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Abstract: Energetic materials constitute one of the most important subtypes of functional materials
used for various applications. A promising approach for the construction of novel thermally stable
high-energy materials is based on an assembly of polynitrogen biheterocyclic scaffolds. Herein, we
report on the design and synthesis of a new series of high-nitrogen energetic salts comprising the
C-C linked 6-aminotetrazinedioxide and hydroxytetrazole frameworks. Synthesized materials were
thoroughly characterized by IR and multinuclear NMR spectroscopy, elemental analysis, single-
crystal X-ray diffraction and differential scanning calorimetry. As a result of a vast amount of the
formed intra- and intermolecular hydrogen bonds, prepared ammonium and amino-1,2,4-triazolium
salts are thermally stable and have good densities of 1.75–1.78 g·cm−3. All synthesized compounds
show high detonation performance, reaching that of benchmark RDX. At the same time, as compared
to RDX, investigated salts are less friction sensitive due to the formed net of hydrogen bonds. Overall,
reported functional materials represent a novel perspective subclass of secondary explosives and
unveil further opportunities for an assembly of biheterocyclic next-generation energetic materials.

Keywords: nitrogen heterocycles; energetic materials; tetrazine; hydroxytetrazole

1. Introduction

A creation of novel functional organic materials remains one of the urgent goals in
modern chemistry and materials science [1–4]. Such materials constitute a large variety of
usually conjugated organic compounds with different chemical and physical properties.
Recent achievements of numerous research groups worldwide confirmed that an incorpora-
tion of a nitrogen heteroaromatic motif usually enhances the quality of materials compared
to their carbocyclic analogues [5–7]. In this regard, linear combinations of conjugated
nitrogen heterocyclic moieties, especially of those mainly consisting of nitrogen atoms,
demonstrate great application potential [8–10].

Among high-nitrogen heteroaromatic species, 1,2,4,5-tetrazine (six-membered ring
with four nitrogen atoms) and tetrazole (five-membered ring with four nitrogen atoms) scaf-
folds retain leading positions in the chemistry community since materials derived thereof
demonstrate improved functional properties. 1,2,4,5-Tetrazines may serve as components of
photo- and electroactive materials [11,12], substrates for bioorthogonal processes [13,14] or
precursors for diverse nitrogen heterocycles [15–18]. Tetrazoles are considered as carboxylic
acid bioisosteres and are found in a wide range of pharmacological activity including some
clinically approved pharmaceuticals [19–21]. Meanwhile, both tetrazine and tetrazole rings
are used as paramount scaffolds in the construction of next-generation high-energy materi-
als for mining, welding and other civil energetic applications [10,22]. As a rule, tetrazine-
and tetrazole-based energy-rich compounds have a number of advantages including high
nitrogen content, good thermal stability, acceptable sensitivity to mechanical stimuli and
environmental compatibility [23,24]. A combination of C-C linked conjugated tetrazole
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and tetrazine rings afforded several thermally stable energetic materials (Figure 1), which,
however, have low amounts of oxygen [25]. Meanwhile, oxygen balance defined as the
degree to which an explosive can be oxidized is an important parameter for high-energy
materials. Several strategies for an incorporation of oxygen-rich explosophoric moieties,
such as trinitromethyl group [26,27] or furoxan ring [28,29], are commonly used to enhance
the oxygen content. Unfortunately, these approaches inevitably entail a decrease in thermal
stability and an increase in mechanical sensitivity. Therefore, a compromise between these
criteria still remains an urgent task and defines future trends in materials science.
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Recent investigations demonstrated the utility of the N-oxide functionalization strat-
egy to balance physicochemical properties, mechanical sensitivity and oxygen balance of
energetic materials [30–33]. Importantly, N-oxide functionality not only increases oxygen
balance, but also allows for better crystal packing, and efficiently enhances detonation per-
formance. In the case of 1,2,4,5-tetrazine, a preparation of its mono- and dioxide derivatives
with promising energetic properties was reported [34]. For the tetrazole ring, an installation
of the N-oxide moiety is complicated due to the azole nature of the heterocycle and involve-
ment of nitrogen lone pairs into ring conjugation. A solution to this issue may comprise
the formation of the hydroxytetrazole motif, which is also capable of the formation of
energy-rich salts due to high acidity of the OH-group [35,36]. In this regard, an alliance of
the tetrazinedioxide and hydroxytetrazole scaffolds may contribute advantageously from
both heterocycles in terms of thermal stability and mechanical sensitivity and provide an
evolutionary step toward functional organic materials of the future. Herein, we report
on the design and synthesis of a new series of high-nitrogen energetic salts comprising
the C-C linked 6-aminotetrazinedioxide and hydroxytetrazole frameworks (Figure 1). The
presence of the amino group is desirable in terms of intra- and intermolecular hydrogen
bonds formed between amino group hydrogens and N-oxide oxygens, which contribute to
the density and stability of target materials. Complex multidisciplinary investigation of the
thus-prepared compounds reveals a balanced set of their physicochemical and detonation
parameters enabling their ability to replace existing explosives (e.g., RDX).
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2. Results and Discussion

For the synthesis of target energetic materials, we decided to use 6-amino-3-cyanotetrazine
1 as a starting compound, since the nitrile group can be easily converted to the hydroxyte-
trazole motif [35,36]. Thus, our research was started from the optimization of the reaction
conditions of nucleophilic substitution of the dimethylpyrazolyl fragment in a readily
available 3-amino-6-(3,5-dimethylpyrazol-1-yl)-1,2,4,5-tetrazine [37] 2. Several different
solvents as well as cyanide sources were screened, and the results are summarized in
Table 1. It was found that the source and the concentration of cyanide anions were crucial
for the reaction to proceed. TMSCN was ineffective (entry 1), while acetone cyanohydrin
provided target tetrazine 1 in 31–71% yields depending on the reagent excess and additives
used (entries 2–4). A combination of KCN in hexafluoroisopropanol (HFIP) did not result
in the formation of compound 1 (entry 5), but a replacement of HFIP with MeCN or DMF
provided cyanotetrazine 1 in moderate yields (entries 6–8). It was also found that low
water content proved to be essential for high yields of 3-amino-6-cyanotetrazine 1 as can
be seen from entries 8–10; thus, the best results were achieved using dry DMF with an
addition of molecular sieves under inert atmosphere (entry 9). We consider that any water
present in the reaction mixture reacts with KCN to form HO-, which not only easily dis-
places dimethylpyrazolyl fragments to form a corresponding hydroxytetrazine derivative,
but also induces the hydrolysis of the cyano group in the already formed product. It is
also important that an excess of KCN can cause product hydrolysis upon aqueous work-
up. To restrain this issue, the reaction mixture was poured into a slightly acidic aqueous
ammonium chloride solution.

Table 1. Optimization of the reaction conditions for the synthesis of 1 a.
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1 TMSCN (1 eq.) NH4F (1 eq.) MeCN 82 0
2 Acetone cyanohydrin (1.5 eq.) Net3 (1.5 eq.), 3Å MS MeCN 82 31
3 Acetone cyanohydrin (2 eq.) KHCO3 (2 eq.) MeCN 82 48c

4 Acetone cyanohydrin (4 eq.) Net3 (4 eq.), 3Å MS dry dioxane 101 71
5 KCN (2 eq.) 18-crown-6 (0.1 eq.) HFIP 58 0
6 KCN (2 eq.) - MeCN 82 35 c

7 KCN (2 eq.) - DMF 85 61
8 KCN (1.2 eq.) - DMF 85 54
9 KCN (2 eq.) 3Å MS, Ar atm. dry DMF 20 84

10 KCN (2 eq.) 3Å MS, Ar atm. dry DMF 50 79
a Reaction conditions: 2 (0.38 g, 2 mmol), cyanide source, base or additive, stirring at the indicated temperature.
b Isolated yields. c Incomplete conversion of 2.

Curiously, an introduction of bis(dimethylpyrazolyl)tetrazine 3 in the same reaction
under optimized conditions resulted again in a formation of 3-amino-6-cyano-1,2,4,5-
tetrazine 1. The great outcome was that not only was the yield of the target compound
higher, but also the reaction time was reduced from 5 to 1.5 h. We supposed that 3-
cyano-6-(3,5-dimethylpyrazol-1-yl)-1,2,4,5-tetrazine 4 formed initially. When the reaction
mixture was poured into the ammonium chloride solution, the excess KCN neutralized
the ammonium cation to form free ammonia, which then quickly displaced a second
dimethylpyrazolyl fragment with the formation of 3-amino-6-cyano derivative 1 (Scheme 1).
From the technological point of view, the utilization of substrate 3 is more convenient and
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cost-effective since aminotetrazine 2 is synthesized from compound 3 [37]. Therefore, direct
preparation of 3-amino-6-cyanotetrazine 1 from bis(dimethylpyrazolyl)tetrazine 3 allows
to omit one reaction step.
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With a developed procedure for the synthesis of 3-amino-6-cyanotetrazine 1 in hand,
we performed stepwise functionalization to install the hydroxytetrazole scaffold to the
tetrazine backbone. At first, compound 1 was oxidized to the corresponding di-N-oxide
5 using peroxytrifluoroacetic acid generated in situ from 85% H2O2 and trifluoroacetic
anhydride (TFAA). Addition of hydroxylamine to the thus-obtained di-N-oxide 5 occurred
easily, providing amidoxime 6 with almost quantitative yield. The latter was subjected
to diazotization in HCl to form the corresponding chloroxime 7. The chlorine atom in
7 can be easily substituted with an azide anion to form azidooxime 8 with an excellent
yield. Acid-induced cyclization of azidooxime functionality in 8 furnished the formation
of the hydroxytetrazole 9 (Scheme 2). The overall yield of the target hydroxytetrazole 9 is
remarkably high: 74% over five reaction steps starting from 3-amino-6-cyanotetrazine 1.
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Upon treatment with nitrogen-rich bases, hydroxytetrazole 9 was converted to the
corresponding salts 10–12 in quantitative yields (Scheme 3). Ammonia, hydroxylamine and
4-amino-1,2,4-triazole were used as commercially available and convenient base counterparts.
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The structures of all synthesized compounds were confirmed by IR, 1H and 13C NMR
spectroscopy as well as by elemental analysis. The structure of aminotriazolium salt 12 was
additionally confirmed by 15N NMR spectroscopy (Figure 2). The signals were assigned on
the basis of the literature values of resonance peaks in similar compounds. The tetrazinedi-
N-oxide motif is symmetric due to aromaticity; therefore, there are only two nitrogen
signals attributable to the tetrazine ring [34]. The N4 and N5 signals are more upfield
(−90.4 ppm) relative to N1 and N3 (−80.3 ppm). On the contrary, the hydroxytetrazole
motif is asymmetric, which is clearly shown by the presence of four signals similar to the
previously reported data [38]. 1,2,4-Triazole fragment is symmetric and is shown by two
nitrogen signals (−89.9 ppm for N12 and −194.5 ppm for N10, N11) [39]. Both amino
groups are located close to −300 ppm.
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The structure of salt 11 was further confirmed by X-ray diffraction study of a crystallo-
hydrate grown from a methanol–water (1:1) mixture (Figure 3). Compound 11 crystallizes
as a monohydrate in the monoclinic space group P21/n with four formula units (4 anions,
4 cations, 4 water molecules) per cell and a density of 1.852 g·cm−3 at 100 K (Figure 3).
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The average length of CN and NN bonds in the tetrazinedi-N-oxide fragment is 1.347 Å,
which is slightly above the values reported for similar 3,6-disubstituted tetrazine rings
(1.335–1.344 Å). The average length of the N-oxide bond (1.270 Å) is also among the highest
values (1.259–1.271 Å) reported to date [34,40,41].
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The amino group and the tetrazine ring are nearly coplanar, which is shown by the
torsion angle H(91)-N(9)-C(3)-N(6) = 2.86◦. However, there is a noticeable twist between
the planes of tetrazine and hydroxytetrazole rings, supported by the torsion angle N(8)-
C(2)-C(1)-N(1) = 11.07◦. This fact can be attributed to multiple hydrogen bonds formed by
the hydroxytetrazole fragment.

The anionic units are stacked into infinite columns, which are supported by hydrogen
bonds formed between exocyclic oxygen and ring nitrogen atoms of the anion and the
surrounding water molecules and the hydroxylammonium counter-ions (Figure 4).

Molecules 2022, 27, x FOR PEER REVIEW 6 of 15 
 

 

The structure of salt 11 was further confirmed by X-ray diffraction study of a crystal-
lohydrate grown from a methanol–water (1:1) mixture (Figure 3). Compound 11 crystal-
lizes as a monohydrate in the monoclinic space group P21/n with four formula units (4 
anions, 4 cations, 4 water molecules) per cell and a density of 1.852 g cm−3 at 100 K (Figure 
3). The average length of CN and NN bonds in the tetrazinedi-N-oxide fragment is 1.347 
Å, which is slightly above the values reported for similar 3,6-disubstituted tetrazine rings 
(1.335–1.344 Å). The average length of the N-oxide bond (1.270 Å) is also among the high-
est values (1.259–1.271 Å) reported to date [34,40,41]. 

 
Figure 3. Selected bond lengths in crystal of 11. The values of the bond lengths are given in ang-
stroms. 

The amino group and the tetrazine ring are nearly coplanar, which is shown by the 
torsion angle H(91)-N(9)-C(3)-N(6) = 2.86°. However, there is a noticeable twist between 
the planes of tetrazine and hydroxytetrazole rings, supported by the torsion angle N(8)-
C(2)-C(1)-N(1) = 11.07°. This fact can be attributed to multiple hydrogen bonds formed by 
the hydroxytetrazole fragment. 

The anionic units are stacked into infinite columns, which are supported by hydro-
gen bonds formed between exocyclic oxygen and ring nitrogen atoms of the anion and the 
surrounding water molecules and the hydroxylammonium counter-ions (Figure 4). 

 
Figure 4. Fragment of infinite H-bonded column in crystal of 11. The values of the bond lengths are 
given in angstroms. 

Hydroxytetrazole provides several H-bonds with water molecules: the first one is a 
moderate bond with O(1) (1.916 Å), and the second one formed with cyclic N(4) is weaker 

Figure 4. Fragment of infinite H-bonded column in crystal of 11. The values of the bond lengths are
given in angstroms.

Hydroxytetrazole provides several H-bonds with water molecules: the first one is
a moderate bond with O(1) (1.916 Å), and the second one formed with cyclic N(4) is
weaker (2.065 Å). Additionally, each NH2 group interacts with an oxygen atom of the
hydroxytetrazole fragment of the neighbor molecule and O(5) of the water molecule via
two moderate H-bonds (1.979 and 1.971 Å, respectively; Figure 5).
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Figure 5. H-bonds formed by the hydroxytetrazole motif in the crystal of 11. The values of the bond
lengths are given in angstroms.

Contacts between parallel anion stacks are provided by two hydroxylammonium
cations, which are interconnected head-to-tail between each other with two equal H-bonds
(1.983 Å). These dimeric spacers are then linked to anionic units through hydroxylam-
monium OH- and NH3

+ groups with two rather strong H-bonds (1.809 and 1.804 Å,
respectively; Figure 6).
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Figure 6. Hydroxylammonium-linked H-bonded dimers of 11. The values of the bond lengths are
given in angstroms.

The surrounding of the N-oxides is different: O(3) forms two moderate bonds with
a water molecule and a hydroxylammonium cation, and O(2) only forms a weak H-bond
with water (2.872 Å).This fact results in a slight difference between lengths of these two
bonds in crystals: the N(7)-O(3) bond is longer than the N(6)-O(2) bond (1.283 and 1.256 Å,
respectively). As a result of vast amount of the formed H-bonds, the density of the
monohydrate is relatively high (1.852 g·cm−3) and even higher than that for the water-free
salt (1.78 g·cm−3).

The physical and detonation properties, such as thermal stability, density, enthalpy of
formation, detonation performance, as well as sensitivity of all target compounds, were
investigated. The results are summarized in Table 2. With an exception of hydroxylam-
monium salt 11, analyzed compounds have acceptable thermal stability: for 10 and 12,
the extrapolated onset of the decomposition peak by DSC is above 200 ◦C. Measured
densities fall in the range of 1.75–1.78 g·cm−3, which is quite good for organic energetic
salts. Compounds 10–12 store large amounts of nitrogen (>56%), much more than that
of benchmark nitramine energetic material RDX (37.8%). High nitrogen content should
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result in more eco-friendly reaction products. Combined nitrogen–oxygen contents of salts
10–12 are similar to that of RDX, while their oxygen balance to CO is slightly negative. Due
to the presence of two additional carbon atoms in the amino-1,2,4-triazolium cation, the
oxygen balance of salt 12 is the most negative in the presented series of energetic salts.
At the same time, energetic materials 10–12 have high calculated enthalpies of formation
within 413–780 kJ·mol−1. The enthalpy of formation of salt 12 is the highest since the
contribution of the heteroaromatic amino-1,2,4-triazolium cation to the resulting value
is the most significant in comparison with ammonium and hydroxylammonium cations.
Having the enthalpies of formation and experimental densities in hand, we calculated
the detonation velocities (D) and pressures (P) using the empirical equations included
in the PILEM application [42]. All synthesized compounds show the high detonation
performance, reaching that of benchmark RDX. As compared to the RDX, investigated salts
are less friction sensitive.

Table 2. Physical properties and detonation parameters of salts 10–12.

Salt Td,a ◦C ρ,b

g·cm−3 N,c % [N +
O],d %

ΩCO,e

%
∆Ho

f,f

kJ·mol−1
D,g

km·s−1 P,h GPa IS,i J FS,j N

10 212 1.75 60.9 81.7 −20.9 417 8.5 31 9 265

11 155 1.78 56.9 82.9 −13.0 413 8.8 33 10 190

12 206 1.77 61.3 77.4 −29.6 779 8.5 32 15 260

RDX 204 1.81 37.8 81.1 0 68 8.8 34 10 130
a Decomposition temperature (DSC, 5 K min−1). b Density measured by gas pycnometer (298 K). c Nitrogen
content. d Combined nitrogen and oxygen content. e Oxygen balance (based on CO) for CaHbOcNd, 1600(c − a −
b/2)/MW. f Enthalpy of formation. g Detonation velocity. h Detonation pressure. i Impact sensitivity. j Friction
sensitivity.

3. Materials and Methods

CAUTION! Although we encountered no difficulties during the preparation and
handling of compounds described in this paper, they are potentially explosive energetic
materials that are sensitive to impact and friction. Mechanical actions of these energetic
materials, involving scratching or scraping, must be avoided. Any manipulations must be
carried out by using appropriate standard safety precautions.

3.1. General Methods

All reactions were carried out in well-cleaned oven-dried glassware with magnetic stir-
ring. 1H and 13C NMR spectra were recorded on a Bruker AM-300 (300.13 and 75.47 MHz,
respectively) spectrometer and referenced to residual solvent peak. 15N NMR spectrum
was recorded on a Bruker AV-600 instrument (the frequency for 15N was 50.7 MHz) at room
temperature. The chemical shifts are reported in ppm (δ). The IR spectra were recorded on
a Bruker “Alpha” spectrometer in the range 400–4000 cm−1 (resolution 2 cm−1). Elemental
analyses were performed by the CHN Analyzer Perkin-Elmer 2400. All solvents were puri-
fied and dried using standard methods prior to use. All standard reagents were purchased
from Aldrich or Acros Organics and used without further purification.

3.2. X-ray Crystallography

X-ray diffraction data were collected at 100 K on a four-circle Rigaku Synergy S
diffractometer equipped with a HyPix600HE area-detector (kappa geometry, shutterless
ω-scan technique), using graphite monochromatized Cu Kα-radiation. The intensity data
were integrated and corrected for absorption and decay by the CrysAlisPro program [43].
The structure was solved by direct methods using SHELXT [44] and refined on F2 using
SHELXL-2018 [45] in the OLEX2 program [46]. All non-hydrogen atoms were refined with
individual anisotropic displacement parameters. The locations of hydrogen atoms H4, H51,
H52, H91, H92, H101, H102 and H103 were found from the electron density-difference map;
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these hydrogen atoms were refined with individual isotropic displacement parameters.
All other hydrogen atoms were placed in ideal calculated positions and refined as riding
atoms with relative isotropic displacement parameters (for details, see Supplementary
Materials, Tables S1–S7). CCDC 2169314 contains the supplementary crystallographic data
for 11. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/
retrieving.html (accessed on 17 July 2022)(or from the CCDC, 12 Union Road, Cambridge,
CB21EZ, UK; or deposit@ccdc.cam.ac.uk).

3.3. Computational Methods

All calculations were performed with Gaussian09 software package [47]. The en-
thalpies of formation in the gas phase for all cases were calculated using the CBS-4M
method [48]. The enthalpies of formation of salts in the solid phase were estimated on the
basis of the crystal packing modeling method. Values for ∆fH◦ (atoms) were taken from
the NIST database.

∆fH◦
(g, 298) = H(Molecule, 298) − ∑H◦

(Atoms, 298) + ∑∆fH◦
(Atoms, 298)

Geometric optimization of all structures for crystal packing calculation was carried
out using the DFT/B3LYP functional and the aug-cc-PVDZ basis set with a Grimme’s D2
dispersion correction [49]. The optimized structures were conformed to be true local energy
minima on the potential-energy surface by frequency analyses at the same level.

In the calculation of lattice energy, the molecules were treated as rigid bodies with
fixed point groups. We applied pairwise atom–atom potentials to describe the van der
Waals and electrostatic point charges for Coulomb components of intermolecular energy. At
the initial stage, “6–12” Lennard-Jones (LJ)-type potential parameters were used [50]. The
electrostatic energy was calculated with a set of displaced point charge sites by program
FitMEP [51]. The lattice energy simulations were performed with the program PMC [52].

It is well known that the majority of organic crystal structures studied experimentally
belong to a rather limited number of space groups [53]. For brief assessment of crystal
packing, we obtained the following ordered list of the most likely structural classes: P21/c,
P212121, P-1, Pca21 and P1 with two independent molecules in cell, which cover more
than 80% of the whole number of crystal structures in total [53]. Taking into account low
deviation in the crystal lattice energies of polymorphs, such a calculation is considered
reasonable.

Enthalpy of sublimation for 9 was calculated by the formula:

∆Hsubl = −Elat − 2RT

where R is the universal gas constant, Elat is the lattice energy, T is temperature (298 K).
The new approach for salts proposes a technique based on modeling the crystal

packing for a salt and a similar neutral compound (quasi-salt, cocrystal). The enthalpy of
formation in this case is calculated as the average value between these two structures [54].

Detonation performance parameters (detonation velocity at maximal density and
Chapman–Jouguet pressure) were calculated by a recently suggested set of empirical
methods from PILEM application [42]. Note that the accuracy of the utilized PILEM
empirical methods is comparable to benchmark thermodynamic code EXPLO5.

3.4. Thermal Analysis and Sensitivity Measurements

Thermal analysis was performed using the STA 449 F3 (Netzsch) apparatus. Samples
of 0.5–1 mg mass were poured into alumina pans covered with pierced lids and heated to
600 ◦C with a constant rate of 5 K min−1. Impact sensitivity tests were performed using
BAM-type machine according to STANAG 4489 [55]. Friction sensitivity was evaluated in
agreement with STANAG 4487 [56]. The reported values correspond to 50% probability of
explosions; other details can be found elsewhere [57].

http://www.ccdc.cam.ac.uk/conts/retrieving.html
http://www.ccdc.cam.ac.uk/conts/retrieving.html
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3.5. Synthetic Procedures

3-Amino-6-cyano-1,2,4,5-tetrazine (1). Method A from 3-amino-6-(3,5-dimethyl-1H-pyrazol-
1-yl)-1,2,4,5-tetrazine 2: In a Schlenk flask under an argon atmosphere, 3-amino-6-(3,5-
dimethyl-1H-pyrazol-1-yl)-1,2,4,5-tetrazine 2 (382 mg, 2 mmol), KCN (260 mg, 4 mmol)
and oven-dried 3Å molecular sieves (300 mg) were mixed, and dry DMF (9 mL) was added.
The reaction mixture was stirred at ambient temperature for 5.5 h, poured into a solution
of NH4Cl (16 g) in 200 mL of cold water and extracted with EtOAc (7 × 60 mL). The com-
bined extracts were dried over MgSO4 and evaporated at reduced pressure. The resulting
crude solid was purified by flash chromatography on SiO2 (eluent CH2Cl2-EtOAc, 4:1)
yielding 206 mg (84%) of pure product. Method B from 3,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-
1,2,4,5-tetrazine 3: In a Schlenk flask under an argon atmosphere, 3,6-bis(3,5-dimethyl-1H-
pyrazol-1-yl)-1,2,4,5-tetrazine 3 (540 mg, 2 mmol), KCN (520 mg, 8 mmol) and oven-dried
3Å molecular sieves (400 mg) were mixed, and dry DMF (15 mL) was added. The reaction
mixture was stirred at ambient temperature for 1.5 h, poured into a solution of NH4Cl (12 g)
in 150 mL of cold water and extracted with EtOAc (5 × 60 mL). The combined extracts
were dried over MgSO4 and evaporated at reduced pressure. The resulting crude solid
was purified by flash chromatography on SiO2 (eluent CH2Cl2-EtOAc, 4:1) yielding 220 mg
(90%) of pure product. Red crystalline solid. mp = 176–177 ◦C (dec). IR (KBr), ν: 3432,
3331, 2253, 1670, 1637, 1531, 1501, 1038, 970 cm−1. 1H NMR (300 MHz, DMSO-d6) δH, ppm:
9.12 (s, 2H). 13C{1H} NMR (75.5 MHz, DMSO-d6) δC, ppm: 160.9, 144.6, 115.6. Calcd. for
C3H2N6 (%): C, 29.51; H, 1.65; N, 68.84. Found (%): C, 29.59; H, 1.59; N, 68.67.

6-Amino-3-cyano-1,2,4,5-tetrazine 1,5-dioxide (5). First, 85% H2O2 (4.5 mL) was
slowly added to trifluoroacetic anhydride (12 mL), cooled on an ice bath, and the tempera-
ture was kept below 10 ◦C. Then, a solution of 3-amino-6-cyanotetrazine (2.44 g, 20 mmol)
in MeCN (30 mL) was added in one portion. The reaction mixture was stirred at 25 ◦C for
2 h, poured into water (250 mL) and extracted with EtOAc (10 × 50 mL). The combined
extracts were dried over MgSO4 and evaporated at reduced pressure yielding 2.68 g (87%)
of pure product. Yellow solid. mp = 191–192 ◦C (dec). 1H NMR (300 MHz, DMSO-d6) δH,
ppm: 9.69 (s, 2H). 13C{1H} NMR (75.5 MHz, DMSO-d6) δC, ppm: 150.1, 129.9, 112.5. Calcd.
for C3H2N6O2 (%): C, 23.38; H, 1.31; N, 54.54. Found (%): C, 23.51; H, 1.19; N, 54.31.

6-Amino-3-(amino(hydroximino)methyl)-1,2,4,5-tetrazine 1,5-dioxide (6). First, 50%
aqueous NH2OH (1.22 mL, 19 mmol) was added dropwise to a suspension of 6-amino-3-
cyano-1,2,4,5-tetrazine 1,5-dioxide 5 (2.54 g, 16.5 mmol) in ethanol (66 mL) at 0 ◦C under
vigorous stirring. The reaction mixture was stirred at 0 ◦C for 10 min and then at ambient
temperature for an additional 1 h. The resulting solid was filtered off, washed with EtOAc
(30 mL) and dried in air. Yield 2.96 g (96%). Orange solid. Td = 207–208 ◦C. IR (KBr), ν:
3459, 3403, 3353, 3111, 1685, 1633, 1502, 1402, 1319, 1092, 947 cm−1. 1H NMR (300 MHz,
DMSO-d6) δH, ppm: 10.32 (s, 1H), 8.71 (br. s, 2H), 5.79 (s, 2H). 13C{1H} NMR (75.5 MHz,
DMSO-d6) δC, ppm: 147.1, 145.5, 145.2. Calcd. for C3H5N7O3 (%): C, 19.26; H, 2.69; N,
52.40. Found (%): C, 19.35; H, 2.61; N, 52.28.

6-Amino-3-(chloro(hydroxyimino)methyl)-1,2,4,5-tetrazine 1,5-dioxide (7). Conc. HCl
(59 mL) was added to a suspension of amidoxime 6 (2.805 g, 15 mmol) in distilled water
(48 mL) at 0 ◦C under vigorous stirring. Then, a solution of NaNO2 (1.24 g, 18 mmol) in
distilled water (18 mL) was added dropwise at 0 ◦C. The reaction mixture was stirred for
3.5 h at 0 ◦C, poured into 500 mL of water and extracted with EtOAc (8 × 60 mL). The
combined extracts were dried over MgSO4 and evaporated at reduced pressure yielding
3.01 g (97%) of pure chlorooxime. Yield 3.01 g (97%). Yellow solid. Td = 207–208 ◦C. IR
(KBr), ν: 3391, 3291, 3262, 1644, 1494, 1303, 1088, 1007, 900 cm−1. 1H NMR (300 MHz,
DMSO-d6) δH, ppm: 13.20 (s, 1H), 8.96 (s, 2H). 13C{1H} NMR (75.5 MHz, DMSO-d6) δC,
ppm: 147.3, 145.1, 129.8. Calcd. for C3H3N6O3Cl (%): C, 17.45; H, 1.46; N, 40.69. Found (%):
C, 17.40; H, 1.49; N, 40.61.

6-Amino-3-(azido(hydroxyimino)methyl)-1,2,4,5-tetrazine 1,5-dioxide (8). Chlorox-
ime 7 (1.55 g, 7.5 mmol) was added in one portion to a solution of NaN3 (975 mg, 15 mmol)
in 40 mL of distilled water at 0 ◦C. The reaction mixture was stirred at 0 ◦C for 10 min and
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then at ambient temperature for an additional 3.5 h. Then, conc. HCl (660 µL) was added,
the reaction mixture was stirred for 10 min, and the yellow product was filtered off, washed
with water (10 mL) and dried in air. Additional amounts of product were obtained from
the mother liquor, which was evaporated under reduced pressure. Then, THF (20 mL) was
added to the residue, and insoluble NaCl was filtered off. The resulting solution containing
target azidooxime was evaporated under reduced pressure. The obtained products were
combined to yield 1.50 g (94%) of target compound 8. Yellow solid. Td = 185–186 ◦C. IR
(KBr), ν: 3374, 3246, 2172, 2135, 1645, 1499, 1311, 1085, 1029, 926 cm−1. 1H NMR (300 MHz,
DMSO-d6) δH, ppm: 12.46 (s, 1H), 8.90 (s, 2H). 13C{1H} NMR (75.5 MHz, DMSO-d6) δC,
ppm: 147.4, 144.0, 136.6. Calcd. for C3H3N9O3 (%): C, 16.91; H, 1.42; N, 59.15. Found (%):
C, 16.70; H, 1.49; N, 58.99.

6-Amino-3-(1-hydroxy-1H-tetrazol-5-yl)-1,2,4,5-tetrazine 1,5-dioxide (9). Azidooxime
8 (1.70 g, 8 mmol) was dissolved in a 20% HCl solution in dioxane (25 mL). The reaction
mixture was stirred for 5 h at ambient temperature, poured into 100 mL of distilled water
and evaporated at reduced pressure at 45 ◦C, adding water several times to completely
remove any residual HCl. Yield 1.65 g (97%). Yellow solid. Td = 213–214 ◦C. IR (KBr),
ν: 3547, 3499, 1639, 1503, 1326, 1109, 956 cm−1. 1H NMR (300 MHz, DMSO-d6) δH, ppm:
9.20 (s, 2H). 13C{1H} NMR (75.5 MHz, DMSO-d6) δC, ppm: 148.0, 141.5, 139.6. HRMS (ESI)
Calcd. for: C3H4N9O3

+: 214.0431; Found: 214.0441 [M+H]+. Calcd. for: C3H3N9O3Na+:
236.0251; Found: 236.0251 [M+Na]+.

Ammonium salt of 6-amino-3-(1-hydroxy-1H-tetrazol-5-yl)-1,2,4,5-tetrazine 1,5-dioxide
(10). Dry gaseous ammonia was bubbled through a solution of hydroxytetrazole 9 (1.065 g,
5 mmol) in 40 mL of dry THF, cooled to 0 ◦C, for 5 min. The reaction mixture was stirred
for an additional 30 min at 0 ◦C. The formed red solid was filtered off, washed with THF
(50 mL) and dried in air. Yield 1.13 g (98%). Red solid. Td = 212 ◦C. IR (KBr), ν: 3302, 3208,
1613, 1418, 1309, 1114, 956 cm−1. 1H NMR (300 MHz, DMSO-d6) δH, ppm: 6.40 (br. s, 6H).
13C{1H} NMR (75.5 MHz, DMSO-d6) δC, ppm: 147.3, 140.9, 137.4. 14N NMR (21.7 MHz,
DMSO-d6) δN: −362.1. Calcd. for C3H6N10O3 (%): C, 15.66; H, 2.63; N, 60.86. Found (%):
C, 15.81; H, 2.49; N, 60.59.

Hydroxylammonium salt of 6-amino-3-(1-hydroxy-1H-tetrazol-5-yl)-1,2,4,5-tetrazine
1,5-dioxide (11). First, 50% aqueous NH2OH (313 µL, 5.1 mmol) was added dropwise
to a solution of hydroxytetrazole 9 (1.065 g, 5 mmol) in 20 mL of dry THF at 0 ◦C under
vigorous stirring. The reaction mixture was additionally stirred at 0 ◦C for 30 min. The
formed yellow solid was filtered off, washed with THF (30 mL) and dried in air. Yield 1.48 g
(94%). Yellow solid. Td = 155 ◦C. IR (KBr), ν: 3229, 2950, 1651, 1502, 1309, 1112, 956 cm−1.
1H NMR (300 MHz, DMSO-d6) δH: 9.90 (br. s, 6H). 13C{1H} NMR (75.5 MHz, DMSO-d6) δC,
ppm: 146.7, 142.9, 137.5. Calcd. for C3H6N10O4 (%): C, 14.64; H, 2.46; N, 56.91. Found (%):
C, 14.42; H, 2.57; N, 56.70.

4-Amino-1,2,4-triazolium salt of 6-amino-3-(1-hydroxy-1H-tetrazol-5-yl)-1,2,4,5-tet-
razine 1,5-dioxide (12). A solution of 4-amino-1,2,4-triazole (378 mg, 4.5 mmol) in 2 mL
of MeOH was added dropwise to a solution of hydroxytetrazole 9 (959 mg, 4.5 mmol) in
16 mL of dry THF at ambient temperature under vigorous stirring. The reaction mixture
was additionally stirred at ambient temperature for 30 min. The formed yellow solid
was filtered off, washed with THF (30 mL) and dried in air. Yield 1.31 mg (98%). Yellow
solid. Td = 206 ◦C. IR (KBr), ν: 3331, 3134, 1638, 1500, 1320, 1100, 960 cm−1. 1H NMR
(300 MHz, DMSO-d6) δH, ppm: 9.18 (s, 2H), 8.55 (s, 2H), 6.02 (br. s, 3H). 13C{1H} NMR
(75.5 MHz, DMSO-d6) δC, ppm: 147.8, 144.6, 140.9, 140.2. 15N NMR (50.7 MHz, DMSO-d6)
δN, ppm: −4.8, −14.3, −51.2, −80.3, −89.9, −90.4, −105.6, −194.5, −306.6, −312.5. Calcd.
for C5H7N13O3 (%): C, 20.21; H, 2.37; N, 61.27. Found (%): C, 20.36; H, 2.29; N, 60.97.

4. Conclusions

In conclusion, a series of novel energetic organic salts comprising C-C bridged
tetrazinedi-N-oxide and hydroxytetrazole rings and nitrogen-rich cations was synthesized
starting from the parent compound 3-amino-6-cyano-1,2,4,5-tetrazine. These energetic



Molecules 2022, 27, 5891 12 of 14

materials were well characterized by IR and 1H, 13C, 15N NMR spectroscopy, elemental
analysis and differential scanning calorimetry. The molecular structure of the hydroxy-
lammonium salt 11 was additionally confirmed by single-crystal X-ray diffraction. The
anionic units in energetic salt 11 are stacked into infinite columns, which are supported by
hydrogen bonds formed between exocyclic oxygen and ring nitrogen atoms of the anion
and the hydroxylammonium counter-ions. Synthesized energetic salts have high enthalpies
of formation and excellent detonation performance, which together with high nitrogen
content, make these compounds promising green alternatives for commonly used sec-
ondary explosive RDX. Moreover, reported high-energy salts have lower friction sensitivity
compared to RDX, which additionally confirms their suitability for energetic applications
as secondary explosives.
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