyophilized human cancellous bone ~ Gal-KO + osteogenic induction Xenogeneic [142]
Rat Fibrin gel rhBMP6 nucleofection Xenogeneic [144]
Mandible defect Pig Local-systemic injection None Allogeneic [147]
Rat HA/COL None Xenogeneic [146]

HA: hydroxyapatite; PLGA: poly(lactic-co-glycolic acid); PLA/PCL: polylactic acid/polycaprolacton; Ad-Cbfal: adenoviral expression vector carrying the Cbfal
gene; DBM: demineralized bone matrix; -TCP: beta-tricalcium phosphate; Lenti-miR-31: lentivirus expression vector carrying the microRNA-31; p-DA:
polydopamine; PRP: platelet-rich plasma; Lenti-BMP2/7: lentivirus expression vector carrying either the BMP2 or the BMP7 gene, MAP: mussel adhesive
proteins, NOGGIN shRNA: short hairpin ribonucleic acid to knockdown NOGGIN gene, COL: collagen; BV-BMP2/TGF f33: baculovirus expression vector
carrying either the BMP2 or the TGF 33 gene, MAP: mussel adhesive proteins; Gal-KP: galactosyl-knock-out; a-CaP: amorphous calcium phosphate; * these
studies were based on uncultured SVF instead of culture-amplified ASCs.



induction) [93, 111, 114-116, 125, 128, 131, 136, 138, 140, 145-
147] or uncultured SVF [112, 123] paving the way to an easier
translation of preclinical evidence to the clinical setting.

10. Clinical Use of ASCs for
Bone Regeneration/Reconstruction

When attempting to translate preclinical evidence to the
clinical field, the manipulation of human tissues, for the
production of clinical-grade human SVF cells and ASCs to be
employed as therapeutic devices, must be carried out accord-
ing to the current good manufacturing practices (GMP).
The national regulatory agencies (i.e., the Food and Drug
Administration in USA and the European Medicines Agency
in EU) provide the official rules and guidelines that guarantee
safe and controlled procedures [148]. In particular, the SVF
should be classified as a minimally manipulated tissue, whose
isolation does not require seeding and culturing. Conversely,
all procedures involving culture-expanded MSC configure
advanced cell therapies and must comply with institutional
GMP rules for cell manipulation, which must be carried out
into a cell factory of a certified facility.

In recent years, ASCs attracted the overwhelming interest
of clinicians and industry, being multipotent stem cells
endowed with trophic and immune-modulatory properties,
residing into a widely available and relatively accessible adult
tissue. This has been generating a confusing scenario that
often risks to configure clinical misconduct, when putative
innovative cell therapies are provided within uncontrolled
trials to incorrectly informed patients, in a wide range of clin-
ical applications. On this regard, a useful lesson for “naive”
clinicians may be provided by the controversial debate,
recently brought by Italian media, around the “Stamina
Foundation,” which promoted the use of bone marrow-
derived MSCs as a “compassionate, as yet-unapproved” treat-
ment of neurodegenerative diseases (including spinal mus-
cular atrophy) in terminally ill children [149]. After all, the
proposed protocol for MSC processing, the so called “Van-
noni’s method,” was carried out in inappropriate facilities
(according to the Italian Medicines Agency, AIFA) and was
based on flawed and plagiarized data [150].

In bone reconstructive surgery, autologous or allogeneic
bone graft still represents the gold standard treatment
although hampered by local morbidity and largely relying on
donor availability, expecially in the case of large segments to
be harvested. Therefore, the need for alternative procedure
has rapidly lead to experimental procedures based on ASCs.
Despite the increasing amount of scientific data on ASCs
and an extremely wide number of preclinical studies con-
firming their bone regenerative potential in vivo, only few
controlled clinical trials, aimed at assessing the efficacy
and safety of ASCs in patients with bone-related disor-
ders, have been concluded and published (for review see
[148] and [151]) and few others are being currently carried
out (http://www.clinicaltrials.gov/). In particular, successful
results have been obtained in distinct trials using autologous
ASC for craniofacial bone reconstruction [149, 152-154].

Lendeckel and colleagues employed ASC for the recon-
struction of a large pediatric posttraumatic calvarial defect,
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which is always challenging and troublesome. In this case,
an interdisciplinary surgical equipe implanted a resorbable
macroporous sheet as a scaffold for ASC and milled autograft
cancellous bone. The complex procedures yielded a stable
osteointegrated graft that showed marked ossification at the
3 months followup [153]. Also Thesleff and collaborators
used ASCs for calvarial reconstruction, testing alternative
biomaterials (3-TCP and resorbable mesh bilaminate scaf-
fold), and obtaining successful results in adult patients [152].
Mesimiki and colleagues used autologous ASCs seeded on
a beta-tricalcium phosphate (3-TCP) scaffold doped with
recombinant human BMP2 to treat a large maxillary defect
resulting from a benign tumor resection in an adult patient.
They achieved satisfactory outcomes, obtaining new, mature,
vital, and vascularized bone eight months after surgery, with
good osteointegration and stability [154]. More recently, San-
dor and colleagues published the successful reconstruction
of large anterior mandibular bone defects using ASC seeded
on a B-TCP premolded scaffold based on patient’s computed
tomography data [149].

The partial drawbacks of experimental ASC-based bone
reconstructive procedures are represented by the need to
expand cells ex vivo for two-to-three weeks to achieve the
appropriate cellular yield prior to the implantation, which
implies multiple surgical interventions. Moreover, extended
in vitro ASC expansion may be associated to genomic insta-
bility leading to either structural or numeric chromosomal
aberrations [155], though it is still unclear whether this may
represent a real risk for the recipient patient. Recent research
efforts have been spent to develop ad hoc devices for the rapid
one-step isolation of the SVF from liposuctioned adipose
tissue to be grafted without prior ex vivo culture amplification
manipulation [156]. Further development of such devices
may allow overcoming and implementing fat harvesting for
ASC isolation aimed at reconstructive surgery.

11. Conclusions

Around 3000 publication surveyed in the scientific databases
point towards the definition of ASCs as the most effective
and safe cell type for regenerative medicine approaches. Bone
regeneration is currently the most promising field for clinical
translation of experimental ASCs protocols. Nonetheless,
the rapidly growing development of research in the field of
biocompatible scaffolds is widening the field of ASCs appli-
cations in multidisciplinary scenarios, allowing cells to grow,
differentiate, and be exposed to cytokines and growth factors.
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