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Abstract

Objective: The presence of a lightweight convolutional neural network (CNN) model with a high-accuracy rate and low com-
plexity can be useful in building an early obesity detection system, especially on mobile-based applications. The previous
works of the CNN model for obesity detection were focused on the accuracy performances without considering the complex-
ity size. In this study, we aim to build a new lightweight CNN model that can accurately classify normal and obese thermo-
grams with low complexity sizes.

Methods: The DenseNet201 CNN architectures were modified by replacing the standard convolution layers with multiple
depthwise and pointwise convolution layers from the MobileNet architectures. Then, the depth network of the dense
block was reduced to determine which depths were the most comparable to obtain minimum validation losses. The pro-
posed model then was compared with state-of-the-art DenseNet and MobileNet CNN models in terms of classification per-
formances, and complexity size, which is measured in model size and computation cost.

Results: The results of the testing experiment show that the proposed model has achieved an accuracy of 81.54% with a
model size of 1.44megabyte (MB). This accuracy was comparable to that of DenseNet, which was 83.08%. However,
DenseNet’s model size was 71.77 MB. On the other hand, the proposed model’s accuracy was higher than that of
MobileNetV2, which was 79.23%, with a computation cost of 0.69 billion floating-point operations per second (GFLOPS),
which approximated that of MobileNetV2, which was 0.59 GFLOPS.

Conclusions: The proposed model inherited the feature-extracting ability from the DenseNet201 architecture while keeping
the lightweight complexity characteristic of the MobileNet architecture.
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Introduction
Obesity is a global health concern with a rising preva-
lence that has far-reaching implications for individuals
and healthcare systems.1 The presence of a lightweight
convolutional neural network (CNN) model with a high-
accuracy rate and small complexity can be useful in
building an early obesity detection system. Such
models are expected to have a balanced accuracy and
complexity to ensure real-time and resource-efficient
diagnosis.2 However, some previous works3–5 focused
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on the accuracy of the CNN models without considering
the complexity of the size.

In this study, we aim to build a new lightweight CNN
model that can accurately classify normal and obese thermo-
grams while having low complexity size so it could be embed-
ded as a mobile-based early obesity detection system. We
propose a customized CNN architecture derived from the
fusion of DenseNet201 and MobileNet architectures to
achieve this objective. We modify the standard convolution
layer structure from DenseNet201 and then factorize it into
separable depthwise convolution layers from MobileNet.
Then, we also reduced the network depth in the dense
blocks. The novel architecture is designed to inherit the
feature-extracting capability of DenseNet201 while incorpor-
ating the lightweight complexity characteristics of MobileNet.

This research comprehensively evaluates the proposed
customized CNN model, comparing its performance with
state-of-the-art CNN models such as MobileNet6 and
DenseNet201.7 The comparison is based on several key
metrics, including classification performances, computational
cost measured in terms of floating-point operations per second
(FLOPS), model size quantified by the number of parameters,
and memory consumption or model size (in megabyte (MB)).

Related work
CNNs use in medical image analysis has recently significantly
advanced, especially in detecting and diagnosing diseases.8 A
CNN algorithm could be applied to classify and analyze
various medical image modalities such as X-rays,9 computer
tomography (CT),10,11 magnetic resonance imaging (MRI),12

and positron emission tomography13 scans. A CNN model
will extract the given input images, learn the features, and
then classify or segment the output images.14

In the context of obesity detection, CNN has been employed
to diagnose obesity by segmenting subcutaneous and visceral
adipose fat from CT scans and MRI images.15–17 A different
approach to diagnosing obesity is alsomade by quantifying sub-
cutaneous and visceral fat areas from CT images through the
CNNalgorithm.18,19 Some studies use bio-modeling techniques
of thefinite elementmodel for analyzing the stress onknee joints
between normal and obese subjects, which has the potential to
be applied to diagnosing obesity by feeding up the measured
model into machine learning or neural network classifiers.20

However, the adoption of these technologies in terms of
public access still needs to be improved and challenging. An
obesity detection method that the public could easily access
remains a topic of ongoing research.

Some studies, such as,21–23 have explored the potential of
thermal imaging, also known as infrared thermography, as an
alternative approach to obesity detection. This technique
involves measuring the temperature of brown adipose fat in
the human body.24–26 The studies reported that there were sig-
nificant temperature pattern differences between obese and
normal individuals, and these features could be extracted

and learned by CNN models.27,28 Recent studies3–5 have pro-
posed a customized CNN model, drawing inspiration from
existing architectures, to classify thermal images into obese
and normal classes. However, these studies did not consider
the computation cost and model size metrics of their proposed
model. These complexity metrics of computation cost and
model size would be useful to increase the efficiency and
applicability of the CNN model in mobile-based applications.

The implementation of CNN applications is rapidly
expanding, with a noteworthy trend being the integration of
CNN models into mobile devices. However, for seamless
deployment on these devices, the imperative is a lightweight
CNN model characterized by minimal memory consumption,
low computation cost, and reduced complexity.2,29 Various
studies have been undertaken to achieve such lightweight
CNN models. These include approaches such as combining
straightforward CNN architectures with diverse machine
learning classifiers to reduce learning parameters,30 customiz-
ing basic CNN architectures with techniques such as overlap-
ping pooling and increased convolution stride,31 adapting the
LiteFlowNet architecture and incorporating deep skip connec-
tion gated recurrent units,32,33 and modifying state-of-the-art
lightweight CNN architectures such as ShuffleNet34–36 and
MobileNet.37,38 Collectively, these studies contribute to
developing mobile-friendly CNN models with enhanced effi-
ciency and resource utilization.

In the pursuit of developing an efficient CNN model for
obesity detection, our previous study, as detailed in Leo
et al.,39 involved fine-tuning established models, namely
VGG19,40 DenseNet201,7 ResNet152V2,41 and MobileNet.6

Traditional CNN architectures such as VGG19 and
DenseNet201 show better accuracy in classifying obese ther-
mograms. However, their drawback lies in their high
memory consumption and high computational cost. On the
other hand, lightweight CNN models, such as MobileNet
and ResNet, show a lower accuracy, yet their advantages lie
in significantly reduced computation cost and model size.

The existing body of literature underscores the import-
ance of developing CNN models for obesity diagnosis,
especially in thermal imaging. The challenges lie in achiev-
ing a delicate balance between accuracy, computational
efficiency, and model size, which was advantageous for
deploying such models on mobile platforms. This study
builds upon these insights by proposing a novel lightweight
CNN architecture to address the specific requirements of
mobile-based early obesity diagnosis systems.

Method
The nature of this study involves the development and
evaluation of a novel CNN architecture specifically
designed for detecting obesity using thermal image data.
The study was conducted in the signal processing and
multimedia laboratory at the Electrical and Computer
Engineering Department of Syiah Kuala University in
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Indonesia. The dataset collection and the experimental
setup were conducted from April to December 2023. In
this section, we will explain the method used to design
the proposed novel CNN architectures.

The proposed CNN architecture is designed by choosing
the DenseNet201 architecture as the baseline architecture.7

Then, it is followed by modifying the convolutional layers
into separable depthwise convolution layers from
MobileNet architecture,6 modifying the network depth in
the dense blocks and the fully connected layers to our
desired output classes. This section helps explain which
ideas have been adopted in developing the proposed CNN
architecture.

Load baseline architecture: DenseNet201

The first step in designing the proposed model was to load
the baseline architecture of DenseNet201 as shown in
Figure 1.7 The DenseNet201 architecture consists of
single convolution layers with kernel dimension of 7 × 7,
a single max pool, four dense blocks, three transition
blocks, and followed with fully connected layers. In a

single dense block, multiple sequences of convolution and
convolution layers exist. In transition blocks, only a
single convolution layer and average pooling layers exist.
While the feature extraction is in the bottom layer, the fea-
tures are next fed into 1000 fully connected layers for 1000
classes of classification outputs.

The main concept of DenseNet lies in the densely con-
nected layers in the dense blocks for combining the features
maps in concat layers, as shown in Figure 2. The features
map F has a size of DF × DF × CF , features map G has a
size of DG × DG × CG, and features map H has a size of
DH × DH × CH . Instead of combining the feature maps F
and features map G by using the connection layer of
feature summation in ResNet,41 the DenseNet architecture
concatenated them into a new features map of H, which
the dimension size could be calculated as follows:

DH = DF = DG (1)

CH = CF + CG (2)

where the size of DH equal with the size of DF and DG,
while the size of CH equals to the summation of CF and
CG. To do the concatenated operation, the size of the

Figure 1. DenseNet201 architecture.
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operands, in this case DF and DG, should be the same size.
The features map from the previous convolution process is
added and convoluted in the next convolution layers by per-
forming a concatenate operation. By performing the concat-
enate connection multiple times in dense blocks, the flow of
information and gradients of the networks was improved
and became easier to train.7

To downsampling the features map, an 1 × 1 convolu-
tion layer and a 2 × 2 global average pooling layer were
added in each transition block. The 1 × 1 convolution
layer added to changes the features map’s channel size by
half of its original size. Suppose a features map F with
sizes of DF × DF × CF is convoluted with a kernel with
sizes of DK × DK × CK . The size of DK is 1 and the the
size of CK is computed as:

CK = CF

2
(3)

where the size of CK is adjusted into half of the size of CF .
By performing the 1 × 1 convolution layers, the output fea-
tures map size will become DF × DF × CK . While the 2 × 2
average pool is added to downsampling the features
map’s width and height into half of the original size.
Therefore, when a feature map was fed into the transition
blocks, the output size of the feature map became half of
the input size.

Modify convolution layers

After loading the base model of DenseNet architectures, we
modify the convolution layers in the dense blocks into sep-
arable depthwise convolution layers from MobileNet archi-
tecture. MobileNet is a lightweight CNN model due to its
separable depthwise convolution layer, significantly redu-
cing computation cost and learning parameters.6 The
MobileNet architecture factorizes a standard convolution
into depthwise and pointwise convolution. A standard con-
volution filters the input feature map and combines them
into a new feature map output, as shown in Figure 3(a).
While the separable depthwise convolutions consist of a
single kernel of depthwise convolution as shown in 3(b)

and 1 × 1 pointwise convolution as shown in Figure 3(c).
The depthwise convolution filters the input feature map
while the pointwise convolution combines them into a
new feature map output, which has an equivalent result to
the standard convolution.

In the standard convolution layer, a DF × DF × CF

feature map F is convoluted by a DK × DK × CK kernel
K as shown in Figure 3(a). Where DF is the spatial
width and height of feature map F, CF is the number
channel of feature map F, DK is the kernel size of
kernel K, and CK is the number channel of
kernel K. The output feature map for the standard
convolution by assuming with 2 × 2 padding and single
stride is DF × DF × CK feature map output with a compu-
tation cost of:

DF · DF · CF · DK · DK · CK (4)

where the computation cost depends on the multiplica-
tion of all the features map and the kernel size.

While in the depthwise convolution layer, a DF × DF ×
CF feature map F was convoluted by a single DK × DK

kernel K as shown in Figure 3(b). The depthwise convolu-
tion operation filters the input map and produces a DF ×
DF × 1 feature map output. Where the output channel size
is equal to the size of the kernel channel with computation
cost of:

DF · DF · CF · DK · DK (5)

Then continued with the pointwise convolution layer where
the DF × DF × 1 feature map is convoluted with 1 × 1
kernel with the size of CK as shown in Figure 3(c). The
pointwise convolution operation combines the feature
map and produces a DF × DF × CK feature map output.
The pointwise convolution operation produces a computa-
tion cost of:

DF · DF · CK (6)

The separable convolution operation from the depthwise
and pointwise operation results in a DF × DF × CK

output features map, which is equal to the standard convo-
lution operations output. However, the separable

Figure 2. Concatenate operation in DenseNet201 dense blocks.
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convolution operations significantly reduce the computa-
tion cost and model size. The computation cost of both
depthwise and pointwise convolutions is calculated by
following:

DF · DF · CF · DK · DK + DF · DF · CK (7)

where the computation cost is the sum of the depthwise
and pointwise convolution computation cost instead of
multiplying all the spatial elements in standard convolu-
tion operation.

In this study, after we loaded the DenseNet201
base model, we modified the standard 3 × 3 convolution
layer into a sequence of 3 × 3 depthwise and 1 × 1 point-
wise convolution as shown in Figure 4 and Table 1.
The 7 × 7 convolution layer after the input layer, 1 × 1
convolution layer in the transition block, and 1 × 1
convolution layer in the dense block remain untouched,
only the 3 × 3 convolution layer in dense blocks
are factorized into separable depthwise convolution
layer.

Modify dense blocks

To reduce the computational cost of the proposed CNN
model, we modified the repetition sequence of convolu-
tion operation in the dense block as shown in Table 1.
Table 1 shows the CNN architecture comparison
between the state-of-the-art DenseNet2017 with our pro-
posed CNN architecture, namely modified DenseNet
(MD). We named our proposed CNN architecture based
on its sequence repetition in the dense blocks MD
6-12-48-32, MD 6-12-12-6, and MD 2-4-4-2. In our pro-
posed architecture, instead of using standard convolution
in the dense blocks, we implement the depthwise separ-
able convolution in each repetition sequence of the
dense blocks. Note that each “Conv” operation shown
in the table is the sequence of the batch normalization
layer, rectified linear unit (ReLU) activation function,
and a convolution layer.

The DenseNet201 architecture originally consisted of
four dense blocks to extract the feature maps and three

Figure 3. Convolution operations: (a) standard convolution, (b) depthwise convolution, and (c) pointwise convolution.
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transition blocks to reduce the feature maps’ dimensions.
Each dense block has repetition sequences of 1 × 1 conv
layer, 3 × 3, and a concatenate layer. In DenseNet201, the
repetition in the dense blocks was 6-12-48-32, which has
very high computation operations. Then we modify the 3 ×
3 standard convolution layer into a separable depthwise con-
volution technique from MobileNet and named MD
6-12-48-32, where the repetition in the dense blocks was
the same as the DenseNet201. We also try to reduce the repe-
tition sequence from 6-12-48-32 into 6-12-12-6 and 2-4-4-2
to evaluate the trade-off between the computation cost and
the classification performance. As we see in Table 1, the
width and height of the output feature map size of the MD
are equal to the DenseNet201 architecture. The depthwise
and pointwise convolution produce the same output size as
the standard convolution with the reduced computation
cost. However, the dimension channels between all the
DenseNet201, MD 6-12-48-32, MD 6-12-12-6, and MD
2-4-4-2 are different due to the concatenate operation in
the dense blocks. The denser the repetition of the dense
blocks, the larger the channel output. Modifying the dense
blocks was expected to achieve comparable classification
performances with reduced computation costs.

Modify fully connected layers

After the feature extraction operation in the bottom layer,
which consists of the input layer, dense blocks, and transi-
tion blocks, the feature maps are then classified through the
top layer, which consists of a pooling layer and a fully con-
nected layer. The state-of-the-art DenseNet201 top layer

uses a global average pool layer and 1000 fully connected
layers to classify 1000 classes of the ImageNet dataset.42

In this study, we applied a global average pool layer to aver-
aging and resizing the feature map into a single matrix. We
added a dropout layer of 0.5 to regularize the proposed
model. Then, forward to a fully connected layer with a
size of 256 (with ReLU activation function) and fully con-
nected with a size of 2 (with softmax function)

Experimental setup
This section will describe the detailed experimental setup
we used to develop the lightweight CNN model for
obesity detection. We describe the dataset used in this
study and the training platform used to train, validate, and
test the proposed model.

Dataset

The dataset we used in this study was already published and
can be accessed at Leo et al.43 The subject inclusion &
exclusion criteria, image acquisition protocol, thermal
camera setups, and image pre-processing procedures were
explained in detail in Leo et al.43

The image dataset was captured from 126 male partici-
pants in Indonesia, aged 18 to 25 years. Participants’
images with body mass index (BMI) <25 were labeled as
normal images, while participant images with BMI more
than or equal to 25 were labeled as obese images. The
dataset consists of five body regions: supraclavicular
(SCV), abdomen, forearm, palm, and shank regions as

Figure 4. Proposed convolutional neural network (CNN) architecture.
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shown in Figure 5, with 1260 images with two classes:
obese and normal as shown in Table 2. We set the training
with 1000 images, then held the 130 images for the valid-
ation set and 130 images for the testing set. Each five-body
region contains 252 images, which is 20% of the total
images. For the train set, each body region contains 114
normal images and 86 obese images. In each validation
and testing set, each body region contains 14 normal
images and 12 obese images.

The dataset images were three-channel red–green–blue
colored images with the size of 224 × 224 × 3. The

images were already pre-processed with a “signal linear”
color mapping configuration (within FLIR Tools software
configurations) and a temperature scale of 27 ◦C to
37 ◦C.43 The pre-processing procedures were applied
to normalize the color mapping of the thermal images to
obtain an objective evaluation of obesity and normal
images. The details of the pre-processing procedures were
explained in Leo et al.43

We also apply image augmentation on the training set to
help the models generalize the features. We used the
TensorFlow library of the ImageDataGenerator function

Figure 5. Obesity thermogram dataset of supraclavicular, abdomen, forearm, palm, and shank regions: (a) normal thermograms and (b)
obese thermograms.

Leo et al. 7



to randomly augment the images in each batch according
to the specified augmentation parameters. Therefore,
during each epoch, the model sees different augmented
versions of the original images. The augmentation para-
meters we used in this study are rotation 5◦, width,
and height shift with a range of 0.1, and zoom shift with
a range of 0.1.

Training, validation, and testing setup

All the networks were trained and validated on Google Cloud
Engine Virtual Machine with NVIDIA V100 Tensor Core
GPU and Tensorflow framework. We train the model with
an obesity thermogram dataset for 150 epochs with a batch
size of 64. The prediction loss was calculated using a sparse

Table 1. CNN architecture comparison between DenseNet201 and the proposed MD.

Layer
Output
size

CNN architecture

DenseNet201 MD-6-12-48-32 MD-6-12-12-6 MD-2-4-4-2

Input 224 × 224 Thermal images [224 × 224 × 3]

Conv layer 112 × 112 Conv [7×7, 64, strides 2]

Max pooling 56 × 56 Max pooling [2×2]

Dense block (1) 56 × 56 Conv[1 × 1]
Conv[3 × 3]
Concat

⎡
⎣

⎤
⎦ × 6

Conv[1 × 1]
DwConv[3 × 3]
PwConv[1 × 1]

Concat

⎡
⎢⎢⎣

⎤
⎥⎥⎦ × 6

Conv[1 × 1]
DwConv[3 × 3]
PwConv[1 × 1]

Concat

⎡
⎢⎢⎣

⎤
⎥⎥⎦ × 6

Conv[1 × 1]
DwConv[3 × 3]
PwConv[1 × 1]

Concat

⎡
⎢⎢⎣

⎤
⎥⎥⎦ × 2

Transition 56 × 56 Conv [1 × 1]

block (1) 28 × 28 Average pooling [2 × 2, strides 2]

Dense block (2) 28 × 28 Conv[1 × 1]
Conv[3 × 3]
Concat

⎡
⎣

⎤
⎦ × 12

Conv[1 × 1]
DwConv[3 × 3]
PwConv[1 × 1]

Concat

⎡
⎢⎢⎣

⎤
⎥⎥⎦ × 12

Conv[1 × 1]
DwConv[3 × 3]
PwConv[1 × 1]

Concat

⎡
⎢⎢⎣

⎤
⎥⎥⎦ × 12

Conv[1 × 1]
DwConv[3 × 3]
PwConv[1 × 1]

Concat

⎡
⎢⎢⎣

⎤
⎥⎥⎦ × 4

Transition 28 × 28 Conv [1 × 1]

block (2) 14 × 14 Average pooling [2 × 2, strides 2]

Dense block (3) 14 × 14 Conv[1 × 1]
Conv[3 × 3]
Concat

⎡
⎣

⎤
⎦ × 48

Conv[1 × 1]
DwConv[3 × 3]
PwConv[1 × 1]

Concat

⎡
⎢⎢⎣

⎤
⎥⎥⎦ × 48

Conv[1 × 1]
DwConv[3 × 3]
PwConv[1 × 1]

Concat

⎡
⎢⎢⎣

⎤
⎥⎥⎦ × 12

Conv[1 × 1]
DwConv[3 × 3]
PwConv[1 × 1]

Concat

⎡
⎢⎢⎣

⎤
⎥⎥⎦ × 4

Transition 14 × 14 Conv [1 × 1]

block (3) 7 × 7 Average pooling [2 × 2, strides 2]

Dense block (4) 7 × 7 Conv[1 × 1]
Conv[3 × 3]
Concat

⎡
⎣

⎤
⎦ × 32

Conv[1 × 1]
DwConv[3 × 3]
PwConv[1 × 1]

Concat

⎡
⎢⎢⎣

⎤
⎥⎥⎦ × 32

Conv[1 × 1]
DwConv[3 × 3]
PwConv[1 × 1]

Concat

⎡
⎢⎢⎣

⎤
⎥⎥⎦ × 6

Conv[1 × 1]
DwConv[3 × 3]
PwConv[1 × 1]

Concat

⎡
⎢⎢⎣

⎤
⎥⎥⎦ × 2

Top layer 1 × 1 Global average pooling

Dropout [0.5]

Fully connected layer [256, ReLU]

Fully connected layer [2, Softmax]

CNN: convolutional neural network; MD: modified DenseNet; ReLU: rectified linear unit. Note that each “Conv” operation shown in the table are the sequences
of batch normalization–ReLU—convolution layer.
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categorical cross-entropy loss function in the backward propa-
gation process. We train the model with Adam optimizer with
a scheduled learning rate as follows:

lr =
0.0001 if1 ≤ epoch < 50
0.00001 if50 ≤ epoch < 100
0.000001 epoch ≥ 100

⎧⎨
⎩ (8)

where the learning rate is adjusted for every 50 epochs, start-
ing from 0.0001, then stepping down to 0.00001 at epoch 50,
and stepping down to 0.000001 at epoch 100. By applying the
following scheduled learning rate settings, the model will
become easier to converge into the global minimum.

We trained the model five times to determine the best
hyperparameter of the proposed MD and evaluated the
top-1 and top-5 validation loss to evaluate the classification
performances. To obtain insight into the impact of modifi-
cation of the convolution layers between the model’s per-
formance and complexity, we compared the proposed MD
with the state-of-the-art DenseNet201, DenseNet169, and
DenseNet201 models. The model size, learning parameters,
and computation cost were evaluated to determine the
weight of the CNN model. The model size was evaluated
by measuring the memory consumption of the proposed
model in byte units. Learning parameters are evaluated by
calculating the learning parameters produced from convolu-
tion operation in the bottom layer and neural network oper-
ation in the top layers. The computation cost of the
proposed model is evaluated by measuring the floating
operations (FLOPS).

After choosing the most comparable proposed model, we
test the proposed model with a testing dataset of images.
Classification performances of the proposed model of accur-
acy, specificity, sensitivity (recall), precision, and f1-score
were evaluated and measured by the following equations:

Accuracy(%) = TP + TN
TP + TN + FP + FN

× 100 (9)

Specificity(%) = TN
FP + TN

× 100 (10)

Sensitivity(%) = TP
TP + FN

× 100 (11)

Precision(%) = TP
TP+ FP

× 100 (12)

F1-score(%) = 2 ×
Sensitivity × Precision
Sensitivity+ Precision

× 100 (13)

where TP is the true positive rate, TN is the true negative rate,
FP is the false positive rate, and FN is the false negative rate.
The obese images are determined as the positive label, while
normal images are determined as the negative label.
Therefore, accuracy metrics represented the model’s perform-
ance in accurately predicting both obese and normal images.
Specificity represented the model’s performance in correctly
predicting the normal images. Sensitivity or recall represents
the model’s performance in correctly predicting the obese
images. Precision represented the correctness of the model in
predicting positive prediction. F1-score represents the balance
between sensitivity andprecision.Thehigher the accuracy, spe-
cificity, sensitivity, precision, and F1-score of a model, the
better performance it has in classifying obesity thermal images.

Then, the proposed model will be compared with
DenseNet,7 MobileNetV1,6 MobileNetV2,44 and Snekhalata
et al.3 models in classification performances, model size, com-
putation cost, and the confusion matrix. The next section will
discuss how the proposed model performs and whether it is
suitable to be called a lightweight CNN model for obesity
detection.

Results and discussion
This section will explain and discuss the results of the
experiments conducted. The discussion will start with the

Table 2. Dataset compositions.

Body region
Train Validation Test

Total

Normal Obese Normal Obese Normal Obese

Supraclavicular (SCV) 114 86 14 12 14 12 252

Abdomen 114 86 14 12 14 12 252

Forearm 114 86 14 12 14 12 252

Palm 114 86 14 12 14 12 252

Shank 114 86 14 12 14 12 252

Total 570 430 70 60 70 60 1260

Leo et al. 9



trade-off between layer depth and validation loss and then
proceed to compare the testing results with other models.

Trade-off between layer depth and validation loss

In this section, the validation results were discussed to evalu-
ate the trade-off between the layer’s depth configuration and
the validation loss. We trained our proposed model in differ-
ent depths of dense blocks and compared its classification
performances and complexity with the baseline DenseNet
as shown in Table 3 and visualized it in Figure 6.

In this section, the validation results were discussed to
evaluate the trade-off between the layer’s depth configur-
ation and the top-1 validation loss. We trained the model
five times and listed the validation loss as top-1 and top-5
loss metrics. We compared the top-1 validation lost, learn-
ing parameters, model size, and computations cost in
FLOPS of our proposed model in different depths of
dense blocks with the DenseNet variants as shown in
Table 3 and in Figure 6. We compared our proposed
model of MD model of MD-6-12-48-32, MD-6-12-12-6,
and MD-2-4-4-2 with the DenseNet variant model of
DenseNet201, DenseNet169, and DenseNet121.7

The baseline DenseNet201 model was the
state-of-the-art DenseNet201 model from7 with modified
fully connected to adjust the output class prediction. The
DenseNet201 model had 18 million learning parameters,
a model size of 71.77 MB, and a computation cost of
8.58 GFLOPS, considered a heavy-weight CNN model.
The variants of the DenseNet model of DenseNet169 and
DenseNet121 both had lower learning parameters com-
pared with DenseNet201. DenseNet169 architectures were
the reduction of the dense blocks of DenseNet201 from
6-12-48-32 into 6-12-48-32-32, while DenseNet121 is the
reduction of dense blocks into 6-12-24-16.7 The
DenseNet169 has the lowest top-1 loss of 0.4005 compared
with the DenseNet variants.

Therefore, we modified the baseline DenseNet201 to
obtain lower computation costs but still inherited its classi-
fication performances. In the MD-6-12-48-32 model, we
modified the standard 3 × 3 convolution layer into
sequences of 3 × 3 depthwise and 1 × 1 pointwise convolu-
tion layer without modifying the depth of the dense blocks.
The MD-6-12-48-32 achieved 3 million parameters and 2
GFLOPS lower than the DenseNet201, which indicated
the depthwise separable convolution layers proven could
reduce the computation cost of the proposed model.
However, there is a trade-off between the reduced compu-
tation cost and the classification performances. The
MD-6-12-48-32 model achieved higher validation loss
than the DenseNet201 model.

We modified the MD-6-12-48-32 depth of repetition
convolution sequences to reduce computation costs from
6-12-48-32 to 6-12-12-6. The MD-6-12-12-6 achieved a
significant reduction in learning parameter number and
computation cost. It achieved 13 million parameters and 4
GFLOPS lower than the MD-6-12-48-32. By reducing the
depth of the dense blocks, the concatenated features map
output also reduced significantly and made the model
more generalized in learning the features. The
MD-6-12-12-6 achieved a better classification performance
than MD-6-12-48-32, representing top-1 and top-5 errors.
However, a smaller model size and computation cost are
required to embed a stand-alone CNN model into limited
computation devices. Then, we reduced the depth of the
model to 2-4-4-2 and achieved significantly lower complex-
ity. MD-2-4-4-2 achieved 377 thousand learning para-
meters, model size of 1.44 MB, and a computation cost
of 0.69 GFLOPS, the lowest complexity of the other
models. However, the validation top-5 loss shows better
results than the MD-6-12-12-6 but was still lower than
the DenseNet201.

Figure 6 compared all the model’s performances and
shows the trade-off between learning parameters and

Table 3. Validation results: comparison between the top-1 and top-5 validation loss and model depth (learning parameters, model size, and
computation cost) on the validation set.

Model Parameters (model size) Computation cost (GFLOPS) Top-1 loss Top-5 loss

DenseNet201 18,814,274 (71.77 MB) 8.58 0.4142 0.4537

DenseNet169 13,069,634 (49.86 MB) 6.72 0.4005 0.4084

DenseNet121 7,300,418 (27.85 MB) 5.67 0.4228 0.4381

MD-6-12-48-32 15,781,762 (60.20 MB) 6.15 0.6165 0.7612

MD-6-12-12-6 2,346,050 (8.95 MB) 2.81 0.4546 0.6879

MD-2-4-4-2 (Proposed model) 377,346 (1.44 MB) 0.69 0.4742 0.5549

GFLOPS: billion floating-point operations per second; MB: megabyte; MD: modified DenseNet.
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computation cost with the top-1 loss. There are two groups of
comparisons, which are the DenseNet variant and the MD
variants, with both reduced weight. The trade-off chart
shows how the impacts of reducing the model depths with
respect to its loss validations. In both groups, the higher
learning parameters and computation cost, the trends of val-
idation loss have similar patterns. When DenseNet201 layers
were reduced to DenseNet169, the validation loss was lower,
but when it was reduced to DenseNet121, the loss got higher
back, surpassing the DenseNet201. Among the DenseNet
group, DenseNet169 has the lowest validation loss even
though the parameter and computation costs are not the
lowest. Among the MD group, when the MD-6-12-48-32
depth layers were reduced into 6-12-12-6, the validation
loss became lower, but when it was reduced more to
MD-2-4-4-2, the validation loss got worse.

Therefore, we choose the MD-2-4-4-2 model as the pro-
posed model in this study. Compared with the other
models with a heavier depth of dense blocks, the proposed
MD-2-4-4-2 achieved better classification performances
and lower complexity among the MD groups. Although the
MD-2-4-4-2 is not the best model in terms of top-1 loss val-
idation results, it has the lowest complexity of learning para-
meters, model size, and computation cost among all the
models. It was expected that the validation loss wouldn’t
be lower than the DenseNet variants in situations where we
significantly reduced the MD-2-4-4-2 dense blocks. This
trade-off resulted in a reduced ability to classify exchanges,
but with the benefit of its lightweight ability.

Testing results

After choosing the proposed model based on its validation
loss, we tested it with the testing set. We compared its clas-
sification performances and complexity with other
state-of-the-art CNN models. We compared the proposed
model MD-2-4-4-2 with DenseNet201,7 MobileNetV1,6

MobileNetV2,44 and previous works models of
Snekhalata et al.3 We evaluated the learning parameters,
the model size, the computation cost in GFLOPS, and
classification performances: accuracy, specificity, sensi-
tivity, precision, and F1-score metrics as shown in
Tables 4 and 5.

The DenseNet2017 model achieved the best accuracy of
83.08%, specificity of 82.86%, sensitivity of 83.33%, preci-
sion of 80.65 %, and the best F1-score of 81.97%. The
densely connected proved that the temperature features in
the obesity thermograms could be learned effectively by
feeding each input feature map through concatenated
layers. Table 6 shows that the DenseNet201 model cor-
rectly predicts 58 of 68 normal thermograms and 50 of 62
obese thermograms. The DenseNet201 achieved a balanced
ability to distinguish the difference between normal and
obese thermograms. However, the DenseNet201 is consid-
ered a heavy-weight CNN model with 18 million learning
parameters and a model size of 71.77MB. The standard
convolution operation in the dense blocks has a computa-
tion cost of 8.58 GFLOPS.

The MobileNetV16 model was known as a light-
weight CNN model, which became the main idea in pro-
posing the separable depthwise convolution operation in
the proposed models. The MobileNetV1 architecture
consists of multiple depthwise and pointwise convolu-
tion layers, making the model size significantly smaller
than conventional CNN models. It has 3 million learning
parameters, a model size of 13.32MB, and a computa-
tion cost of 1.14 GFLOPS, significantly smaller than
the DenseNet201 model. However, there was a trade-off
in the classification performances with the computation
cost where the MobileNet achieved lower accuracy, spe-
cificity, and sensitivity than the DenseNet201 model, as
shown in Table 7. The MobileNetV244 improves the
MobileNetV1 model, which utilized inverted residuals
and linear bottlenecks network. It achieved a better

Figure 6. Trade-off between top-1 validation loss respective with networks depth represented by learning parameters numbers and
computation cost (in billion floating-point operations per second (GFLOPS)) metrics. (a) Trade-off chart between learning parameters and
loss; (b) trade-off chart between computation cost and loss.
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complexity but poorly classified the testing dataset, as
shown in Table 8.

The customized CNN model from the previous works of
Snekhalata et al.3 was also trained and tested to classify
obese thermograms. The CNN architectures consist of mul-
tiple sequences of standard convolution layers based on
VGG19 architectures.40 The standard structures of convolu-
tion cause the model to have very large training parameters,
model sizes, and computation costs compared with other
CNN models. The CNN model is designed for computer-
aided diagnosis systems, which are not designed as light-
weight CNN models. As shown in Table 9, the
Snekhalata et al.3 model achieved better performance pre-
dicting normal images but failed to predict obese images
correctly.

Our proposed model of MD-2-4-4-2 has achieved
377,000 learning parameters and a model size of 1.44
MB, which are the smallest compared with other models.
Modifying the standard convolution layers into depthwise
and pointwise layers and modifying the depth of dense
blocks causes a significant reduction in the proposed
model complexity. Therefore, the computation cost of the
proposed model was the second lowest, 0.69 GFLOPs,
and was not smaller than MobileNetV2 due to the standard

convolution layers in the transition blocks. However,
despite its small size, the proposed model achieved a com-
parable classification performance on the test set. The pro-
posed model achieved an accuracy of 81.54%, which was
the second highest after the DenseNet201, and achieved
the highest specificity of 84.29% and precision of
81.03%. As shown in Table 10, the proposed model
achieved better performances in predicting normal images
correctly. When the model predicts images as normal
images, there is a high probability that the actual images
are normal.

High classification performance, small computation
cost, and small model size were the expected requirements
for building a lightweight CNN model. However, the pro-
posed model MD-2-4-4-2 has been proven to achieve a
CNN model that can be concluded as a comparable light-
weight model. It has inherited the feature extraction
ability from the DenseNet architecture and the lightweight
characteristic from the MobileNet architecture. Modifying
the standard convolution layers into separable depthwise
convolution layers could reduce the model complexity
and maintain its classification performances even though
the depth networks in the dense blocks have been
reduced. All these results show that the proposed model

Table 4. Testing results: complexity comparison of learning parameters and computation cost.

Model Parameters (model size) Computation cost (GFLOPS)

DenseNet201 18,814,274 (71.77 MB) 8.58

MobileNetV1 3,491,778 (13.32 MB) 1.14

MobileNetV2 2,586,434 (9.87 MB) 0.59

Snekhalata et al.3 51,407,178 (196.10 MB) 2.56

MD-2-4-4-2 (proposed model) 377,346 (1.44 MB) 0.69

GFLOPS: billion floating-point operations per second; MB: megabyte; MD: modified DenseNet.

Table 5. Testing results: classification performances in accuracy, specificity, sensitivity, precision, and F1-score.

Model Accuracy (%) Specificity (%) Sensitivity (%) Precision (%) F1-score (%)

DenseNet201 83.08 82.86 83.33 80.65 81.97

MobileNetV1 80.00 81.43 78.33 78.33 78.33

MobileNetV2 79.23 82.86 75.00 78.95 76.92

Snekhalata et al.3 74.62 84.29 63.33 77.55 69.72

MD-2-4-4-2 (proposed model) 81.54 84.29 78.33 81.03 79.66

MD: modified DenseNet.
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was considered a lightweight CNNmodel suitable for appli-
cation on limited computation devices such as mobile
applications.

The proposed model in this study has the potential to
be embedded in real-world applications such as health
mobile apps to monitor obesity. However, our currently
proposed model was limited only to classifying the
obesity thermal images from Indonesian subjects due to
the limited obesity datasets of other continents or ethnici-
ties. Thermal images were very dependent on the tem-
peratures and environments of the subjects when the
images were captured. Different areas would have differ-
ent temperature environments and produce different body

Table 7. Confusion matrix of MobileNetV1.

Prediction Prediction

negative positive

Actual negative True negative= 57 False positive= 13

SCV= 12 SCV= 2

Abdomen= 12 Abdomen= 2

Forearm= 14 Forearm= 1

Palm= 9 Palm= 5

Shank= 9 Shank= 3

Actual positive False negative= 13 True positive= 47

SCV= 4 SCV= 8

Abdomen= 2 Abdomen= 10

Forearm= 1 Forearm= 11

(continued)

Table 6. Confusion matrix of DenseNet201.

Prediction Prediction

negative positive

Actual negative True negative= 58 False positive= 12

SCV= 13 SCV= 1

Abdomen= 13 Abdomen= 1

Forearm= 12 Forearm= 2

Palm= 10 Palm= 4

Shank= 10 Shank= 4

Actual positive False negative= 10 True positive= 50

SCV= 2 SCV= 10

Abdomen= 1 Abdomen= 11

Forearm= 1 Forearm= 11

Palm= 2 Palm= 10

Shank= 4 Shank= 8

SCV: supraclavicular.

Table 7. Continued.

Prediction Prediction

negative positive

Palm= 2 Palm= 10

Shank= 4 Shank= 8

SCV: supraclavicular.

Table 8. Confusion matrix of MobileNetV2.

Prediction Prediction

negative positive

Actual negative True negative= 58 False positive= 12

SCV= 11 SCV= 3

Abdomen= 13 Abdomen= 1

Forearm= 12 Forearm= 2

Palm= 11 Palm= 3

Shank= 11 Shank= 3

Actual positive False negative= 15 True positive= 45

SCV= 3 SCV= 9

Abdomen= 2 Abdomen= 10

Forearm= 2 Forearm= 10

Palm= 3 Palm= 9

Shank= 5 Shank= 7

SCV: supraclavicular.
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temperature distribution; for example, in the four
seasons, obese European subjects would have different
temperature environments with two seasons continents,
such as the Asian and Middle Eastern continents. To
obtain a balanced view to discuss the potential real-world
applications of the proposed models, the diversity and
variation datasets from different areas and continents
would solve this limitation in the future.

Conclusion
In this study, we have constructed a new lightweight CNN
model for obesity early detection based on DenseNet201
CNN architectures by modifying the standard convolution
layers into separable depthwise convolution layers from
MobileNet CNN architectures. The proposed MD-2-4-4-2
model achieved a classification performance comparable
to the DenseNet201 model and achieved complexity com-
parable to the MobileNet model. The proposed model has
been successfully designed to inherit the feature-extracting
ability from the DenseNet201 architecture with an accuracy
rate of 81.54% and the lightweight complexity characteris-
tic of the MobileNet architecture with 377,000 learning
parameters, model size of 1.44 MB and computation cost
of 0.69 GFLOPS. The proposed lightweight CNN model

for obesity early detection systems showed comparable
performances and is suitable for embedding on mobile
devices.

For future works, integrating obesity thermograms from
diverse ethnicities across various continents would enhance
the model’s ability to detect obesity more effectively on a
global scale. Additionally, we intend to analyze the most
representative body regions for obesity detection, aiming
to optimize the performance of the proposed CNN models
by eliminating non-representative body region images.
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Prediction Prediction
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Prediction Prediction

negative positive

Actual negative True negative= 59 False positive= 11

SCV= 13 SCV= 1

Abdomen= 12 Abdomen= 2

Forearm= 12 Forearm= 2

Palm= 11 Palm= 3

Shank= 11 Shank= 3
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SCV: supraclavicular.
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