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Abstract

Bacterial endosymbionts have been associated with arthropods and large number of the
insect species show interaction with such bacteria. Different approaches have been used to
understand such symbiont- host interactions. The whitefly, Bemisia tabaci, a highly invasive
agricultural pest, harbors as many as seven different bacterial endosymbionts. These bac-
terial endosymbionts are known to provide various nutritional, physiological, environmental
and evolutionary benefits to its insect host. In this study, we have tried to compare two tech-
niques, Polymerase chain reaction (PCR) and Flourescence in situ Hybridisation (FISH)
commonly used for identification and localization of bacterial endosymbionts in B. tabaci as
it harbors one of the highest numbers of endosymbionts which have helped it in becoming a
successful global invasive agricultural pest. The amplified PCR products were observed as
bands on agarose gel by electrophoresis while the FISH samples were mounted on slides
and observed under confocal microscope. Analysis of results obtained by these two tech-
niques revealed the advantages of FISH over PCR. On a short note, performing FISH,
using LNA probes proved to be more sensitive and informative for identification as well as
localization of bacterial endosymbionts in B. tabaci than relying on PCR. This study would
help in designing more efficient experiments based on much reliable detection procedure
and studying the role of endosymbionts in insects.

Introduction

The term symbiosis refers to a permanent association between two or more distinct individuals,
called symbionts, atleast during a part of their life cycle. The organisms which live inside the
cell of the other are called endosymbionts. Symbiotic relationship can exist at various levels:
between prokaryotes and eukaryotes, between unicellular and multicellular organisms etc. In
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fact, the symbiotic associations can be grouped as mutualism, commensalism, parasitism with
respect to the effect of that symbiont on the host [1]. Symbiotic bacteria are ubiquitous in ani-
mal hosts and in some invertebrate hosts, they live an intracellular existence for much of their
life and are vertically transmitted. It has been estimated that around 15% of all insects possess
such bacterial endosymbionts [2,3]. Different insects like psyllids, aphids, mealybugs, whiteflies
which belong to suborder sternorrhycha of order Hemiptera have been reported to have bacte-
rial endosymbionts.

The insect endosymbionts have been categorized into Primary and Secondary endosymbi-
onts. The Primary endosymbionts have an obligatory relationship with the insect host, provid-
ing essential aminoacids and showing phylogenetic congruence with their host [4,5]. The
secondary endosymbionts have a facultative relationship and a short evolutionary history with
their host [5,6]. These secondary endosymbionts are reported to perform a variety of functional
roles on their hosts, such as providing fitness benefits [7], increasing tolerance to heat stress
[8], increasing resistance to parasitic wasps [9], causing host plant specialization [10], confer-
ring invasiveness [11]. In fact, several secondary endosymbionts appear to affect the capacity of
the host to be a pest. Moreover, Clark et al. [12]; Gibson and Hunter [13]; Douglas [14] have
discussed the role of different endosymbionts in insects. Hence, it is important to detect the dif-
ferent types of bacterial endosymbionts present in insects.

Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) is a worldwide pest of agricultural,
ornamental and field crops [15]. It is also known as cotton whitefly, cassava whitefly and
tobacco whitefly. They are sap sucking insects and feed on the phloem sap of a wide range of
vegetables like brinjal (egg plant), cabbage, raddish, tomato, beans, cucurbits, potato; cash
crops like cotton, sunflower, tobacco; legumes etc. They damage the crops by directly feeding
on them and indirectly by producing honeydew and vectoring 115 different pathogenic plant
viruses [16]. B. tabaci also harbors both Primary endosymbionts and Secondary endosymbi-
onts. Portiera aleyrodidarum is the only primary endosymbiont of the whitefly while secondary
endosymbionts include a range of bacteria for example Wolbachia (Rickettsiales), Arsenopho-
nus (Enterobacteriales), Cardinium (Bacteriodetes), Rickettsia (Rickettsiales), Hamiltonella
(Enterobacteriales), Fritschea (Chlamydiales) [17]. Different genetic groups of B. tabaci have
been described to be infected by different secondary endosymbiont combinations. These endo-
symbionts have been shown to be responsible for conferring important abilities to their host B.
tabaci. Hamiltonella has been described to have a significant contribution in virus transmission
to plants [18]. Similarly, it has been reported that Arsenophonus helps in transmission of cotton
leaf curl virus [19]. A well documented role of Rickettsia in heat tolerance and increased sus-
ceptibility to some insecticides has been reported [20].

Therefore, in light of the compelling evidences of the role of the endosymbionts in B. tabaci
and the benefits they provide to their host, the detailed functions of these endosymbionts
should be studied. However, the basis of all these studies is the detection and identification of
these bacterial endosymbionts. Many techniques have been used for identification, detection
and localization of these endosymbionts including electron microscopy, PCR, confocal micros-
copy (FISH- Flourescence in situ Hybridization) etc. Costa et al. [21] examined the ultrastruc-
ture, morphology and the frequency of endosymbionts of B. tabaci in different geographic
regions using electron microscopy. But this technique determines and identifies the bacteria
only on the basis of their morphology which is a limiting factor in terms of identification of
endosymbionts. The other technique used for identification of endosymbionts is PCR with bac-
terial gene specific primers. Different gene targets like 16S, 23S, GroEL etc have been used for
the identification of bacteria. Several studies have used PCR technique to identify the different
endosymbionts like Portiera, Wolbachia, Rickettsia, Arsenophonus, Cardinium, Hamiltonella,
Fritschea in B. tabaci [22,23,24,25,26,27]. In fact, this technique is widely used for the detection
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and identification of endosymbionts in most of the insect hosts. But, unfortunately it is not
able to provide any information on the localization of endosymbionts within the host. The
other technique used is Flourescence in situ hybridization (FISH) which is a modification of in
situ hybridization technique (ISH) which is based on formation of Watson-Crick base pairing
between the gene of interest and the complementary sequence tagged with a fluorescent
reporter molecule. In FISH, a flourophore is tagged to the probe and it acts as the reporter mol-
ecule. FISH has been used in the detection and identification of unculturable bacteria from dif-
ferent samples [28,29]. Nucleotide sequences of closely related species can also be
differentiated by using FISH [30]. Different types of probes like ssDNA, dsDNA, RNA probes
can also be used depending on the target gene of interest. Another kind of probe called Locked
Nucleic Acid (LNA) is also being used lately. It has been reported that LNA probes are more
sensitive and efficient than DNA probes [31].

Locked nucleic acid (LNA) nucleosides are analogues of nucleic acids consisting of a methy-
lene bridge connecting 2’ O- atom and 4’ C- atom thus locking the ribose ring. The locking of
ribose ring provides an ideal confirmation to the LNA nucleosides to show efficient Watson
and Crick base pairing. The LNA probes show complementary pairing with DNA or RNA oli-
gonucleotides when put together and increases the stability of duplex formed. The stability is
because of increase in the melting temperature of the resulting duplex. The LNA probes are
highly specific and have efficient single nucleotide discrimination and are also resistant to endo
and exonucleases [32,33]. FISH analysis has been done in E. coli by using LNA probes [34].
LNA probes can also be used for detection of specific microRNA and other small RNA mole-
cules in tissues. LNA probes have also been used for detection of bacterial endosymbionts in B.
tabaci [35].

Hence, the aim of present study is to make a detailed comparison of the two molecular tech-
niques—PCR and FISH for identification and localization of bacterial endosymbionts in B.
tabaci and also to identify the different endosymbionts present in different locations with
respect to their genetic groups.

Material and Methods
Ethics Statement

The field studies did not involve endangered or protected species. No specific permissions were
required for these locations/activities as the said insect Bemisia tabaci is not an endangered or
protected species. Its infestation is seen in natural conditions at different locations and its col-
lection does not require any permission or permit from any regulatory authority under the
prevalent laws.

Whitefly collections

B tabaci samples were collected from different locations in India (Fig 1): New Delhi (Delhi),
Ludhiana (Punjab), Guntur (Andhra Pradesh), Kalyani (West Bengal) and Indore (Madhya
Pradesh) and reared in insect proof whitefly culture chambers at Indian Agricultural Research
Institute (IARI), Pusa, New Delhi, India. The samples were selected randomly with the help of
aspirators from abaxial surface of the cotton plant leaves from different chambers. The samples
included both males and females. For PCR the samples were collected in 100% ethanol and
stored at 4°C while, for FISH analysis the samples were collected in acetone in microcentrifuge
tubes and stored at -20°C till further use. The genetic group of whiteflies from different loca-
tions was identified according to Singh et al. [36], based on mitochondrial cytochrome oxidase
1 (mtCO1) gene markers.
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Fig 1. Map showing different locations of whitefly collection. The yellow colour represents Asia Il genetic group and green colour represents Asia |
genetic group. All the samples were collected from cotton fields.

doi:10.1371/journal.pone.0136159.g001

DNA extraction from B. tabaci for diagnostic PCR

Single whitefly was used for DNA isolation. Each whitefly was washed in 200 uL of autoclaved
water by centrifugation at 5000 rpm for 5 minutes. The washed whiteflies were then homoge-
nized with the help of hand held homogenizer (Sigma Aldrich, Z359971-1EA) in 14 pL of lysis
buffer consisting of 100 mM Tris-Cl pH 8.0, 1% SDS, 100 mM NaCl and 100 mM EDTA pH-8
1%. 2 pL of Proteinase K (0.28 pg/pL; Sigma Aldrich, Catalog no. 39450-01-6) was added in the
homogenized mixture and mixed properly. The homogenate was then incubated at 65°C for 45
minutes. After incubation 20 uL of pre-chilled 5 M potassium acetate and 8 gL of 6 M lithium
chloride was added in the incubated homogenate and kept in ice for 15 minutes. The mixture
was then centrifuged at 10000 rpm for 15 minutes. After centrifugation the supernatant was
transferred to fresh microfuge tube and 0.6 volume of isopropanol was added. The supernatant
and isopropanol mixture was again centrifuged at 10000 rpm for 15 minutes. The pellet
obtained after centrifugation was washed in 70% ethanol. The pellet obtained was air dried and
dissolved in elution buffer (10 mM Tris-Cl, pH-8.0). RNase treatment (0.1ug/uL) was given for
45 minutes at 37°C. The DNA was then checked on 0.5% agarose gel containing ethidium bro-
mide (0.5ug/mL). The gel was run at 110 volts for 15 minutes and then observed by UV transil-
luminator (FOTODYNE incorporated, USA).

Diagnostic PCR for presence of bacterial endosymbionts in B. tabaci
samples
B tabaci population from 5 different locations of Delhi, Punjab, Guntur (Andhra Pradesh),

Kalyani (West Bengal) and Indore (Madhya Pradesh) were taken from whitefly culture cham-
bers in IARI, Pusa, New Delhi. 20 whiteflies for each of the five populations were collected
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Table 1. Primers and PCR cycling conditions for the identification of bacterial endosymbionts associated with B. tabaci.

Endosymbiont Primer sequence PCR Cycles Annealing Temperature Product Size Reference
Portiera F-5" TGCAAGTCGCGGCATCAT3’ 45 58°C 1000bp [37]
R-5’ CCGCCTTCTGCGTTGGCAACT3’
Wolbachia F-5' CGGGGGAAAATTTATTGCT3’ 45 52°C 650bp [37]
R-5" AGCTGTAATACAGAAAGGAAAZ!
Rickettsia F-5" GCTCAGAACGAACGCTGG3’ 45 55°C 800bp [26]
R-5" GAAGGAAAGCATCTCTGC3’
Arsenophonus F-5 CGTTTGATGAATTCATAGTCAAAZ! 45 52°C 630bp [37]
R-5" GGTCCTCCAGTTAGTGTTACCCAACI’
Cardinium F-5' GCGGTGTARAATGAGCTTG3’ 45 50°C 440bp [23]

R-5" ACCTCTTCTTTAACTCAAGCCTZ

doi:10.1371/journal.pone.0136159.t001

randomly for the experiment and diagnosed for the presence of different bacterial endosymbi-
onts- Portiera, Wolbachia, Rickettsia, Arsenophonus and Cardinium. Specific bacterial primers
were used for amplification of 16S rRNA bacterial gene (Table 1). For each bacterial endosym-
biont, PCR mix was containing dNTPs (2.5 mM), 1X buffer (2.5 uL), Taq polymerase (1U),
Forward and Reverse primers (7.5 pmol each), DNA template (25-30 ng) and the final volume
of 25 uL was prepared with autoclaved water.

Denaturation was carried for all bacteria at 94°C for 30 seconds. Annealing was carried out
at different temperatures specific for each bacterial endosymbiont (Portiera 58°C, Wolbachia
52°C, Arsenophonus 55°C, Rickettsia 55°C, Cardinium 50°C) for 30 seconds. Extension was car-
ried out at 72°C for 40 seconds with the final extension for 5 minutes at same temperature. 45
number of cycles were fixed for each bacterial endosymbiont detection.

Both positive and negative controls were used for each reaction. The plasmids containing
16S rRNA gene of different bacterial endosymbiont were used as positive controls while the
reaction without any DNA was used as negative control. Portiera being the primary endosym-
biont was expected to be present in all the samples. The PCR product was then checked on
0.8% agarose gel and the PCR products for different bacteria exhibited bands of different band
length (Portiera 1000bp, Wolbachia 650bp, Arsenophonus 630bp, Rickettsia 800bp, Cardinium
440bp).

Locked Nucleic Acid (LNA) Probes

The LNA probes used were specific in sequence for specific bacterial endosymbionts. The LNA
probes were supplied by Exiqon A/S. The LNA probe sequences for different endosymbionts
are given in the Table 2. The concentration of probes used for all the endosymbionts was 10
nmoles per mL.

Table 2. LNA probe sequences for different endosymbionts.

Endosymbiont 5’-3’ sequence Flourescent dye at 5’ end Product number Batch number Reference
Portiera TGTCAGTGTCAGCCCAGAAG 56FAM 500150 503271 [38]
Wolbachia CTTCTGTGAGTACCGTCATTATC TEX615 500150 503275 [38]
Arsenophonus TCATGACCACAACCTCCAAA TYE665 500150 503277 [38]
Rickettsia TCCACGTCGCCGTCTTGC TYE563 500150 503272 [38]
Cardinium TATCAATTGCAGTTCTAGCG TYE705 500150 503273 [38]

doi:10.1371/journal.pone.0136159.1002
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Flourescent In situ Hybridization

The whitefly samples from different locations stored in acetone were processed for FISH analy-
sis. B. tabaci samples were fixed in the Carnoy’s fixative (Ethanol: Chloroform: Glacial acetic
acid, 6:3:1) overnight. The fixed whitefly samples were kept in 6% H,O, for 48 hours for deco-
louration. The decolourized flies were treated with 50 uL of hybridization buffer (20 mM Tris-
Cl, pH-8, 1% Sodium dodecyl sulphate, 0.9 M sodium chloride, 30% Formamide) containing
specific LNA probes for different bacterial endosymbionts. Different combinations of LNA
probes were used depending on the specific flurophores used in the probes. The mixture was
then incubated at 42°C overnight. The overnight mixture was taken out and the whitefly sam-
ples were washed twice with washing buffer (0.03 M sodium citrate, 0.3 M sodium chloride,
0.01% SDS-sodium dodecyl sulphate) for 15 minutes. The washed whiteflies were then
mounted on slides using Vectashield (Vector Labs). For each location 20 replicates for each
bacterial endosymbiont were taken. Then the slides were observed for different bacterial endo-
symbionts on Nikon A1 confocal microscope and images were acquired at fixed camera and
microscope settings for LNA probes. NIS elements (V3.21.02) image analysis software (Nikon)
was used for quantifying the fluorescence intensities for different bacterial endosymbionts.

Results

The genetic groups of the B. tabaci collected from different locations have been shown in Fig 1
and our results show no difference in the structure of endosymbionts from these locations
across India. Genomic DNA was isolated from 20 different individuals of each population and
used for detection of different endosymbionts by bacteria specific diagnostic PCR, whose
results are summarized in Table 3. As a sample, results from 6 individual whitefly of Delhi pop-
ulation is pictorially represented in Fig 2, where in presence of Portiera is indicated by an
approximate 1000 bp PCR product, presence of Wolbachia by 650 bp, Rickettsia by 800 bp,
Arsenophonus by 630 bp and Cardinium by a 440 bp PCR product. Positive and negative con-
trols were included in each PCR, which gave the intended results. Analysis of Fig 2 indicates
that Portiera is present in all the 6 samples, while Wolbachia, Rickettsia and Arsenophonus is
present in only some of the 6 whitefly individuals, and Cardinium was absent in all of them.
The detection of the four secondary endosymbionts was not uniformly detected (positive) in
every individual and thus the 20 individuals from each location showed varied infection fre-
quencies (Table 3). This points to the fact that bacteria specific diagnostic PCR does not detect
secondary endosymbionts in all the individuals of a population from a particular location.

Table 3. Detection of different endosymbionts from different population on basis of 16S gene primer specific diagnostic PCR and FISH analysis

by LNA probes.

Total no. of samples for Location Portiera present Wolbachia present Rickettsia present Arsenophonus present Cardinium

each bacteria for both present

PCR and FISH

separately PCR FISH > P PCR FISH »2 P PCR FISH y? P PCR FISH »? P PCR FISH

20 Delhi 19 20 0.05 0.8 12 19 3.25 0.05 9 16 6.13 0.01 9 16 6.85 0.01 O 0

20 Punjab 18 20 02 07 9 18 6.25 0.01 8 17 7.65 0.01 11 15 5.30 0.01 O 0

20 Guntur 18 20 02 07 7 19 8.50 0.01 3 17 149 0.001 14 17 22501 0 0
(AP)

20 Kalyani 18 20 02 075 20 11.25 0.001 0 18 20.20 0.001 6 17 10.45 0.001 O 0
(WB)

20 Indore 20 20 - - 0 17  20.45 0.001 13 14 425 0.05 3 18 14.65 0.001 O 0
(MP)

doi:10.1371/journal.pone.0136159.1003
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Fig 2. Agarose gel electrophoresis of 16S rDNA PCR product of different bacterial endosymbionts, amplified from total DNA of B. tabaci samples
of Delhi population. (A) Represents PCR results for primary endosymbiont Portiera (1kb). (B) Wolbachia (650bp). (C) Rickettsia (800bp). (D) Arsenophonus

(630bp). (E) Cardinium (440bp) (Not detected from any of the samples from any location.)

doi:10.1371/journal.pone.0136159.g002
FISH, by using fluorescent DNA oligo is another method to detect endosymbiotic bacteria

in insects. Representative results are depicted in Fig 3 of whole mounts of B. tabaci from Delhi
population for each of the bacterial endosymbiont. For detection of each secondary endosym-
biont, the detection of Portiera, the primary endosymbiont was used as a positive control.
Results obtained by FISH indicate that Portiera is present in all locations, similar to the results
by PCR. It also indicates the presence of Wolbachia, Rickettsia and Arsenophonus in all loca-
tions and the total absence of Cardinium. The proportion of positive detection by FISH appears
to be significantly greater, than that by PCR, for samples from the same population (Table 3).
In order to statistically compare the efficiency of these techniques for detecting bacterial
endosymbionts, the results were (i) compared by % test and (ii) converted to percentage posi-
tive detection, which were then compared for each bacteria in different populations (locations).
Fig 4A compares the results obtained by PCR and FISH in detecting Portiera in five different
locations where in PCR is able to detect Portiera in 90-100% of the samples while FISH detects
Portiera in all the 100 individuals (20 sample x 5 location), but there is no significant difference
in the detection abilities between these two techniques. Portiera being the predominant pri-
mary endosymbiont was detected in all 5 populations and the overall infection frequency of
Portiera was significantly higher in all populations as compared to other secondary bacterial

7/13
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Fig 3. FISH staining of different bacterial endosymbionts in whole mount of B. tabaci using bacteria specific LNA probes. Arrows indicate the
bacteriocytes. Portiera is used as a control for other secondary endosymbionts. (A) Localization of Wolbachia and Portiera. (B) Localization of Rickettsia and
Portiera. (C) Localization of Arsenophonus and Portiera. (D) Localization of Cardinium and Portiera (Cardinium being absent in this case). (a) Merged image
showing overlap of Portiera and respective secondary endosymbiont. (b) Presence of Portiera in bacteriocytes. (c) Presence of respective secondary
endosymbiont in bacteriocytes (d) Phase contrast.

doi:10.1371/journal.pone.0136159.9003

endosymbionts. All values were non-significant for x” test (Table 3, Fig 4A). On the contrary,
detection of secondary endosymbionts by FISH is significanty superior to detection by PCR.
Infection frequency of secondary endosymbiont Wolbachia, Rickettsia and Arsenophonus as
detected by PCR was significantly less as compared to detection by FISH with LNA probes.
Wolbachia could not be detected from Indore population by PCR. In fact, for Wolbachia all
populations from different locations showed significant differences for y test (Table 3, Fig 4B).

PLOS ONE | DOI:10.1371/journal.pone.0136159 August 19, 2015 8/13
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Fig 4. Comparative frequency distribution of different bacterial endosymbionts by diagnostic PCR and FISH in samples of B. tabaci from different
locations. (A) Portiera. On an average, from all locations, Portiera was detected in 93% of the samples by PCR and 100% by FISH (x® = 0.49, P = 0.50). (B)
Wolbachia. On an average, from all locations, Wolbachia was detected in 33% of the samples by PCR and 93% by FISH (x? = 45.38, P = 0.001). (C)
Rickettsia. From all locations on an average 33% of Rickettsia was detected by PCR and 82% by FISH (x2 = 48.13, P = 0.001). (D) Arsenophonus. On an
average from all locations 43% of the samples were detected to have Arsenophonus by PCR and 83% by FISH (x? = 35.38, P = 0.001). The values above the
bars give the percentage of bacterial endosymbionts in those locations detected respectively by two techniques. The asterisks over bars shows the

significant difference based on %2 values for samples from same location for each of the endosymbionts detected by two techniques. *P < 0.05, **P < 0.01,
**¥*pP < 0.001.

doi:10.1371/journal.pone.0136159.9g004

Similarly, Rickettsia could not be detected from Kalyani (WB) population by PCR. The x>
values for detecting Rickettsia either by PCR or by FISH also showed significant differences
(Table 3, Fig 4C). Similarly, comparing Arsenophonus detection by PCR and FISH from differ-
ent populations, we found that, except Guntur, the other four locations showed significant
values (Table 3, Fig 4D). The percent infection frequency of different bacterial endosymbionts
as detected by both techniques from different populations is also presented in Fig 4. Thus,
these results compel us to conclude that FISH is a superior technique to detect endosymbiotic
bacteria from insect samples.

Discussion

Detection of bacteria in insects is of major importance for understanding the benefits or losses
accounted by these bacteria to the host species. These interactions between bacterial endosym-
bionts and their hosts are important for host’s ecology, evolution and fitness. In this study, the
two techniques viz PCR and FISH have showed varied sensitivity in the detection of bacterial

PLOS ONE | DOI:10.1371/journal.pone.0136159 August 19, 2015 9/13



@’PLOS ‘ ONE

Comparison of PCR & FISH in Detecting Endosymbionts

endosymbionts in the insect B. tabaci. Such comparative studies between the two techniques
have been done earlier for detection of translocations in lymphomas [39,40], detection of aneu-
ploidies in single blastomeres [41], detection of tumors in processed tissue [42], identification
of different bacteria from patients with cystic fibrosis [43] etc. Some of these studies have
clearly considered FISH as superior to PCR [41,42] while others have just compared them.
Although, PCR and FISH have been used for the detection of bacterial endosymbionts in
insects including aphids, mealybugs, whiteflies etc [26,37,38,44,45,46,47,48,49], no such com-
parative analysis between the two has been performed. Hence, in view of non-availability of
such an account in insects, we comparatively evaluated the sensitivity and applicability of these
techniques in detecting bacterial endosymbionts in the insect, B. tabaci.

In our study, PCR resulted in a lower sensitivity and varied infection frequency while detect-
ing bacterial endosymbionts, which is in accordance with earlier studies [24,38,50]. The low
detection by PCR in our study could be because of the actual absence of the endosymbiont in
the whitefly sample. On the contrary, when whitefly samples from locations testing negative for
a particular endosymbiont through PCR were subjected to FISH, these endosymbiotic bacteria
could be detected, thus indicating that endosymbionts are actually present in these samples, but
could not be detected by PCR. Another reason for non- detection could be the insensitivity of
the PCR protocol to detect lower titres of endosymbionts in the whitefly sample [51]. In fact, it
has been suggested that the bacterial community which make up atleast 1% of the total bacterial
population in the host can only be detected by PCR [52]. The bacterial endosymbiont popula-
tion could be lesser than this (1%) level and hence not detected by PCR in our experiments.

It has also been reported that the number of bacteriocytes present in males are less when
compared to females and this could also be a reason for the non- detection of endosymbionts
in some of our samples by PCR. However, the FISH results obtained with both males and
females confirmed high sensitivity of LNA probes as compared to PCR. Moreover, in our ear-
lier study, we have also concluded that the use of LNA probes substantially improve the detec-
tion of bacterial endosymbionts by FISH [35].

In Conclusion, our results in this study clearly indicates the acuteness of FISH over PCR in
detecting endosymbionts in insect B. tabaci, which is validated by (a) the increased number of
endosymbiont bearing whitefly individuals detected by FISH vis a vis PCR, (b) the increased
efficiency of FISH in comparing the infection frequencies both within a population and also
among the six different locations irrespective of the genetic group of whiteflies, (c) consistency
of the results obtained by FISH in samples from all the locations than obtained by PCR, (d) the
increased average presence of secondary endosymbionts determined from all the locations by
FISH than that determined by PCR.

In fact, the present data clearly represents the pros and cons of both the techniques and also
gives an idea about the possible problems encountered by using these techniques. While on
one hand, PCR can only be used for the detection of the endosymbionts, FISH with LNA
probes can also be used for localization of the endosymbionts within the host besides detecting
them. However, the FISH based detection technique is quite expensive and the probes used are
susceptible to rapid freeze and thaw which can affect the quality of signals and consequently
the results. Their usage also demands high level of care and precision, with excessive amount of
probes leading to non-specific signals. Also, there are chances of obtaining autofluorosence
because of probes interacting with fat bodies or some other non-specific structures in the insect
body, thus giving false positive results. However, the issue of false positives in FISH can be
taken care of by processing the samples without probes and then comparing with the samples
processed with probes. This will give an idea about whether the signal obtained in case of sam-
ples with probes are really genuine signals for the bacteria or some false signals generated by
excitation of some impurities or insect chitinous structure.

PLOS ONE | DOI:10.1371/journal.pone.0136159 August 19, 2015 10/13



@’PLOS ‘ ONE

Comparison of PCR & FISH in Detecting Endosymbionts

Nevertheless, the results obtained from both techniques also revealed the advantages of one
over the other. PCR results did not show the presence of some endosymbionts in all the sam-
ples but in case of FISH even low intensity signals were detected. In addition, the PCR based
detection is a two step process, involving the isolation of DNA from the samples followed by
amplification using PCR. If the DNA would be isolated properly, only then the PCR results
could be obtained and there are chances of getting non-specific amplification. But in case of
FISH, there is no need for DNA isolation which further reduces the chances of error. Also,
large number of insect samples can be easily processed simultaneously in FISH as compared to
PCR which is more laborious. Moreover, PCR based detection of endosymbionts can be further
improved by use of modified bacteria specific primers which can help in detection of even
smaller quantities of endosymbionts. Thus, our results clearly give an edge to FISH technique
over the PCR and there is an urgent need for more research to be conducted on intelligent
usage of different techniques for identification and localization of bacterial endosymbionts in
insect species.
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