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Abstract

Nationwide disease surveillance at a high spatial resolution is desired for many infectious

diseases, including Visceral Leishmaniasis. Statistical and mathematical models using data

collected from surveillance activities often use a spatial resolution and scale either con-

strained by data availability or chosen arbitrarily. Sensitivity of model results to the choice of

spatial resolution and scale is not, however, frequently evaluated. This study aims to deter-

mine if the choice of spatial resolution and scale are likely to impact statistical and mathe-

matical analyses. Visceral Leishmaniasis in Brazil is used as a case study. Probabilistic

characteristics of disease incidence, representing a likely outcome in a model, are com-

pared across spatial resolutions and scales. Best fitting distributions were fit to annual inci-

dence from 2004 to 2014 by municipality and by state. Best fits were defined as the

distribution family and parameterization minimizing the sum of absolute error, evaluated

through a simulated annealing algorithm. Gamma and Poisson distributions provided best

fits for incidence, both among individual states and nationwide. Comparisons of distributions

using Kullback-Leibler divergence shows that incidence by state and by municipality do not

follow distributions that provide equivalent information. Few states with Gamma distributed

incidence follow a distribution closely resembling that for national incidence. These results

demonstrate empirically how choice of spatial resolution and scale can impact mathematical

and statistical models.

1. Introduction

Infectious disease research often relies on data generated through passive or active surveillance

activities, which can suffer from important limitations due to variation in methods and
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capacities for data collection [1, 2]. Typically, researchers aim to collect data at a high spatial

resolution, that is, in the form of small surveillance units such as counties or municipalities

rather than states or nations [3, 4], though this may not always be seen as beneficial [5]. Con-

ducting surveillance at a high spatial resolution, however, is often unrealistic when considering

large areas and constrained resources [6, 7].

Data collected from infectious disease surveillance activities are often used in research

involving mathematical or statistical models. In such analyses, matters related to data quality

are of concern. The choice of spatial resolution is often based on data availability or chosen

arbitrarily, with little attention given to whether this decision may impact model results.

Aggregating data into larger spatial units can aid in computational efficiency, but creates the

risk of introducing ecological fallacy [8] and masking heterogeneity within those larger units if

conclusions are drawn inappropriately [9–11]. This would be particularly problematic when

aiming to seek disease etiologies. This concept is related to the modifiable areal unit problem

[12, 13] in its discussion of choices of spatial units impacting results. The modifiable areal unit

problem is always present when using spatial data, but is infrequently acknowledged and rarely

quantified [13]. The choice of spatial resolution may impact any models used; previous studies

using mathematical or statistical models have investigated the importance of high resolution

data by repeating analyses using data at different resolutions and then comparing results [10,

11, 14].

An additional challenge to high quality surveillance is the need for surveillance over a large

spatial scale, referring to the entire area where surveillance is being conducted. Here, spatial

scale differs from spatial resolution in their definitions as follows: spatial scale refers to the

total spatial area being examined, while spatial resolution refers to the size of the individual

spatial units within that area. Large-scale surveillance can be particularly challenging for

nations with large land areas and populations. In these circumstances, there is potential benefit

in identifying a smaller area, such as a state or group of states, where surveillance can ade-

quately estimate the national disease burden. The characteristic of having smaller areas repre-

sentative of the whole for a large range of sizes is known as scale invariance or fractality [15].

Scale invariance is ubiquitous in many socio-ecological patterns such as finance [16], ecology

[17], biochemical processes [18], and biology across time scales [19].

Scale invariance is an infrequently examined concept in infectious disease surveillance and

epidemiology in general, though it has relevance to many forms of data analysis or modeling.

In research involving statistical or mathematical models, the scale used, whether an entire

nation, portion of a nation, or other extent, may impact the structure and products of the

model. Scale invariance in infectious disease research is more frequently used to describe

scale-free networks, typically applied to human communicable diseases [20] or transmission

paths of infectious diseases [21]. For practical purposes in epidemiology, identifying smaller

regions that represent a larger area or even an entire nation could allow the design of targeted

surveillance strategies and conserve resources [22]. Even in the absence of true scale invari-

ance, self-similarity can be observed [15] where some smaller areas can be used to describe the

whole. In other situations, however, the spatial scale of interest impacted the physical processes

being studied [23].

The topics of spatial resolution and scale are relevant for research pertaining to numerous

health outcomes. Here, Visceral Leishmaniasis is examined as a case study. Visceral Leishman-

iasis (VL), caused by a Leishmania infantum parasite (known in Latin America as Leishmania
chagasi) [24], is the most severe form of Leishmaniasis and is fatal in the vast majority of

untreated cases [25]. The parasite is typically transmitted from an infected to a non-infected

host through the bites of phlebotomine sand flies [26]. Visceral Leishmaniasis presentation

can include symptoms such as fever, enlargement of the spleen and liver, and anaemia [25]. It

PLOS ONE Sensitivity to spatial resolution and scale for infectious disease surveillance

PLOS ONE | https://doi.org/10.1371/journal.pone.0235920 July 17, 2020 2 / 17

Funding: This work was funded by the Academic

Health Center Faculty Research Development Grant

Program (FRD no. 16.36) from the University of

Minnesota Twin-Cities, received by JA and MC. The

funders played no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0235920


is estimated that between 200,000 and 400,000 cases of VL occur worldwide annually, with

approximately ten percent being fatal [27].

Brazil is one of ten world nations with the greatest VL burdens [25], with the remaining

nations located primarily in East Africa and South and Southeast Asia [25]. Estimates report

that 90% of VL cases that occur in the Americas occur in Brazil [25] where, canines are a dis-

ease reservoir [28–30]. The estimated age adjusted incidence rate from VL in Brazil is 1.84

cases per 100,000 population, and the mortality rate from VL in Brazil is 0.15 deaths per

100,000 population, with approximately eight percent of cases being fatal [31]. Areas of Brazil

that previously had accounted for only 15% of all cases reported nationally now can see nearly

half of the nation’s cases [30]. The disease has also become more common in urban areas in

recent decades [28, 32, 33], making it a major public health concern and an important target

for surveillance programs. As of 2015, based on the data used for this study, the Federal Dis-

trict and 18 of the 26 states in Brazil meet the criterion of being an endemic state for VL, which

is seeing at least one case in all three previous years [34]. The states that were not endemic at

the time are Acre, Amapá, Amazonas, Espı́rito Santo, Paraná, Rondônia, Roraima, and Santa

Catarina [34, 35]. As of 2019, Espı́rito Santo and Paraná became endemic states [35].

This study aims to assess the potential impact of using different spatial resolutions and

scales on statistical and mathematical models using surveillance data applied to VL cases in

Brazil. In order to do so, two objectives are pursued: (1) to determine if surveillance using inci-

dence by state or municipality leads to different distributional fits of disease incidence; and (2)

to determine if conducting VL surveillance on a region within Brazil would equivalently char-

acterize the nation’s VL incidence. This is done by using best fitting probability distributions

to describe disease data without incorporating outside information. A conceptual visualization

of the study aims is presented in Fig 1. Prior to conducting statistical analyses or models,

researchers may need to decide whether to consider data using different spatial resolutions as

well as the scale of analysis; the results of this study will provide insight into whether the subse-

quent results may be sensitive to this decision.

2. Methods and materials

2.1 Study setting and data

The setting for this study is Brazil, the largest nation in South America in both land area and

population. Case data were provided by the Brazilian Ministries of Health [36] and include VL

case counts by municipality nationwide, with the exception of the Federal District, totaling 26

states and 5,561 municipalities. The Federal District was excluded because it is not a state with

multiple municipalities, and therefore cannot be aggregated to differentiate between the

municipality resolution and the state resolution. Yearly case counts by municipality between

2004 and 2014 are reported. Annual populations for each municipality are publicly available

through the Brazilian Institute of Geography and Statistics [37] to calculate annual incidence,

discretized to represent cases per 100,000 population per year. Population data were available

for all years except 2007 and 2010. In these two years, the arithmetic means of the populations

of the two adjacent years were used in place of the missing populations. Population data were

available for 5,538 of the municipalities with VL data, providing the final sample for this study.

2.2 Inferring probability distributions

This study compares spatial resolutions and scales using probability distributions rather than

by fitting models with assumptions and conducting a sensitivity analysis. This was done to

avoid imposing assumptions of a particular model, keeping the examination of scale and reso-

lution as the focus of analyses with regards to the characteristics of VL incidence itself rather
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than the relationship between incidence and other data. Best fitting distributions from multi-

ple considered distributional families were fit for (1) annual incidence for each individual state

using the municipality as the unit of surveillance; (2) annual incidence nationwide using the

municipality as the unit of surveillance; and (3) annual incidence nationwide using the state as

the unit of surveillance (Fig 1). All 11 years of observation were included.

Common candidate distributions were selected based on exploratory analyses, including

visual analyses, quantiles, and summary statistics, and having a nonnegative support; wide

ranges of parameters for each distribution were tested. The Poisson, Zero Inflated Poisson

(ZIP), and Zero One Inflated Poisson (ZOIP) [38] distributions were selected as candidate dis-

tributions along with the Gamma, Exponential, Power Law, and Uniform distributions

rounded to fit discrete data. These are described in Table 1.

Each distribution was evaluated for the optimal parameter set that minimizes the sum of

absolute error (SAE), defined as

SAE ¼ SxjpðxÞ � pobsðxÞj ð1Þ

where p(x) represents the probability of observing an incidence of x cases per 100,000 person-

years based on the proposed distribution indicated in Table 1 and pobs(x) represents the

Fig 1. Graphical overview of the study objectives: (a) fit distribution to annual incidence of Visceral Leishmaniasis (VL) by state, (b) fit

distribution to annual incidence of VL by municipality, (c) fit distributions to annual incidence of VL by municipality within each state.

Comparisons of these fitted distributions indicate whether characterizing VL incidence by state or municipality are equivalent, impacting statistical

analyses using these data.

https://doi.org/10.1371/journal.pone.0235920.g001
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observed proportion of incidence values equaling x. This measure compares similarities

between the proposed distributions and observed data and is less sensitive to outliers than

other measures [39].

The optimal parameter set for each distribution was found through simulated annealing

[40], an optimization algorithm based on Monte Carlo sampling. The algorithm was run with

three chains for 50,000 simulations to assure convergence. Convergence was reached if each of

the three chains produced identical parameter values, indicating a lack of movement to other

parameter values, for at least 500 iterations, as well as one of the following hierarchical criteria:

(1) final parameter values across pairs of chains had an absolute difference of less than 0.01; (2)

final parameter values had an absolute difference of less than 0.1 and associated SAE values

had an absolute difference of less than 0.01; (3) SAE values had an absolute difference of less

than 0.001. The second and third criteria were necessary due to some parameterizations having

very similar SAE values. If convergence was not reached in 50,000 iterations, the three chains

were restarted with the parameterization that led to the lowest SAE value in the chain as initial

values, and the simulated annealing algorithm was repeated, increasing the simulation count

by 5,000. This was repeated until convergence was reached.

2.3 Comparing distributions

2.3.1 Sensitivity to spatial resolution. The first aim of comparing distributions is to

determine if changing the spatial resolution alters the distributional fit of incidence. In future

modeling studies, differences in distributional fit could lead to changes in model outputs as a

result of the spatial resolution of the data, whether aggregated by choice or through surveil-

lance availability. This was done by comparing the fitted state-resolution distribution to an

expected state-resolution distribution for the nation based on the fitted municipality-resolu-

tion distribution for the nation. This expected distribution was generated empirically by draw-

ing Monte Carlo samples from the fitted municipality-resolution distribution.

If incidence is denoted by X as a random variable following the fitted municipality-resolu-

tion distribution for the nation; states are denoted by s; state s has ns municipalities, denoted

by m; and municipality m has a population of pmy in year y, this empirical distribution was

Table 1. Candidate distributions used for fitting distributions.

Distribution Probability mass function

Poisson P X ¼ xð Þ ¼ yx

x! expð� yÞ

Zero Inflated Poisson (ZIP) PðX ¼ 0Þ ¼ aþ ð1 � aÞexpð� yÞ
P X ¼ xð Þ ¼ 1 � að Þ y

x

x! expð� yÞ; x > 1

Zero One Inflated Poisson (ZOIP) PðX ¼ 0Þ ¼ aþ ð1 � a � bÞexpð� yÞ
PðX ¼ 1Þ ¼ bþ ð1 � a � bÞ yexpð� yÞ

P X ¼ xð Þ ¼ 1 � a � bð Þ yx

x! expð� yÞ; x > 1

Rounded Exponential PðX ¼ xÞ ¼
R xþ0:5

0
f ðyÞ dy �

R x� 0:5

0
f ðyÞ dy

f ðyÞ ¼ y expð� y yÞ
Rounded Gamma PðX ¼ xÞ ¼

R xþ0:5

0
f ðyÞ dy �

R x� 0:5

0
f ðyÞ dy

f yð Þ ¼ ba

GðaÞ
ya� 1 exp � b yð Þ

Rounded Power Law PðX ¼ xÞ ¼
R xþ0:5

0
f ðyÞ dy �

R x� 0:5

0
f ðyÞ dy

f yð Þ ¼ a� 1

xmin
x

xmin

� �� a
; x > xmin

Rounded Uniform P X ¼ xð Þ ¼ 1

b� a ; x 2 Z \ a; b½ �

https://doi.org/10.1371/journal.pone.0235920.t001
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generated by drawing 1,000 samples of

z ¼
Ps

m¼1
pmyxm

Ps
m¼1

pmy
ð2Þ

for each state under each year of observation. The numerator of Eq (2) draws values of Xm for

each municipality in a state and multiplies the value by the population of the municipality to

sample a case count for the municipality. The sum of these is divided by the total state popula-

tion to produce an expected state-resolution incidence for a year based on the municipality-

resolution distribution for incidence. The 1,000 samples of z then produce an empirical

distribution.

Relative proportions of incidence values in these simulated values were compared to the

probabilities of each incidence value from the fitted state-resolution distribution through Kull-

back-Leibler (KL) divergence [41]. KL divergence represents the additional information

needed when using one distribution to describe data from another distribution. By measuring

dissimilarity, it has an inverse relationship to Mutual Information, which represents similarity

of variables [41]. Thus, KL divergence is a measure of the Value of Information [42]. For two

random variables, denoted A and B, the KL divergence from A to B, compared to the Shannon

entropy in the distribution of A, shows a relative increase in information, using bits as units,

needed to describe the distribution of B with that of A [41]. This is shown in the ratio of KL

divergence to Shannon entropy (denoted H), which can be defined as the Required Relative

Information Gain (RRIG), where

RRIG ¼
KLA!B

HA
ð3Þ

shows the needed increase in information for the distribution of B to describe data from the

distribution of A [41]. A value of 1 represents an information increase by 100%, or a doubling

of information, though this is not an upper bound. A large RRIG value is indicative of distinct

differences between distributions, indicating that characterizations of VL incidence are sensi-

tive to the resolution of surveillance. An RRIG above 5% was selected a priori as a threshold

for having a distinct difference in distribution.

2.3.2 Sensitivity to spatial scale. The aim of comparing spatial scales involves comparing

the municipality-resolution distributions of each state and of the nation. In the presence of

scale invariance, individual states would have the same or similar distributions, which would

be similar to the distribution for the nation. Distributions for municipality-resolution case

counts for the nation and each state were compared through RRIG.

All analyses were performed using R version 3.6.0 [43]. The ‘poweRlaw’ package was used

to calculate probability density and mass for the Power Law distribution [44].

3. Results

Of the 26 states in Brazil, 22 were included in analyses since they all observed more than five

nonzero unique annual municipality-resolution incidence values over the study period (S1

Table). The remaining four states were excluded because their incidences over the 11 years did

not provide enough unique values to reliably fit a distribution. All 18 endemic states from

2015 [35] were included as well as Espı́rito Santo, Paraná, Rondônia, and Roraima. Fig 2(a)

and 2(b) shows total case counts by state and by municipality over the entire time period.
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3.1 Fitted distributions

The uniform distribution for nationwide municipality-resolution incidence was not able to

converge after increasing the iteration count to 200,000. All other distributions converged to

optimal values. The best fitting municipality-resolution distributions for individual states var-

ied. Annual incidence values from ten states were best fit by the rounded Gamma distribution,

incidences from seven states were best fit by the Poisson distribution, incidences from three

states were best fit by the Zero Inflated Poisson distribution, and incidences from two states

were best fit by the Zero One Inflated Poisson distribution. Specific parameters are shown by

state in Table 2. Plots of the probability mass functions of each state’s municipality-resolution

distribution are shown in Fig 3. Nationwide, the best fitting distribution for municipality-reso-

lution incidence was the Gamma distribution, and the best fitting distribution for state-resolu-

tion incidence was the Zero One Inflated Poisson distribution (Table 2). No notable

differences were seen in distributional fit among VL endemic and non-endemic states.

3.2 Comparisons across resolutions and scales

The RRIG from Eq (3) was used to quantify the similarities between distributions. The distri-

butions fitted to state-resolution incidence and to the empirical distribution created from the

national municipality-resolution distribution and Eq (2) were first compared to determine the

sensitivity to the resolution of surveillance data. The RRIG was 0.425, representing a needed

increase of information by 42.5% (Table 2). These results are indicative of strong sensitivity to

the resolution of surveillance; the distribution for VL incidence by state does not accurately

describe the distribution of incidence by municipality.

Comparisons between individual states’ municipality-resolution incidence and national

municipality-resolution incidence are shown in Table 2 using RRIG from Eq (3). The

Fig 2. Total case counts by (a) municipality and (b) state between 2004 and 2014.

https://doi.org/10.1371/journal.pone.0235920.g002
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nationwide, municipality-resolution distribution is used as the reference for comparisons. The

results show that six of the 22 states had incidence following a distribution close to that of the

nation (RRIG<0.05) (Table 2, Fig 4). Any of these states could individually describe munici-

pality-resolution incidence of the nation using their own incidence data. Because not all states

adequately characterize national burden, true scale invariance was not seen, though self-simi-

larity was seen in the selected states. The states that exhibited some self-similar behaviors all

followed a Gamma distribution with generally similar parameters, particularly low values of

shape parameters. Many of these states were located near the center of the nation (Fig 4).

4. Discussion

This study aimed to assess the importance of the spatial scale and resolution used for VL sur-

veillance and subsequent quantitative analyses. This is also reflective of the dynamics of VL at

different scales determined by the distributions of incidence. Probability distributions were fit

to incidences at different spatial resolutions and scales and then compared to determine if

distributional fit was sensitive to the choice of scale and resolution. Aggregating municipality-

resolution incidences into state-resolution incidences led to notably different probabilistic

characteristics of disease burden, suggesting the existence of different processes driving disease

occurrence at the two resolutions. When continuing surveillance at the municipality resolu-

tion, six states’ incidences follow distributions that adequately describe those of each other as

Table 2. Distributions for municipality-resolution incidences by state, municipality-resolution incidence nationwide, and state-resolution incidence nationwide.

KL/H calculated from Eq (3) shows comparisons of fitted distributions to that for the nationwide municipality-resolution distribution (reference).

State Distribution Mean Variance KL/H

AL� Poisson(0.234) 0.234 0.234 0.456

BA� Gamma(0.078, 0.022) 3.545 161.157 0.191

CE� Gamma(0.191, 0.038) 5.026 132.272 0.824

ES Gamma(0.003, 0.002) 1.500 750.000 0.084

GO� Gamma(0.016, 0.016) 1 62.5 0.009

MA� ZOIP(0.599, 0.004, 7.292) 2.899 15.605 1.154

MG� Gamma(0.024, 0.020) 1.2 60 0.001

MS� Poisson(0.378) 0.378 0.378 0.791

MT� Gamma(0.015, 0.003) 5 1666.667 0.007

PA� Gamma(0.094, 0.022) 4.273 194.215 0.289

PB� Poisson(0.077) 0.077 0.077 0.155

PE� ZIP(0.819, 4.193) 0.759 3.365 0.263

PI� ZIP(0.723, 14.44) 4.000 45.759 0.878

PR Poisson(0.003) 0.003 0.003 0.151

RJ� Gamma(0.002, 0.009) 0.222 24.691 0.108

RN� Poisson(0.085) 0.085 0.085 0.165

RO Poisson(0.013) 0.013 0.013 0.128

RR Gamma(0.015, 0) 15 15000 0.021

RS� ZIP(0.998, 4.338) 0.009 0.046 0.146

SE� ZOIP(0.776, 0.006, 5.254) 1.151 5.43 0.388

SP� Gamma(0.014, 0.013) 1.077 82.840 0.01

TO� Poisson(0.450) 0.450 0.450 0.960

Brazil (Municipality) Gamma(0.024, 0.017) 1.411 83.045 Reference

Brazil (State) ZOIP(0.379, 0.074, 2.82) 1.617 3.353 0.425

� denotes states considered endemic for Visceral Leishmaniasis in 2015 [34, 35].

https://doi.org/10.1371/journal.pone.0235920.t002
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well as the nation of Brazil. While our results provide evidence against true invariance to reso-

lution and scale, some self-similarity is seen in both distributional parameters and moments.

This happens for states that are following a Gamma distribution, which implies medium-long

range dispersal of cases and a potential tendency toward a power-law distribution for small

scale and shape parameters.

The self-similarity seen in six states does not indicate that significant resources can be saved

in Brazil by concentrating surveillance in a smaller area because they are not representative of

the other states. The remaining states still need to undergo surveillance in order for their VL

burden to be adequately characterized. Furthermore, it is of interest for public health to know

where all VL cases occur in order to intervene in an outbreak. If greater self-similarity were

seen, it would largely be of interest to researchers who could potentially generalize results of a

smaller area to the nation of Brazil through conducting more intensive data collection for

additional data in a smaller area. However, because scale invariance was not seen and self-simi-

larity was seen in a small number of states, it is unlikely that descriptions of VL burden in a

smaller region of Brazil are generalizable to the entire nation. These considerations consider

the current observed state, for instance in case of a widespread propagation of the disease in

long range.

Differences in municipality-resolution distributions among states suggest that different fac-

tors may influence VL risk across states. Environmental factors shown to influence VL case

risk include vector populations, canine cases, precipitation [45], proximity to wooded areas

[46], land use, deforestation [47], temperature, and humidity [48]. The question of resolution

dependence is targeting whether the elementary unit at which we look into VL dynamics

makes a difference for reproducing the distributional representation of VL incidence at the

scale of analysis. These natural phenomena related to VL burden may differ across spatial

Fig 3. Probability mass functions for distributions fit to municipality-resolution incidences among states and for the nation. Incidences were fit

by either (a) a Poisson distribution, including distributions with zero and one inflations, or (b) a Gamma distribution.

https://doi.org/10.1371/journal.pone.0235920.g003
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scales and resolutions, similarly to other physical phenomena [49]. Though vector populations

and precipitation do not explicitly conform to local political boundaries, different regions of

Brazil likely see differences in these risk factors through differences in managing socio-ecologi-

cal factors. These facts and the finding that distributions across states differ (also varying when

resolution varies) are important considerations when analyzing disease data. It would be advis-

able to analyze data for individual locations [45, 48, 50] or use random effects [36].

The results from this study do not necessarily suggest that one spatial resolution is more

“correct” than another or favor a particular resolution for analysis. The resolution for future

statistical analyses should rely on the research question being posed and desired interpretation

of results. However, the resolution dependence implies that, assuming accuracy and precision

in assigning municipalities to observed cases, aggregating incidence to the state resolution

likely introduces ecological fallacy. Thus, high resolution is likely beneficial to capture disease

dynamics accurately. These results also illustrate the intuitive modifiable areal unit problem

Fig 4. Expected values and families of fitted municipality-resolution distributions. States outlined in red had low KL

divergence to Shannon entropy ratio with the national municipality-resolution distribution, indicating self-similarity.

https://doi.org/10.1371/journal.pone.0235920.g004
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quantitatively by providing, through the distributional fits, a way to quantitatively observe the

severity of the problem in the application of VL incidence. For high-resolution incidence, the

most likely VL dynamics are represented by the Gamma distribution. These considerations

should be always taken into account when collecting and analyzing data because they indicate

that the choice of resolution will impact model results and their interpretation. Data character-

izations and analyses at one resolution are not interchangeable for characterizations and analy-

ses at the other resolution. A related point to note is that diligent surveillance is important

when conducted at a finer spatial resolution to ensure accuracy of municipalities that are

matched to cases.

This study is, to the authors’ knowledge, the first to examine VL incidence for sensitivity to

scale and resolution of surveillance data by finding best-fitting distributions to characterize

incidence. Other studies have analyzed the fractality of other diseases, such as cholera, and

how that is important for a simple estimation of disease spread in term of geography and mag-

nitude [51]. Similar distribution fitting processes are used in veterinary epidemiology [52], but

less frequently in human disease epidemiology. This analysis is important for informing future

disease burden by providing location-specific estimates of expected annual incidence.

The findings of this study can benefit surveillance, healthcare infrastructure, digital epide-

miology, and public health research focused on disease ecology. Care for an individual VL

patient in Brazil, including diagnosis, treatment, and medical care, is estimated to be approxi-

mately $500 (US) (plus an additional $1470 (US) for secondary prophylaxis among VL patients

with HIV) and lasts between seven and 20 days [53]. This is a high individual healthcare cost:

yet, designing optimal surveillance that allows public health practitioners to understand and

prevent VL is an incredibly valuable task socially and economically. These results and methods

(applicable to any disease) can optimize disease data analysis and surveillance for the reduction

of the systemic disease burden.

Using only VL incidence data and not introducing other data sources provides focus on

what would be the outcome variable of a typical statistical analysis independently of any other

predictors that may be introduced. Refitting models at multiple resolutions or scales assumes

that the outcome, in this instance VL incidence, follows the same distribution in each scale

and/or resolution. For example, using a lognormal regression model with two resolutions

assumes that incidence at both resolutions follows a lognormal distribution, which may not be

correct. When analyzing municipality-resolution cases, not all states have distributions in the

same family, and distributions following the same family have different parameterizations

because of the likely differential importance of the underlying socio-environmental drivers.

The latter point further motivates the use of Bayesian hierarchical models or other models, for

instance statistical physics and/or information theoretic models, which are able to handle the

information of scale and resolution controlling factors.

We show that the information theoretic RRIG can determine the amount of information

needed to describe the data using different resolutions or scales. It can be used as an informa-

tion theoretic tool for scaling (downscaling or upscaling, depending on the purpose) epidemi-

ological data considering their value and underlying distributions.

An additional point of novelty is the use of the ZOIP and Gamma distributions to charac-

terize VL incidence. Both distributions are uncommonly used for infectious disease incidence,

despite closely fitting observed data. The ZOIP distribution offers the advantage of specifically

fitting high frequencies of counts of one, describing single spurious cases. The Gamma distri-

bution is advantageous for placing high probability on low values. More specifically into the

statistical physics of disease ecology, the Gamma distribution has similarities to heavy tail dis-

tributions (for small shape and scale parameters) and ZOIP represents Poisson distributions

highlighting local/random and medium-range disease dynamics. The higher statistical

PLOS ONE Sensitivity to spatial resolution and scale for infectious disease surveillance

PLOS ONE | https://doi.org/10.1371/journal.pone.0235920 July 17, 2020 11 / 17

https://doi.org/10.1371/journal.pone.0235920


complexity (e.g. related to the number of parameters) of ZOIP reflects the random Poissonian

nature of the disease with other factors, while the lower complexity of the Gamma reflects its

more simple nature.

These analyses do not consider dependence on temporal resolution and scale although time

and space for stochastic processes relate to each other. The data in this study include yearly

case counts; having smaller time units such as months would allow for such consideration

Additionally, distributions are assumed to remain constant over the 11 years of observation

considering the very minor variations in the inferred distributions that lead to consider VL

dynamics at stationary state. Increases have been seen in VL cases over time [54], though case

counts between 2000 and 2014 have remained more consistent compared to previous decades

[55, 56], indicating that these results are not likely to be sensitive to this assumption. Popula-

tions over this time period by municipality generally showed small changes. The mean change

in population by municipality was an increase of approximately 11% between 2004 and 2014,

and the middle 90% of changes were between a 12% decrease and a 41% increase [37]. These

considerations motivate extensions of this study to define the relationship between space and

time for scale dependent processes.

Another assumption made in this study is the ability to fit a single probability distribution

for VL incidence for the entire nation of Brazil. Since not all of the included states are consid-

ered endemic for VL [35], fitting a single distribution for incidence nationwide assumes that

the same distribution can represent incidence in both endemic and non-endemic states. How-

ever, if conducing a study using VL incidence data, this should be considered in the quantita-

tive analyses that would follow from the results of this study. Other heterogeneities across the

nation, such as affluence, urbanization, or climate, which may impact VL incidence, similarly

are not considered for distribution fitting but should be accounted for during subsequent

analyses.

The results of this study rely on the data collected. VL case data were collected through pas-

sive surveillance and notification to the Ministries of Health. It is commonly known that

reported cases of infectious diseases only represent a portion of the total cases [57–59], com-

monly representing the most severe cases. This limits the accuracy of the data, and therefore

distribution fitting, by the ability to report cases as well as the potential heterogeneous severity

of VL cases. It is also likely that across locations in Brazil, amounts of underreporting of cases

differ. The results of this study rely on the assumption that reported cases provide an adequate

representation of disease burden. Furthermore, inclusion of both endemic and non-endemic

states in the analyses may lead to the inclusion of case data representing both typical VL inci-

dence as well as atypical VL incidence. This could potentially affect distribution fitting if

underlying processes leading to typical and atypical incidence differ.

A limitation of this study is the reliance on the criterion for determining differences when

comparing distributions and algorithm used for determining best fitting distribution families

and parameters. There are numerous methods for performing both tasks, and different meth-

ods may lead to slightly different conclusions. The methods of this study do, however, use

assumption-free criteria in order to generate the results. A sensitivity analysis was conducted

to determine if the number of samples drawn to generate the empirical state-resolution distri-

bution described in section 2.2.1 using Eq (2) might impact RRIG values, and it was found that

using 1,000; 2,000; 5,000; and 10,000 samples did not yield distinct difference in RRIG values

and no differences in interpretations and conclusions. The threshold choice of 0.05 for the

RRIG was an a priori decision. Since this is a continuous value, it used in decision-making in

other contexts, other choices for thresholds would be valid.

Another important note is that this study used surveillance units of different sizes, examin-

ing aggregation of municipalities of differing land areas and populations and comparisons
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among states with different areas and populations. This results from using administrative dis-

tricts, and still remains useful by using the units recorded in infectious disease surveillance.

However, diseases know no political boundaries; yet, an ecosystem-based discretization to

define homogeneous high resolution units would be preferable for surveillance such as one

based on Digital Elevation Models from which to derive physical ecosystem boundaries that

are relevant to disease spread. This would also help the control of diseases to assign to different

political entities.

A related topic of research is the existence of spatial autocorrelation in the data. Values of

Moran’s I using municipality-resolution incidence nationwide showed strong evidence of spa-

tial clustering. Evidence of spatial autocorrelation aligns with the finding that distributional

fits for VL incidence are not interchangeable across resolutions and scales. Having cases con-

centrated in particular local regions would suggest that local factors are important to VL

dynamics and should be accounted for in future research. This implies that disease dynamics

are local as already highlighted by differing fitted distributions across states, which is consis-

tent with previous works [60, 61]. Any future analyses on VL in Brazil would benefit from the

use of methods that account for spatial autocorrelation. For the purposes of distribution fitting,

finding distributional families that most accurately characterize incidence is of greater impor-

tance than determining a covariance structure that most accurately reflects autocorrelation.

Determining clusters and covariance structures is an important component of analysis that fol-

lows the results of this study.

5. Conclusions

The choice of spatial resolution and scale in infectious disease research is shown to have a

potential impact on future results and conclusions when using statistical and mathematical

models. The findings from this study should be considered prior to designing quantitative

analyses. Finding sensitivity to the spatial resolution and spatial scale of VL surveillance data is

of interest to both researchers and government officials for preparedness. Analyses using VL

data should consider the findings of this study when planning analyses and controls related to

disease processes or population incidence trajectories. Surveillance agencies should note that

accurate surveillance by municipality is important because measuring incidence by state alone

does not offer an equivalent characterization, and while there do exist small areas with inci-

dences that can describes those of the others, nationwide surveillance at high resolution

remains important to consider likely heterogeneity of processes contributing to VL burden.

This applies to other diseases with incidences that depend on the scale and resolution of sur-

veillance, which should be examined to assure whether this dependence does exist.
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