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Brief Summary: The stability in aerosols of four SARS-CoV-2 isolates, including one from 

lineage B.1.1.7, is similar when compared across multiple environmental conditions. These 

results suggest that transmissibility differences among SARS-CoV-2 lineages are likely not 

due to differences in aerosol stability. 
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Abstract 

Background: Our laboratory previously examined the influence of environmental conditions on the 

stability of an early isolate of SARS-CoV-2 (hCoV-19/USA/WA-1/2020) in aerosols generated from 

culture medium or simulated saliva. However, genetic differences have emerged among SARS-CoV-2 

lineages, and it is possible that these differences may affect environmental stability and the 

potential for aerosol transmission. 

Methods: The influence of temperature, relative humidity, and simulated sunlight on the decay of 

four SARS-CoV-2 isolates in aerosols, including one belonging to the recently emerged B.1.1.7 

lineage, were compared in a rotating drum chamber. Aerosols were generated from simulated 

respiratory tract lining fluid to represent aerosols originating from the deep lung. 

Results: No differences in the stability of the isolates were observed in the absence of simulated 

sunlight at either 20°C or 40°C.  However, a small but statistically significant difference in the 

stability was observed between some isolates in simulated sunlight at 20°C and 20% relative 

humidity. . 

Conclusions:  

The stability of SARS-CoV-2 in aerosols does not vary greatly among currently circulating lineages, 

including B.1.1.7, suggesting that the increased transmissibility associated with recent SARS-CoV-2 

lineages is not due to enhanced survival in the environment. 

Keywords: SARS-CoV-2; COVID-19; isolate; variant; aerosol; decay; persistence; sunlight; relative 

humidity; temperature  
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Introduction 

Recent evidence suggests that aerosols may contribute to the spread of severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2) [1-6], with both epidemiological analyses and sampling 

studies in clinical settings supporting this hypothesis [7-9]. Several studies have reported the 

detection of coronavirus RNA, including that of SARS-CoV-2, in the exhaled breath of infected 

individuals, suggesting that respiratory shedding may be a source of virus-containing aerosols [1, 4, 

10]. Exhaled aerosol particles generated during normal breathing are thought to originate from 

bronchiolar film bursting that occurs as airways in the deep lung re-open during inhalation [11, 12], 

and a portion of the particles generated during speaking and coughing are also believed to originate 

in the bronchiolar region [13]. These various respiratory activities have been shown to produce 

significant numbers of particles with aerodynamic diameters less than 5 µm, although larger 

particles are also produced during speaking and coughing [13, 14].      

Our laboratory has previously examined the aerosol persistence of infectious SARS-CoV-2 as a 

function of temperature, relative humidity, simulated sunlight, and suspension fluid [15, 16].  These 

previous studies utilized a single viral isolate from early in the pandemic, hCoV-19/USA/WA-1/2020.  

However, sequence analyses of emerging SARS-CoV-2 isolates have shown genetic drift over the 

course of the pandemic [17, 18]. Differences in environmental stability have been observed between 

related viruses, including coronaviruses [19-21], and it is possible that genetic variation among SARS-

CoV-2 lineages may result in differences in environmental stability, and, as a result, the potential for 

aerosol transmission. 

We previously observed differences in the decay rate of aerosolized SARS-CoV-2 as a function of 

suspension medium at some environmental conditions, suggesting the stability of virus in aerosols 

may be influenced by particle composition [15, 16]. The culture medium and simulated saliva utilized 

previously differ in composition from the fluid lining the bronchiolar region of the respiratory tract, 

which is rich in phospholipids, surfactants, and glycoproteins [22].  Thus, the stability of virus in 
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aerosols generated from this region may differ from that of virus suspended in other fluids.  

However, to date, no published studies have examined the decay of SARS-CoV-2 in aerosols with a 

composition similar to that expected for particles originating from the bronchiolar region of the 

respiratory tract.   

The objective of the current study was to compare the decay rates of different SARS-CoV-2 isolates 

in aerosols, including three that represent lineages linked to higher transmission potential. Testing 

was conducted with viral aerosols generated from suspensions with physicochemical properties 

similar to those expected for respiratory tract lining fluid from the deep lung, allowing the impact of 

composition to be assessed by comparing the results of the present study to those from our 

previous studies of SARS-CoV-2 which utilized other suspension media.   

Methods 

Viruses. 

Vero cells (ATCC CCL-81) were cultured as previously described [15, 16, 23] and used for all virus 

propagation and infectivity assays.  Titers of infectious virus were determined by microtitration on 

confluent cell monolayers in 96 well plates, with plates incubated at 37°C and 5% CO2 for four days, 

followed by visual inspection for virus-induced cytopathic effects (CPE). Titers were calculated using 

the method of Karber and Spearman [24].  

hCoV-19/USA/WA-1/2020 (NR-52281) was obtained from BEI Resources as passage four material 

and was subsequently passaged twice to yield passage six stocks that were harvested at four days 

post-infection (dpi), clarified by centrifugation at 2000g and 4°C, then frozen at -80°C until use.  Over 

the course of the study, multiple separate passage six stocks were prepared and used for aerosol 

tests.  This isolate was collected on January 19, 2020 and deposited with BEI Resources by the 

Centers for Disease Control and Prevention.  
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hCoV-19/USA/NY-PV08449 (NR-53515) was obtained from BEI Resources as passage three material 

and was subsequently passaged twice to yield a passage five stock that was harvested at  four dpi, 

clarified by centrifugation at 2000g and 4°C, then frozen at -80°C until use.  This isolate was collected 

on March 17, 2020, and was deposited with BEI Resources by the Icahn School of Medicine at Mount 

Sinai. The genome of hCoV-19/USA/NY-PV08449 includes the D614G mutation in the spike (S) 

protein, which has been associated with increased viral loads in infected patients [17], suggesting 

that this variant may impact transmission through increased replication or infectivity [25]. 

hCoV-19/France/IDF0372/2020 was supplied as passage two material by the National Reference 

Centre for Respiratory Viruses (NRCRV), and was subsequently passaged three times to yield a 

passage five stock that was harvested at four dpi, clarified by centrifugation at 2000g and 4°C, then 

frozen at -80°C until use.  The genome of hCoV-19/France/IDF0372/2020 contains the V367F 

mutation in the S protein, which has been suggested to potentially increase the affinity of S for the 

entry receptor ACE2 [26] or increase S expression [27]. 

hCoV-19/USA/CA_CDC_5574/2020 was provided as a kind gift by Dr. Natalie Thornburg of the US 

Centers for Disease Control and Prevention as passage two material, and was passaged once to yield 

a passage three stock that was harvested at three dpi, clarified by centrifugation at 2000g and 4°C, 

then frozen at -80°C until use.  This isolate was collected on December 29, 2020 and possesses all 

genomic changes characteristic of the B.1.1.7 lineage of SARS-CoV-2, including the N501Y mutation 

linked to an increased affinity of S for ACE2.  

Viral RNA from the passage five stocks of hCoV-19/USA/NY-PV08449 and hCoV-

19/France/IDF0372/2020, and the passage two and three stocks of hCoV-

19/USA/CA_CDC_5574/2020 were sequenced to confirm their identity and determine whether any 

mutations had occurred following passage in cell culture.  The methods used and the results of these 

analyses are presented in Table S1.   
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Decay Experiments. 

Decay experiments were conducted at different combinations of temperature, relative humidity, 

and simulated sunlight in two rotating drum aerosol chambers as described previously [15, 16, 28].  

Aerosols were generated using an air-assist nozzle, with a target mass median aerodynamic 

diameter (MMAD) of 2 µm.  This size is generally representative of that expected for aerosols 

originating from the lower respiratory tract during different respiratory activities, and allows 

comparisons to our previous studies [12, 13]. Tests in simulated sunlight and darkness were 10 and 

60 minutes long, respectively, with 4-8 replicate tests conducted at each condition. Aerosols were 

sampled five times during each experiment with both an Aerodynamic Particle Sizer (APS; Model 

3321, TSI Inc.) and a 25mm gelatin filter (PN 225-9551; SKC, Inc.).  Filters were dissolved in 10mL of 

cell culture medium to recover material for assays. For each test, viral titers measured by filter 

samples and mass concentration data measured by the APS were used to calculate one-phase 

exponential decay constants as described previously [15, 16].  A decay constant for viral infectivity 

(kinfectivity) was calculated by subtracting the decay constant estimated for total aerosol mass from the 

decay constant estimated for infectious virus to normalize for physical losses in the test system.  

Tests were excluded from subsequent analyses if the linear regression fits of the virus and mass 

aerosol concentrations had a coefficient of determination (r2) less than 0.70 and a root mean square 

error greater than 0.3, criteria which led to the exclusion of 5 out of 159 total tests.  Additionally, 

tests were only included if the initial aerosol sample had an infectious titer above 10 TCID50/mL to 

ensure a sufficient range over which to measure decay, a criterion which led to the exclusion of 15 

tests.   

The environmental control of each drum, including the intensity and spectra of simulated sunlight 

present, have been described previously [15, 16, 28, 29].  The spectra were designed to mimic 

spectra from the National Center for Atmospheric Research’s (NCAR) tropospheric ultraviolet and 

visible (TUV) radiation model [30] for midday sunlight on a clear day at sea level at 40°N latitude.  

Full-intensity simulated sunlight spectra are similar to mid-June model spectra, and mid-intensity 
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simulated sunlight spectra are similar to model spectra for early-March or early-October.  Spectral 

irradiance measurements were performed outside the drums, and corrected for window 

transmission losses, using a Gooch & Housego OL756 spectroradiometer equipped with an IS-270 

receptor. 

Tests were conducted with aerosols of the four SARS-CoV-2 isolates generated from viral 

suspensions in simulated respiratory tract lining fluid (sRTLF) to assess whether these isolates 

differed in their sensitivity to environmental conditions.  To prepare viral suspensions, 30 mL of 

clarified viral supernatant was thawed, placed in an ultracentrifuge tube, underlaid with 8 mL of 20% 

sucrose in TNE buffer, and centrifuged at 28,000 rpm for two hours at 4°C. Following centrifugation, 

the supernatant was discarded and the pellet re-suspended in sRTLF, prepared as described 

previously [22, 31, 32], with the exception that all protein and antioxidant solutions were made in 

Hank’s balanced salt solution instead of water to achieve final component concentrations matching 

previously reported values [22].  sRTLF was stored at 4°C for up to 2 weeks until use.  Viral 

suspensions in sRTLF were stored at 4°C and used within 7 days of preparation.   Full details of sRTLF 

preparation and final component concentrations are presented in Table S2.  Tests were conducted in 

darkness at both 20°C and 40°C and  in full-intensity simulated sunlight at 20°C.  Test conditions were 

chosen to assess the effect of temperature and simulated sunlight on the isolates in aerosols, rather 

than to represent conditions of a specific scenario.  All tests were conducted at 20% relative 

humidity, as previous studies demonstrated that the decay rates of SARS-CoV-2 are not greatly 

affected by differences in relative humidity [15, 16].  kInfectivity values from these experiments were 

analyzed by two-way ANOVA and Tukey’s post-test (n=63 across all conditions). 

Experiments were conducted with hCoV-19/USA/WA1/2020 in sRTLF across a wider range of 

environmental conditions.  In these experiments, the virus suspension was prepared by diluting virus 

concentrated by tangential flow filtration (TFF) into sRTLF at a 1:10 ratio.  To prepare these 

suspensions, clarified viral supernatant was thawed and concentrated using TFF with a 100kDa cross 

flow cassette, and stored at -80°C until use. On the day of experiments, concentrated virus was 
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thawed and diluted 1:10 in sRTLF.  This method was used to allow direct comparisons to previous 

results obtained with similarly prepared viral suspensions in simulated saliva and culture media [15, 

16].  However, at equivalent conditions there were no differences between kInfectivity values measured 

with aerosols generated from suspensions prepared by dilution of TFF-concentrated virus in sRTLF or 

by ultracentrifugation and resuspension in sRTLF (Figure S1).  Experiments to assess the influence of 

relative humidity and simulated sunlight were conducted at 20°C across a 2x2 matrix of relative 

humidity and simulated sunlight levels, with target relative humidity levels of 20% and 70%, and in 

either darkness or full-intensity simulated sunlight.  Tests were also conducted at the matrix center-

point condition of 45% relative humidity and mid-intensity simulated sunlight to allow assessment of 

non-linear responses to the test parameters, and at 37% and 53% relative humidity in darkness to 

provide a more detailed examination of the effects of relative humidity. The results of these tests 

(n=52 across all conditions) were analyzed by stepwise regression analysis as described previously 

[15, 16].  Additional tests to assess the influence of temperature were conducted at 10°C and 30°C, 

in darkness and full-intensity simulated sunlight, at 70% relative humidity. Data from these tests 

were combined with data acquired at 20°C and 70% relative humidity and analyzed using two-way 

ANOVA (n=26 across all conditions). 

ANOVA analyses were performed using GraphPad Prism v.9.0.0, and stepwise regression analysis 

was performed using JMP v.15.2.0. All data are presented as a mean ± standard deviation. 

Results 

Environmental Conditions and Aerosol Particle Size Distributions. 

Average temperatures for experiments with target levels of 10, 20, 30 and 40°C were 10.7 ± 0.3, 20.2 

± 0.3, 30.1 ± 0.3°C, and 40.0 ± 0.3°C  respectively.  Average relative humidities for experiments with 

target levels of 20, 37, 45, 53, 55, and 70% were 20.0 ± 1.5, 37.0 ± 0.0, 44.8 ± 0.8, 53.2 ± 0.9, 54.7 ± 

2.0, and 69.5 ± 3.0%, respectively.   
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The integrated UVA and UVB irradiances of the full-intensity simulated sunlight spectrum in the first 

drum were 69.76 and 1.91 W/m2, respectively.  In the second drum, these values were 56.21 and 

1.84 W/m2, respectively.  Integrated UVA and UVB irradiances for mid-intensity simulated sunlight in 

the first drum were 31.97 and 0.94 W/m2, respectively.  No tests were conducted with mid-intensity 

simulated sunlight in the second drum.  Experiments with hCoV-19/USA/WA1/2020 in sRTLF at 

similar temperature and relative humidity values showed no significant differences in kInfectivity values 

measured in full intensity simulated sunlight between the two drums, despite the slight differences 

in integrated UV intensities (Figure S2). 

The MMAD and geometric standard deviation (GSD) at the first sample in experiments where 

aerosols were generated from suspensions prepared by ultracentrifugation and re-suspension of the 

virus in sRTLF were 2.02 ± 0.07 µm and 1.62 ± 0.04, respectively.  For TFF-concentrated virus diluted 

in sRTLF, these values were 2.20 ± 0.10 µm and 1.66 ± 0.03, respectively.   

Comparison of Decay Rates for Different SARS-CoV-2 Isolates.  

The results of experiments assessing the decay rates of different SARS-CoV-2 isolates are shown in 

Figure 1.  Environmental condition, isolate, and their interaction were all significant factors affecting 

kInfectivity values (P<0.0001, P=0.0136, and P=0.0040, respectively).  There were no significant 

differences between isolates in darkness and 20% relative humidity at either 20°C or 40°C, and for 

each isolate there was no significant difference between the two temperatures  (Figures 1A and 1B; 

adj. P>0.9994 for all comparisons).  The mean kInfectivity values across all isolates were 0.000 ± 0.011 

min-1 and 0.012 ± 0.008 min-1 for 20°C or 40°C, respectively.   For each isolate, mean kInfectivity values 

were significantly higher in simulated sunlight than in darkness (Adj. P<0.0001 for all comparisons).  

In simulated sunlight, the mean kInfectivity values for both hCoV-19/USA/WA1/2020 (0.216 ± 0.056 min-

1) and hCoV-19/USA/CA_CDC_5574/2020 (0.209 ± 0.063 min-1) were slightly but significantly lower 

than the values for  both hCoV-19/USA/NY-PV08449/2020 (0.299 ± 0.047 min-1) and hCoV-

19/France/IDF0372/2020 (0.312 ± 0.051 min-1) (Adj. P<0.0156 for all comparisons).     
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The Influence of Environmental Conditions on the Decay Rate of Aerosolized hCoV-

19/USA/WA1/2020. 

Experiments were conducted with hCoV-19/USA/WA1/2020 aerosols generated from TFF-

concentrated virus diluted in sRTLF across a range of environmental conditions to allow direct 

comparison to previous results obtained with viral suspensions prepared similarly in simulated saliva 

and culture media [15, 16].  Results for tests at 20°C are shown in Figure 2. The mean kInfectivity value 

at all relative humidities in darkness was 0.005 ± 0.011 min-1. In mid-intensity simulated sunlight and 

45% relative humidity, the mean kInfectivity value was 0.155  ±0.060 min-1.   The mean kInfectivity value 

increased to 0.202 ± 0.064 min-1 in full-intensity simulated sunlight at 20% relative humidity, but was 

only 0.141 ± 0.045 min-1 at 70% relative humidity.  The regression model fit to these data identified 

simulated sunlight, simulated sunlight squared, and the interaction between simulated sunlight and 

relative humidity as significant factors affecting decay (P<0.0001, P=0.0009, P=0.0283, respectively), 

but relative humidity alone was not a significant factor (P=0.1076).  Thus, the effect of simulated 

sunlight did not increase linearly with light intensity, and was lower at high relative humidity than at 

low relative humidity.   

Data from experiments at 10 and 30°C at 70% relative humidity are shown in Figure 3, combined 

with data from tests at 20°C and 70% relative humidity from the previous set of experiments. 

Temperature (P=0.0344) and simulated sunlight (P<0.0001) were both significant factors affecting 

decay, but the interaction of these factors was not significant (P=0.3639).  In darkness, increasing 

temperature from 10 to 30°C resulted in an increase in mean kInfectivity values from 0.001 ± 0.008 min-1 

to 0.029 ± 0.006 min-1. In simulated sunlight, the same increase in temperature increased mean 

kInfectivity values from 0.116 ± 0.024 min-1 to 0.203 ± 0.079 min-1. 
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Discussion 

Our laboratory has previously demonstrated that simulated sunlight, temperature, humidity, and 

suspension matrix all affect the stability of infectious SARS-CoV-2 in aerosols [15, 16].  The present 

study extends these findings by providing decay data for three additional SARS-CoV-2 isolates, 

including one belonging to the recently emerged B.1.1.7 lineage.  The present study also provides 

decay data for viral aerosols generated from fluid representative of the bronchiolar region of the 

respiratory tract. There were no differences in the decay constants between isolates in darkness at 

either 20°C or 40°C, with a mean time for a 90% loss of viral infectivity across all dark conditions of 

6.2 hours.  These findings are consistent with previous results suggesting SARS-CoV-2 and other 

coronaviruses are stable in aerosols in darkness [19, 38-42].  In the presence of simulated sunlight, 

the decay constants of all four isolates increased significantly, which is consistent with findings from 

previous studies with hCoV-19/USA/WA1/2020 [15, 16, 29] and epidemiological analyses of COVID-

19 transmission [43, 44].  

However, in the presence of simulated sunlight, a small but statistically significant difference 

between the decay constants was observed for some of the isolates.  The decay constants of hCoV-

19/USA/CA_CDC_5574/2020, an isolate of the SARS-CoV-2 B.1.1.7 lineage, were not significantly 

different from those of the earlier hCoV-19/USA/WA1/2020 isolate, with an associated time for 90% 

loss of infectivity of 11 minutes for both isolates.   For hCoV-19/France/IDF0372/2020 and hCoV-

19/USA/NY-PV08449/2020, the mean values were seven and eight minutes, respectively.  Despite 

the small difference, these data suggest that the SARS-CoV-2 lineages represented by all four 

isolates would be rapidly inactivated by natural sunlight in real-world scenarios. Isolates hCoV-

19/USA/NY-PV08449/2020, hCoV-19/France/IDF0372/2020, and hCoV-19/USA/CA_CDC_5574/2020 

were chosen for testing as representative examples of SARS-CoV-2 lineages containing mutations 

linked to higher transmission rates [17, 25-27]. In particular, the D614G mutation in both hCoV-

19/USA/NY-PV08449/2020 and hCoV-19/USA/CA_CDC_5574/2020  has become dominant 
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throughout much of the world [17]. While the present study did not find large differences in aerosol 

stability between isolates, it is possible that lineages may emerge in the future which exhibit larger 

differences in stability as SARS-CoV-2 continues to evolve.  However, given that the present and 

previous studies suggest that the circulating lineages appear to be highly stable under indoor 

conditions, where people spend the majority of their time [45], it is unlikely that an increase in 

stability would have a practical effect on aerosol transmission of SARS-CoV-2 in such environments.  

Additionally, it should be noted that the potential for aerosol transmission can be influenced by 

other factors in addition to the decay rate, including the amount of virus emitted by an infected 

individual and the dose required to initiate a new infection in a naïve individual. The D614G 

mutation in hCoV-19/USA/NY-PV08449/2020 and hCoV-19/USA/CA_CDC_5574/2020 has been 

linked to higher viral titers in infected individuals, and the V367F mutation in hCoV-

19/France/IDF0372/2020 and N501Y mutation in hCoV-19/USA/CA_CDC_5574/2020 have been 

linked to greater potential to infect susceptible cells [17, 26, 27, 46]. Therefore, it is possible that the 

lineages represented by these additional isolates may still have a higher potential for aerosol 

transmission despite their similar decay rates.  

In general, the findings of the present study regarding the influence of environmental conditions on 

the stability of hCoV-19/USA/WA1/2020 in aerosols generated from virus suspended in sRTLF are 

similar to those previously reported by our laboratory for aerosols containing the same isolate 

generated from simulated saliva [15, 16]. However, in the present study, a decreased response to 

simulated sunlight was observed at high relative humidity, an effect that was observed previously 

with SARS-CoV-2 aerosolized from culture medium but not simulated saliva.  A significant effect of 

temperature on hCoV-19/USA/WA1/2020 decay was also observed in the present study for 

temperatures ranging from 10 to 30°C, at 70% relative humidity.   However, at 40°C and 20% relative 

humidity, no significant increase in decay was observed for any of the isolates, which is in contrast to 

the increased decay rate we reported at similar conditions previously for aerosols generated from 

simulated saliva.  This suggests that temperature and relative humidity may interact to influence the 
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stability of infectious of SARS-CoV-2 in sRTLF, an effect that was not observed previously for SARS-

CoV-2 in simulated saliva.  The mechanism contributing to this outcome is not clear.  However, this 

outcome suggests that the effect of relative humidity on the stability of SARS-CoV-2 in aerosols may 

be dependent on the composition of the aerosol particles containing the virus, an observation that 

has been reported previously for other viruses [47].  While, the sRTLF used in the present study was 

developed to replicate the physiochemical properties of the fluid in the bronchiolar region of the 

human respiratory tract [22, 31, 32], it should be noted that the composition can vary between 

individuals and as a function of disease state [22], and the use of a single defined formulation may 

not capture the full range of decay rates that are possible for SARS-CoV-2 in aerosols generated from 

different patients over the course of their disease.  Additional studies are needed to better define 

this variability, and assess the impact such changes may have on the stability of SARS-CoV-2 in 

aerosols.   
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Main Text Figure Captions:  

 

Figure 1. Decay constants for infectious virus for four isolates of SARS-CoV-2 at three different 

environmental conditions.  (A and B) There were no significant differences in mean kInfectivity values 

between the isolates in darkness and 20% relative humidity at either 20 or 40°C.  The mean kInfectivity 

values across all isolates were 0.000±0.011 min-1 and 0.012±0.008 min-1 for 20 and 40°C, 

respectively.  (C) In the presence of simulated sunlight at 20°C and 20% relative humidity, there was 

a small, but statistically significant, difference between the mean kInfectivity values for hCoV-

19/USA/WA1/2020 (0.216±0.056 min-1) and hCoV-19/USA/CA_CDC_5574/2020 (0.209±0.063 min-1) 

and those for hCoV-19/USA/NY-PV08449/2020 (0.299±0.047 min-1) and hCoV-

19/France/IDF0372/2020 (0.312±0.051 min-1); * denotes Adj. P<0.05. 

 

Figure 2. Effect of relative humidity and simulated sunlight on the decay rate of infectious SARS-

CoV-2 (hCoV-19/USA/WA1/2020) at 20°C.  Data from tests in darkness, mid-intensity simulated 

sunlight, and full-intensity simulated sunlight are shown by dark grey, light grey, and white circles, 

respectively.  kInfectivity values were significantly affected by simulated sunlight and the interaction of 

simulated sunlight and relative humidity, but not relative humidity alone.  The mean kInfectivity value at 

all relative humidities in darkness was 0.005±0.011 min-1.  In mid-intensity simulated sunlight and 

45% relative humidity, the mean kInfectivity value was 0.155±0.060 min-1.  Under full-intensity 

simulated sunlight at 20% and 70% relative humidity, mean kInfectivity values were 0.202±0.064 min-1 

and 0.141±0.045 min-1. 

 

Figure 3. Effect of temperature and simulated sunlight on the decay rate of infectious SARS-CoV-2 

(hCoV-19/USA/WA1/2020) at 70% relative humidity.  Data from experiments in darkness are shown 
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by grey circles, and data from tests in full-intensity simulated sunlight are shown in white circles. 

Data from tests at 20°C are also presented in Figure 1 but are included here to allow comparison 

with data from tests at 10 and 30°C.  Decay constants for infectious virus were significantly affected 

by simulated sunlight and temperature.  In darkness, increasing temperature from 10 to 30°C 

resulted in an increase in mean kInfectivity values from 0.001±0.008 min-1 to 0.029±0.006 min-1. In 

simulated sunlight, the same increase in temperature raised mean kInfectivity values from 0.116±0.024 

min-1 to 0.203±0.079 min-1. 

 

  



Acc
ep

ted
 M

an
us

cri
pt

 

Figure 1 

 

  



Acc
ep

ted
 M

an
us

cri
pt

 

 

Figure 2 
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