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Objective: Liver cancer is one of the most commonly diagnosed cancer, and energy-
based tumor ablation is a widely accepted treatment. Automatic and robust segmentation
of liver tumors and ablation zones would facilitate the evaluation of treatment success. The
purpose of this study was to develop and evaluate an automatic deep learning based
method for (1) segmentation of liver and liver tumors in both arterial and portal venous
phase for pre-treatment CT, and (2) segmentation of liver and ablation zones in both
arterial and portal venous phase for after ablation treatment.

Materials and Methods: 252 CT images from 63 patients undergoing liver tumor
ablation at a large University Hospital were retrospectively included; each patient had
pre-treatment and post-treatment multi-phase CT images. 3D voxel-wise manual
segmentation of the liver, tumors and ablation region by the radiologist provided
reference standard. Deep learning models for liver and lesion segmentation were initially
trained on the public Liver Tumor Segmentation Challenge (LiTS) dataset to obtain base
models. Then, transfer learning was applied to adapt the base models on the clinical
training-set, to obtain tumor and ablation segmentation models both for arterial and portal
venous phase images. For modeling, 2D residual-attention Unet (RA-Unet) was employed
for liver segmentation and a multi-scale patch-based 3D RA-Unet for tumor and ablation
segmentation.

Results: On the independent test-set, the proposed method achieved a dice similarity
coefficient (DSC) of 0.96 and 0.95 for liver segmentation on arterial and portal venous
phase, respectively. For liver tumors, the model on arterial phase achieved detection
sensitivity of 71%, DSC of 0.64, and on portal venous phase sensitivity of 82%, DSC of
0.73. For liver tumors >0.5cm3 performance improved to sensitivity 79%, DSC 0.65 on
arterial phase and, sensitivity 86%, DSC 0.72 on portal venous phase. For ablation zone,
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the model on arterial phase achieved detection sensitivity of 90%, DSC of 0.83, and on
portal venous phase sensitivity of 90%, DSC of 0.89.

Conclusion: The proposed deep learning approach can provide automated
segmentation of liver tumors and ablation zones on multi-phase (arterial and portal
venous) and multi-time-point (before and after treatment) CT enabling quantitative
evaluation of treatment success.
Keywords: liver cancer, ablation zone, segmentation, computed tomography, U-Net
INTRODUCTION

Liver cancer is one of the most commonly diagnosed cancer
globally in 2018, with about 841.000 new cases and 782.000
deaths annually (1). Hepatocellular carcinoma (HCC) is the most
frequent primary liver cancer and the third leading cause of
cancer death (2). Liver metastases, which are secondary liver
cancer, may occur in the early stages of gastrointestinal
malignancy because of hematogenous spread through the
portal venous system (3, 4). The morbidity and mortality of
these populations with liver cancer increase significantly.

Given the complexity of liver cancer and many potentially
useful treatments, the most appropriate treatment option should
be selected for each patient at each tumor stage. Energy-based
tumor ablation has become a widely accepted treatment option
for patients with early-stage liver cancer in recent years. Several
energy-based ablation technologies are currently available,
including radiofrequency ablation (RFA), microwave ablation
(MWA), laser ablation, and cryoablation. Before and after
energy-based ablation, cross-sectional imaging is necessary to
plan the ablation and to assess treatment response. The most
used modality for follow-up is multi-phase contrast-enhanced
computed tomography (CT) due to its broad availability,
robustness, and high reproducibility (5). RFA and MWA aim
to achieve irreversible cellular injury and cellular death, leading
to eradicating the target tumor (6). During the ablation
treatment, the segmentation is a crucial first step that provides
a series of quantitative measurements, including volume, shape,
localization, and the proportion for liver or lesion.

However, precise segmentation of liver tumors or the ablation
zone is still challenging in planning ablation before the procedure
and assessing treatment response after the procedure. Some
studies have assessed the ablation treatment by subjective
estimations and manual segmentation (7–9). This kind of
method is time-consuming and suffers from low consistency
and reproducibility. It heavily depends upon prior human
knowledge, and it requires people with high-level of skills to
accomplish such tasks. For more effective and consistent target
lesion identification and treatment evaluation, automatic
delineation of the liver cancer, ablation zone, and liver organ is
necessary, which holds great promise for enhancing radiology
workflow. Nevertheless, lesion and organ segmentation are still
challenging. Up until now, some computer-aided diagnosis
(CAD) strategies are applied to segment the regions of interest
(ROIs) automatically. Initially, some classical image processing
2

methods such as region growing (10), graph-cut (11), and level-
set (12) were applied to liver tumor segmentation.

Lately, deep learning (DL) has shown promising performances in
many fields. DL techniques have several advantages over
conventional frameworks. Feature extraction, selection, and
supervised classification can be realized within the same deep
architecture. With such a design, the performance can be tuned
more efficiently in a systematic way (13). Among many DL
architectures, convolutional neural networks (CNN) especially
U-Net (14) has been regarded as a powerful CNN to deal with liver
tumors’ segmentation tasks (15, 16). Some strategies, such as residual
modules (17), dense connection (18) and adversarial training (19) are
integrated into U-Net to improve the segmentation accuracy of liver
tumors. However, segmenting the tumor is still challenging, mainly
due to the uncertain number and location of lesions. Some
researchers (20–22) have reported that combined liver and tumor
segmentation will improve the performances.

In this paper, we present an automatic method based on DL
to realize accurate segmentation of the liver, tumors and ablation
zones in multi-phase CT images of liver cancer patients and thus
make a quantitative efficacy evaluation for RFA/MWA. In our
study, we used the public Liver Tumor Segmentation Challenge
(LiTS) (23) dataset and a clinical dataset from our hospital on
patients undergoing microwave ablation to evaluate the
proposed method.
MATERIALS AND METHODS

Data Sources and Patient Demographics
The employed datasets consist of two parts. Firstly, we used the
LiTS dataset and segmentations provided by various clinical sites
worldwide. LiTS includes 130 CT images of portal venous phase
in patients with HCC or secondary liver tumors.

Secondly, we retrospectively collected multi-phase CT images
(at initial and follow-up imaging) between 2010 and 2019 in
patients who underwent RFA or MWA at our institution. The
local Institutional Review Board approved this retrospective,
single-center study and waived the requirement for written
informed consent for the patient cohort. 104 patients were
identified, applying the following eligibility criteria: (1) patients
(≥ 18 years) who were referred to our radiology department for
liver RFA/MWA, (2) pathology proven HCC or liver metastases,
(3) complete multi-phase CT images, arterial phase and portal
venous phase, and (4) CT images of patients with both pre- and
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post-procedure. Targeted lesions that were not visualized well
due to artefacts or patients with follow-up interval < 1 week were
excluded from this study. In total, 63 patients with 252 CT
images were identified. CT contrast images were acquired on iCT
256, Brilliance 64, IQon, Somatom Definition FLASH scanners
(Philips and Siemens) with 2 mm slice thickness. Contrast
enhanced CT of the liver can obtain dynamic post-contrast
images in multiple phases. The arterial phase begins
approximately 15-25 seconds following intravenous contrast
administration, portal venous phase about 50-70seconds.The
institutional CT protocol for tumor evaluation before and after
energy-based ablation comprises an arterial and a portal venous
phase of the liver. After administration of 100 ml non-ionic,
iodinated contrast media bolus (Accupaque 350 mg/ml, GE
Healthcare) followed by a 30 ml saline chaser with an automated
injection system at a flow rate of 3.5 ml/s (MEDRAD® Stellant®,
Bayer Vital AG), bolus-tracking technique (threshold of 150
Hounsfield Units (HU) in the abdominal aorta) is used, and
image acquisition starts with a delay of 15 and 50 s, respectively.
The identified patients were randomly divided into a training set
consisting of 48 patients and a test set of 15 patients, ensuring no
overlapofdatabetween the2 sets. The trainingdatawas used forDL
training and the test set used for independent testing of the DL
models. Demographics and other characteristics of the local clinical
cohort are summarized in Table 1.

Reference Standard
Segmentation of liver masks, tumors and ablation zones in the
arterial phase and portal venous phase from 252 CT images used
as reference standard were created manually using IntelliSpace
Discovery (ISD, v. 3.0.6, Philips Healthcare, Best, The
Netherlands) by two radiologists (H.K and R.R), with 9 and 4
years of experience in liver imaging, respectively. To establish the
reference standard, both readers reviewed all images and
segmentations in LiTS data together and then performed
segmentations on the local clinical dataset in a 3D voxel-wise
manner on ISD using consensus reading.

Data Pre-Processing
For CT images, the relative densities are measured by Hounsfield
units (HU). To remove the influence of other organs or tissues
around the liver, we firstly performed clipping in the range
-100HU to 200HU. Then we resampled all the images to an
isotropic resolution of 1.0 × 1.0 × 1.0 mm3. Data augmentation
such as random flipping and rotations were applied during
training to increase data samples on the fly.

Residual Attention U-Net
In this study, we used a residual attention U-net (RA-Unet) as the
architecture to segment the CT images. This network (24) is
inspired by U-net (14) and residual attention mechanism (25).
Traditional U-net consists of an encoder and a decoder, encoder
extracts hierarchical features of the input image while decoder
reconstructs the features in a coarse-to-fine manner. Skip-
connections combines different-scale features from these two
parts. Residual blocks are introduced to replace the initial
convolutional layers to increase the depth of the network and
Frontiers in Oncology | www.frontiersin.org 3
avoid gradient vanishing. Furthermore, attention blocks are
added to skip-connections in order to pay more attention to the
important regions in the coarse features fromthe encoder. There are
two paths in each attention block, the first path performs feature
processing, and the second path collects and combines the global
information from the whole image also by an encode-decoder
module. Improvement of RA-Unet’s performance compared to
conventional U-net has been previously demonstrated (26).

2D convolutions are used in 2D RA-Unet and 3D
convolutions in 3D RA-Unet. In each architecture, 9 residual
blocks with kernel of size 3×3 or 3×3×3 and 4 attention blocks
are present. The residual blocks have a skip connection and 3
stacks of batch normalization, activation function and
convolution layers each. Identity mapping is performed by the
skip connection, the output of the identity mapping is added to
the output of the stacked layers (27). The activation function
used in the residual blocks as well as the rest of the network is
ReLu except for the final layer of the network where a sigmoid
function is used to produce a binary segmentation. Loss function
used was dice loss and is provided as:

Ldice = 1 −
2 Sstrue ∗ spred
Ss2true + Ss2pred
TABLE 1 | Characteristics of 63 patients in local clinical dataset.

Clinical characteristics Values

Age (years)
Mean ± SD 64.3 ± 10.9
Range 32-83

Gender
Male 47
Female 16

Cirrhosis 28
Etiology
HBV 5
HCV 11
NASH 5
Alcoholic liver disease 15
Others 27

Treatment for patients
MWA 53
RFA 10

Tumor number per patient
n=1 46
n=2 11
n=3 6

Pathology of tumor
HCC 41
Metastases 45

Tumor size(cm)
Mean ± SD 2.08 ± 0.92
Range 0.67-4.92

Tumor volume(cm3)
Mean ± SD 10.43 ± 18.52
Range 0.06-82.61

Ablation zone size(cm)
Mean ± SD 5.73 ± 1.22
Range 2.62-8.84

Ablation zone volume(cm3)
Mean ± SD 56.66 ± 36.20
Range 6.76-200.78
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where Strue and Spred are the ground truth and predicted
binary segmentations respectively.

The training of the network was initiated with random values,
Adam optimizer was used with a learning rate of 0.0001. The
number of training epochs was set to 1500. Early stopping with
500 epochs was used to avoid over-training. Adaptive learning
rate was utilized by reducing the learning rate by a factor of 10%
if the network plateaus after 20 epochs.

Figure 1 represents the architecture of the RA-Unet and
Table 2 shows the network parameters for the 2D RA-Unet. The
network has a total of 2.9 million parameters.

Liver Segmentation
2D RA-Unet was used to segment the liver. 2D RA-Unet was
initially trained on the portal venous phase images from the LiTS
dataset, to obtain a base model. The network was subsequently
trained on the local clinical dataset, which included CT images in
the arterial phase and portal venous phase from pre- and post-
ablation treatment. Transfer-learning approach (28) was used to
help facilitate model training on the local clinical dataset.
Frontiers in Oncology | www.frontiersin.org 4
By using a transfer learning approach, the layer weights from
the base model were fine-tuned on the local clinical dataset.
Unlike using random values that were used as initialization to
train the base model. By using transfer learning the model
learned to segment both CT phases. During training of liver
segmentation, batch size was set to 10 slices.

Tumor and Ablation Zone Segmentation
Two dedicated 3D RA-Unet models were trained for
segmentation of tumors and ablation zone, respectively. In
order to compensate for the varying numbers and sizes of
lesions we built an ensemble model using multi-scale inputs to
the 3D RA-Unet to improve segmentation effectiveness. The
multi-scale inputs were 3D patches of size 20×30×30 and
40×60×60, extracted from within the liver. The liver mask was
obtained using the liver segmentation model. Similar to the liver
segmentation model, the multi-scale tumor model was first pre-
trained on the portal venous phase images from the LiTS dataset
and then retrained on the arterial and portal venous phases of the
clinical dataset using transfer-learning, which enabled the model
FIGURE 1 | Architecture of residual attention U-net (RA-Unet).
TABLE 2 | Architecture of the 2D RA-Unet used for liver segmentation.

Encoder Output size Decoder Output size

Input 512×512×1 Attention block 1 64×64×256
Residual block 1 512×512×32 Residual block 6 64×64×256
Pooling 256×256×32 Up convolution 128×128×256
Residual block 2 256×256×64 Attention block 2 128×128×128
Pooling 128×128×64 Residual block 7 128×128×128
Residual block 3 128×128×128 Up convolution 256×256×128
Pooling 64×64×128 Attention block 3 256×256×64
Residual block 4 64×64×256 Residual block 8 256×256×64
Pooling 32×32×256 Up convolution 512×512×64
Residual block 5 32×32×512 Attention block 4 512×512×1
Up convolution 64×64×512 Residual block 9 512×512×1
July 2021 | Volume 11 |
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to efficiently learn how to segment the tumor lesions on both CT
phases. During training, batch size was set to 72 3D patches, class
balance was ensured by choosing equal number of foreground
and background patches. All experiments were performed on a
Linux workstation with two Tesla V100 GPU’s (NVIDIA, Santa
Clara, USA). The training and testing for models of liver
segmentation, tumor segmentation and ablation zone
segmentation were developed using Keras (2.2.4) with
TensorFlow (1.15.2) backend.

Inference
In the test phase, we first performed the same preprocessing as
the training phase, including clipping and resampling. Then, the
liver is segmented using the 2D RA-Unet model. This is followed
by extracting a bounding box of size 200×300×300 around the
liver mask. Next, 2 sets of 3D patches of size 20×30×30 and
40×60×60 with 10% overlap are extracted from the bounding
box. The 3D patches are passed to the respective 3D RA-Unet
models for tumor or ablation zone prediction. Finally, the
resulting output segmentations are stitched together according
to the original order. The overlapping segmented voxels from
each 3D patch were retained and merged into the final
segmentation outcome for the tumor or ablation zone.

Statistical Analysis
To evaluate the performance of the DL models as compared to
the reference standard, spatial overlap is measured using dice
similarity coefficient (DSC):

DSC =
2 · RS ∩ PSj j
RSj j ∪ PSj j

where RS is the reference standard and PS is the
predicted segmentation.

Additionally, to evaluate the detection accuracy of the liver
tumors and the ablation zone the following measures are used:

Sensitivity =
TP

TP + FN

Precision =
TP

TP + FP

F1 Score =
2 ∗ Sensitivity ∗ Precision
Sensitivity + Precision

where TP are the true positives, FN are the false negatives and FP
are the false positives.
Frontiers in Oncology | www.frontiersin.org 5
For quantitative volumetric measurements, Pearson’s
correlation coefficient (r) was calculated and Bland–Altman
analysis was performed.

Sub-analysis was performed for tumors of volume ≥ 0.5 cm3,
which corresponds to spherical tumors with diameter > 1cm.
RESULTS

Clinical Characteristics
The LiTS dataset included 130 CT images (283 lesions) of portal
venous phase in patients with HCC or secondary liver tumors.
The local clinical dataset included 63 patients with 252 CT
images of the arterial phase and portal venous phase. The
median age of the patients was 64.3 years (range, 32–83) and
males were dominant (74.6%) (Table 1). Forty-one treated
tumors (47.7%) were HCC, and forty-five tumors (52.3%)
metastases. Mean tumor size and tumor volume, based on
manual segmentation, were 2.08 ± 0.92 cm and 10.43 ± 18.52
cm3, respectively. Mean ablation zone size and volume, based on
manual segmentation, were 5.73 ± 1.22 cm and 56.66 ± 36.20
cm3, respectively. The 63 patients were randomly divided into a
training set consisting of 48 patients and a test set consisting of
15 patients. The training set had 59 tumors with a mean volume
of 9.74 ± 19.65 cm3 and 53 ablation zones with a mean volume of
49.63 ± 31.11 cm3. Whereas the test set had 27 tumors with a
mean volume of 11.98 ± 16.05 cm3 and 18 ablation zones with a
mean volume of 71.91 ± 42.35 cm3.

Results for Liver Segmentation
Results of the liver segmentation model are depicted in Table 3. It
was observed that the transfer-learningmodel performs better than
the base model. Segmentation improvements were pronounced on
the arterial phase, where the DSC increases from 0.89 ± 0.09 to 0.95
±0.01 for the pre-ablationgroup, and from0.92±0.14 to0.96±0.01
for the post-ablation group. Figure 2 shows an example of the liver
segmentation performance using the base model as well as the
transfer-learning model.

Results for Tumor Segmentation
In the pre-ablation group, the multi-scale tumor segmentation
ensemble model had a sensitivity of 71% on the arterial phase
and 82% on the portal venous phase. The ensemble model’s
median DSC on the venous phase was 0.73 and was higher than
that on the arterial phase which was 0.64, see Table 4 for detailed
results. For lesions > 0.5cm3 we observed a dramatic drop in
FP’s/image and enhanced precision and F1 score both for arterial
TABLE 3 | Results of liver segmentation model in clinical dataset.

Pre-ablation Post-ablation

Arterial phase Portal venous phase Arterial phase Portal venous phase
median dice ± std median dice ± std median dice ± std median dice ± std

Base model 0.89 ± 0.09 0.94 ± 0.05 0.92 ± 0.14 0.93 ± 0.02
Transfer-learning model 0.95 ± 0.01 0.95 ± 0.01 0.96 ± 0.01 0.95 ± 0.01
July 2021 | Volum
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phase (n=15, precision from 46% to 71%, F1 score from 0.56 to
0.75) and portal venous phase (n=24, precision from 44% to 74%,
F1 score from 0.57 to 0.79). Comparing volumetric assessment
between the automated and manual segmentations, Pearson
correlation coefficients (r) were: 0.85 for tumor segmentation
in arterial phase, 0.70 in portal venous phase.

Results for Ablation Zone Segmentation
In the post-ablation group, the multi-scale ablation zone
segmentation ensemble model had a sensitivity of 90%, both on
the arterial and portal venous phase. Median dice of 0.83 and 0.89
and a F1 score of 0.74 and 0.73 were noted for arterial and portal
venousphase, respectively.Pearsoncorrelation coefficients (r)were:
0.98 for ablation zone segmentation in arterial phase, and 0.97 in
portal venous phase.More detailed results are presented inTable 5.
Figure 3 is an example to show the tumor and ablation zone
segmentation visually. Figure 4 shows DSC box-plots for lesions
and ablation zones. Bland-Altman analysis plots and correlation
plots are shown in Figure 5.

DISCUSSION

In this study, we developed and trained a DL method for
segmenting the liver, liver tumors and ablation zones on multi-
Frontiers in Oncology | www.frontiersin.org 6
phase CT images. The RA U-net based DL models were initially
trained on the public MICCAI 2017 LiTS dataset and then
applied to the local clinical dataset using transfer learning. The
models were evaluated on an independent test-set including both
pre-ablation and post-ablation CT images.

In our study, we obtained a median DSC of 0.95 for the pre-
ablation group, and 0.96 for the post-ablation group on liver
segmentation; 0.64 for arterial phase, and 0.72 for portal venous
phase on liver tumor segmentation. The method provided high
segmentation performance on a clinical routine dataset.
Furthermore, to improve the performance of tumor and ablation
zone segmentation, a multi-scale ensembling strategy was
introduced. The established models trained on two patch sizes
could better capture the contextual information and reduce the
number of FP’s/images, which effectively enhances the ability to
segment lesions of different sizes. Additionally, we found that the
per-lesion sensitivity of automated tumor detection is significantly
higher for tumors with volume greater than 0.5 cm3, with
sensitivities improving from 71% and 82% to 79% and 86% on
arterial phase and portal venous phase, respectively. For these
tumors, we also observed a dramatic increase in segmentation
accuracy, precision, F1 score, and a drop in FP cases.

The extraction of liver and tumors from CT is critical before and
after RFA/MWA in choosing an optimal approach for the treatment
FIGURE 2 | The performance of liver segmentation in base model and transfer-learning model. Transfer learning model performs better on the local clinical data set,
especially in the arterial phase.
TABLE 4 | Results of tumor segmentation model.

Median dice r Sensitivity Precision F1 score FP’s/image

Arterial phase 0.64 0.85 71% 46% 0.56 1.33
Arterial phase 0.65 0.84 79% 71% 0.75 0.4
(>0.5cm3)
Portal venous phase 0.73 0.70 82% 44% 0.57 2.33
Portal venous phase 0.72 0.68 86% 74% 0.79 0.6
(>0.5cm3)
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and evaluating for treatment success. The incorporation of the
automatic segmentation method into the clinical ablation workflow
could improve the performance of image analysis by decreasing
inter-observer variation and providing the quantitative support for
the minimal ablative margin (MAM) assessment. However, due to
the heterogeneous and diffusive liver and tumor shapes, segmenting
them from the CT images is quite challenging. Numerous efforts
have been taken to tackle the segmentation task on liver/tumors.
Christ et al. (29) reported an accuracy of 65% with a DSC of 0.69 for
HCC segmentation using two CNN architectures. Using a fully
automatic 2-stage cascaded method based on the LiTS dataset,
Kaluva et al. (22) reached global DSC of 0.92 and 0.62 on liver and
tumor, respectively. Pandey et al. (30) obtained a DSC of 0.59 on
liver tumor segmentation by introducing ResNet-blocks and
reducing the deep neural network’s complexity. Compared to
these results our proposed approach outperforms them. When
liver tumors are < 1cm in diameter, CT is a less sensitive
modality than hepatobiliary MRI with specific contrast enhancers
(such as gadoxetate), which is preferred in clinical practice (31). For
the detection of such small liver lesions, CT andMRI should be used
in combination for guidance in pre-ablation treatment. Therefore,
in our study we performed a sub-analysis to validate the
performance of the model on tumors > 1cm in diameter which
correspond to an approximate volume of 0.5 cm3. The model
Frontiers in Oncology | www.frontiersin.org 7
demonstrated a higher detection and segmentation performance
for tumors with a volume ≥ 0.5 cm3, which meets the clinical
practical application requirements very well. The performance
improvement was consistent with prior studies (32–34).

In our study, the input size for liver segmentation was
512×512×z, where z was the number of slices per CT subject,
and the input size for a tumor or ablation segmentation was
20×30×30 or 40×60×60. For liver segmentation, using 3D RA-
Unet with larger 3D patches would be computationally much
more expensive than 2D RA-Unet due to its complexity. Besides,
the 2D liver segmentation model had given us an acceptable
result (the dice of liver segmentation was close to 95%), so we
choose 2D RA-Unet for liver segmentation. For tumor
segmentation, to retain sufficient spatial information and
improve the segmentation accuracy of these small lesions, we
used 3D RA-Unet to segment the tumor and the ablation area.

Accurate segmentation of the ablation zone helps assess the
minimal ablative margin, which has a significant influence on the
prognosis of patients with malignant liver tumors, and may
determine the treatment plan to follow (35, 36). To the best of
our knowledge, we have been the first to automatically segment
the ablative zone in patients after RFA/MWA treatment. In our
investigation, the ablation zone model achieved a high
segmentation performance with a median DSC of 0.83 on the
TABLE 5 | Results of ablation zone segmentation model.

Median dice r Sensitivity Precision F1 score FP’s/image

Arterial phase 0.83 0.98 90% 58% 0.74 1.0
Portal venous phase 0.8 0.97 90% 61% 0.73 0.8
July
 2021 | Volume 11 | A
FIGURE 3 | The performance of tumor segmentation and ablation zone segmentation. Pre (A, B) and post (C, D) ablation contrast CT of a 65-year-old male patient
with liver metastases. Tumor and ablation segmentations using the deep learning model are shown.
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arterial phase and 0.89 on the portal venous phase. The ability to
precisely assess the ablation zone is necessary to verify complete
tumor ablation including a sufficient safety margin. The method
presented in this paper may be the basal step for a fully
automated MAM assessment pipeline in clinical practice.

Many studies havedeveloped liver and liver tumor segmentation
algorithms only on the portal venous phase (19, 22, 30). However, a
generalizedalgorithmthat is robust acrossmultiplephaseswouldbe
beneficial and practical for clinical applications. There are various
enhancing patterns of hepatic lesions according to their blood
supply characteristics (37). Some tumors tend to be more evident
in the arterial phase in the liver context, e.g., HCC, and others, the
majority of metastases, tend to be evident in the portal venous
phase. It is critical to select the right phase to visualize the most
Frontiers in Oncology | www.frontiersin.org 8
apparent tumor boundary for further evaluation. In real clinical
practice, doctors can interactively select appropriate phases to
automatically segment lesions of different characteristics, which
yield greater efficiency. Our study shows that transfer learning can
be an effective approach for training CNNs on data from routine
clinical practice.

The initial CNN was trained using 130 CT scans from LiTS
dataset, which included only portal venous phase images. We
showed that using transfer learning, an initial model can be
generalized to another imaging phase with a relatively small
amount of additional training data. We used both the arterial and
portal venous phase images from the local clinical dataset to train
the model. The transfer learned models demonstrate good
performances on the arterial phase images with a median DSC
FIGURE 4 | Box-plots of DSC’s showing the accuracy of the segmentations. Where TA, tumors on arterial phase; TV, tumors on the portal venous phase; AZA,
ablation zones on arterial phase and AZV, ablation zones on portal venous phase.
A C

B D

FIGURE 5 | Plots showing the volumetric assessment between the reference standard and the automatic deep learning based segmentations. Lesions on pre-
ablation arterial phase (A), portal venous phase (B) and, ablation zones on the post-ablation arterial phase (C), portal venous phase (D).
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of 0.95 for the pre-ablation group, and 0.96 for the post-ablation
group for liver segmentation, 0.64 for liver tumor segmentation, and
0.83 for ablation zone segmentation. This indicates that the amount
of training data for a specific task does not need to increase linearly
with the number of images. For CNN training, the two-step phased
approach may be practical, especially when clinical data is limited.
The liver tumor segmentation model showed weaker performance
in the arterial phase than in the venous phase, suggesting that
different phase images had a more significant impact on tumor
segmentation tasks than liver and ablation zone segmentation. We
speculate that the hepatic enhancement in the arterial phase is not
sufficient, making the tumor’s edge slightly fuzzy, which increases
the difficulty for tumor segmentation. More research and datamay
be required to further improve the accuracy of the liver tumor
segmentation model on the arterial phase.

LIMITATIONS

Our study has a few limitations. Firstly, it relies on retrospective data
from a single-center. Secondly, the liver tumor and ablation zone
segmentations need to be assessed from a clinical treatment
perspective. The performance and value of the proposed methods
in a fully automated MAM assessment pipeline need to be further
evaluated. Thirdly, the small number of study patients in the clinical
dataset is a potential drawback of this study. Nevertheless, the results
are encouraging and justify the approach. In the future, evaluation of
the proposed deep learning method using multi-center data with
different scanners and protocols should be conducted.

CONCLUSION

The proposed deep learning approach can provide automated
segmentation of liver tumors and ablation zones on multi-phase
(arterial and portal venous) andmulti-time-point (before and after
RFA/MWA ablation) routine clinical CT images, enabling
quantitative evaluation of treatment success. Using transfer
learning, an initial model can be generalized to another imaging
phase and another type of lesion with a relatively small amount of
additional training data.
Frontiers in Oncology | www.frontiersin.org 9
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