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Quantifying non-ergodicity of 
anomalous diffusion with higher 
order moments
Maria Schwarzl1, Aljaž Godec1,2 & Ralf Metzler   1

Anomalous diffusion is being discovered in a fast growing number of systems. The exact nature of 
this anomalous diffusion provides important information on the physical laws governing the studied 
system. One of the central properties analysed for finite particle motion time series is the intrinsic 
variability of the apparent diffusivity, typically quantified by the ergodicity breaking parameter EB. 
Here we demonstrate that frequently EB is insufficient to provide a meaningful measure for the 
observed variability of the data. Instead, important additional information is provided by the higher 
order moments entering by the skewness and kurtosis. We analyse these quantities for three popular 
anomalous diffusion models. In particular, we find that even for the Gaussian fractional Brownian 
motion a significant skewness in the results of physical measurements occurs and needs to be taken 
into account. Interestingly, the kurtosis and skewness may also provide sensitive estimates of the 
anomalous diffusion exponent underlying the data. We also derive a new result for the EB parameter of 
fractional Brownian motion valid for the whole range of the anomalous diffusion parameter. Our results 
are important for the analysis of anomalous diffusion but also provide new insights into the theory of 
anomalous stochastic processes.

Superresolution microscopy allows unprecedented insight into the motion of fluorescently labelled, single mol-
ecules in complex liquid environments and even inside living biological cells. The observed tracer dynamics also 
reveals new insights into the physical properties of the systems and thus provides a handle for the modelling of 
followup processes such as molecular reactions in the system. Concurrently, due to ever increasing computational 
power, large scale simulations uncover longer and longer time windows of the atomistic or coarse grained dynam-
ics in molecular systems1–6.

In complex systems such as living biological cells one often observes systematic deviations of the tracer 
dynamics from Brownian motion. Thus, anomalous diffusion characterised by the power-law scaling

α
α

x t K t( ) (1)2

of the mean squared displacement (MSD) emerges, where Kα is the generalised diffusion coefficient of dimen-
sion cm2/secα. According to the magnitude of the anomalous diffusion exponent α one distinguishes subdif-
fusion for 0 < α < 1 and superdiffusion for α > 17, 8. Subdiffusion, for instance, was observed for the motion of 
tracer particles inside living biological cells9–15, in artificially crowded16–18 and structured19–22 liquids, in pure and 
protein-crowded lipid bilayer systems23–29, as well as in groundwater systems30. Superdiffusion occurs in the pres-
ence of active motion, for instance, in living biological cells31–34 or due to bulk-surface exchange35, 36.

The MSD (1) is obtained as the average of the squared particle position over an ensemble of particles at a fixed 
time t. In many single particle tracking studies and large scale computer simulations few but long time series x(t) 
of the tracer particle position are available. These are typically evaluated in terms of the time averaged MSD
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where Δ is called the lag time and t is the overall length of the time series4, 37. In the Boltzmann-Khinchin sense 
we call a stochastic system ergodic when the time averaged MSD (2) converges to the MSD (1) in the long 
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measurement time limit: δ Δ = Δ→∞ xlim ( ) ( )t
2 2 . For certain anomalous diffusion processes this equality no 

longer holds, and we observe a so-called weak ergodicity breaking: δ ∆ ≠ Δ→∞ xlim ( ) ( )t
2 2 4, 37–44.

For finite measurement times even for ergodic processes the time averaged MSD (2) will exhibit more or less 
pronounced amplitude variations around the mean

∑δ δΔ = Δ
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taken over N garnered trajectories4, 37, 38. Defining the dimensionless variable ξ δ δ= Δ Δ( )/ ( )2 2  the variations of 
δ Δ( )2  around δ Δ( )2  are then typically characterised in terms of the variance of ξ,

ξΔ = −EB( ) 1, (4)2

the ergodicity breaking parameter4, 37, 38, 45, 46. The EB parameter has become a widely used tool to quantify the 
trajectory-to-trajectory fluctuations in single particle tracking. Note that in some papers EB is defined only in 
the limit Δ/t → 0, however, we here use it as a measure for the spread ξ also at finite Δ/t ratios. The canonical 
Brownian motion is characterised by the scaling EB = 4/3 × (Δ/t) of the EB parameter in the limit Δ/t → 04, 45, 
see ref. 47 for the full expression.

Here we study in detail the full distribution φ(ξ) of the amplitude fluctuations of the time averaged MSD. For 
the most popular anomalous diffusion processes we demonstrate that while the EB parameter is an important 
measure for the amplitude of these fluctuations, in many cases it is not sufficient to adequately characterise the 
distribution φ(ξ). Namely, in many cases φ(ξ) is significantly skewed, that is, asymmetric around its mean. In this 
case higher order moments should be used to complement the EB parameter. Specifically, we here analyse the 
skewness
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where the denominator represents the standard deviation σ = (〈ξ2〉 − 〈ξ〉2)1/2 = EB1/2 of the amplitude scatter of ξ 
and we used the fact that 〈ξ〉 = 1 by definition. When γ = 0 the distribution is symmetric, for negative/positive γ it 
is skewed to the left/right. When |γ| is larger than unity the distribution is considered significantly skewed. As we 
will see, this is frequently the case for the commonly used anomalous diffusion models, in particular for fractional 
Brownian motion (FBM), for which a symmetric Gaussian distribution for φ(ξ) was previously suggested. We also 
investigate in detail the kurtosis
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which is a measure for the outliers of the scatter distribution φ(ξ). Alternatively in literature also the 
non-Gaussianity measure is used which involves the fourth time averaged moment4. As a reference process the 
analysis of the TAMSD of normal Brownian motion is discussed in ref. 47 in detail. It can be recovered as the 
special case α = 1 of our anomalous diffusion models. We note that φ(ξ) provides meaningful information even 
for relatively sparse data, and it can be reliably used to infer the physical character of the stochastic process under-
lying the observed data48, 49.

In the following section II we study the amplitude scatter for FBM at finite values of Δ/t and show, in particu-
lar, that the EB parameter varies smoothly as function of the anomalous diffusion exponent α. We also investigate 
the skewness and kurtosis for FBM and demonstrate the relevance to consider higher order moments. Section III 
is devoted to the subdiffusive continuous time random walk (CTRW), for which φ(ξ) is naturally skewed, as it has 
a finite value at ξ = 0. In addition to the standard CTRW we also quantify the shape parameters of φ(ξ) of ageing 
CTRW processes. Heterogeneous diffusion processes (HDP) with their systematic, quenched variation of the dif-
fusion coefficient are then studied with respect to the skewness and kurtosis in section IV. Finally, in section V we 
draw our conclusions and argue, why this analysis of additional data inference techniques is important for a relia-
ble quantitative and physical analysis of stochastic data. In the appendix some mathematical details are presented.

Results
Fractional Brownian Motion.  FBM is one of the most widely used anomalous diffusion processes. For 
instance, it is a standard model for stock market dynamics50, and it is used as a polymer model51. It also describes the 
effective dynamics of single file diffusion52. Moreover, it is commonly used to model single particle diffusion exper-
iments12, 16, 17, 53–56 in living cells. Its physical relevance stems from the fact that it corresponds to the overdamped 
limit of the fractional Langevin equation associated with particle motion in viscoelastic environments4, 57, 58.

FBM was formulated in 1968 by Mandelbrot and van Ness59 as a family of Gaussian random functions. We 
note that a similar process was introduced by Kolmogorov in 194060. FBM is conveniently defined in terms of the 
Langevin equation
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ζ= α
x t

t
td ( )

d
( ), (7)

where ζα(t) represents fractional Gaussian noise, defined in terms of the Gaussian yet power-law correlated ran-
dom noise ζα(t) of zero mean and two-time correlation

ζ ζ α α∼ − −α α α
α−t t K t t( ) ( ) 2

2
( 1) , (8)1 2 1 2

2

for t1, t2 > 0 and t1 ≠ t2
45, 61–63 The anomalous diffusion exponent α used here relates to the Hurst exponent, often 

encountered in the discussion of FBM, via α = 2H. Due to the sign of the factor (α − 1) subdiffusive FBM for 
0 < α < 1 is anti-correlated (antipersistent), i.e., more erratic and with a smaller span than Brownian motion. 
Conversely, positively correlated (persistent) motion occurs in the range 1 < α < 2. In the limit α = 2 the steps are 
completely correlated and ballistic motion is recovered.

A sample path of FBM is generated analogously to Brownian motion in the form

∫ ζ= ′ ′.αx t t dt( ) ( ) (9)
t

0

There are several ways to simulate fractional Gaussian noise, including the Hosking method64, which we used 
to generate our simulation paths. Accordingly the path is generated as the sum of a fractional Gaussian noise real-
isation in that every step is explicitly calculated recursively using the entire path history. The method is defined 
in detail in ref. 65.

Ergodicity breaking parameter.  FBM as well as ordinary Brownian motion is known to be ergodic in the 
Boltzmann-Khinchin sense in that δ ∆ = ΔΔ → xlim ( ) ( )t/ 0

2 2 45, 61. Note, however, that for FBM and the related 
fractional Langevin equation motion transiently non-ergodicity and ageing effects may occur18, 61, 66, 67. Moreover 
the mean time averaged MSD δ2  equals the ensemble averaged MSD at all lag times Δ = t45. The EB parameter 
of FBM was proposed to split up in the tripartite scaling law45
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In this expression we see that the EB parameter converges to zero as Δ t/  proportionally to the Brownian case 
as long as α < 3/2. For α > 3/2 a slower decay Δ α−

 t( / )4 2  is observed.
We also see that the result (10) includes a divergence at the critical point α = 3/245, as shown in Fig. 1. Here we 

present the exact analytical result valid for any Δ/t based on a systematic, strictly converging series expansion (see 
Methods). In particular, we prove that in the limit Δ t/ 1 EB does not display any discontinuity at α = 3/2.

To show this let us reconsider the full expression of the EB parameter without approximation45,
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As detailed in Methods, this expression can be modified such that the consistent approximation Δ t/ 1 to lead-
ing order yields the FBM EB parameter
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This result is clearly different from Eq. (10) and shows that the leading scaling behaviour suggested in ref. 45 
is only assumed sufficiently far away from the point α = 3/2, with a quantitative dependence on Δ/t. As α 
approaches α = 3/2 the EB parameter according to expressions (12), (13), and (14) converges to the same value, 
and at α = 3/2 a linear term with a logarithmic correction in Δ/t emerges due to the exact limit
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The behaviour according to expressions (12), (13), and (14) is demonstrated in Fig. 1 in comparison with the 
numerically calculated full expression (11) of the EB parameter. Moreover, Fig. 1 confirms that the result of ref. 45 
is only valid for α values, that are sufficiently far away from the point α = 3/2. Different values of the ratio Δ/t are 
shown and exhibit excellent agreement with our results. Only when we consider small values of Δ/t the scaling 
around the point α = 3/2 is somewhat off the leading order expansion obtained above. More specifically, in the 
range 0 < α < 3/2 the scaling of EB is Δ t/ , hence the respective prefactor can be calculated by EB/(Δ/t). 
Analogously for 3/2 < α < 2 the prefactor is EB/(Δ/t)4−2α and at exactly α = 3/2 it is EB/(Δ/t × lnt). We conclude 
that our analytical approximation (12) represents the behaviour of the EB parameter of FBM to numerically suf-
ficient accuracy.

Figure 2 shows the EB parameter as a function of the anomalous diffusion exponent for different ratios Δ/t of 
lag time to measurement time. We observe an excellent agreement between our analytical approximation (12) and 
the numerical result for the full integral (11). In particular, the value of EB is continuous across the value α = 3/2. 
Further one can see the transition in the scaling. Up to α = 3/2 the curves are equidistant due to the proportional-
ity of EB to Δ/t. For larger values of α the curves progressively approach each other until the ballistic limit α = 2 
where they reach the value EB = 2.

The continuity of EB as function of α and the approximative result for EB and its good agreement with the 
exact result are our first main finding.

Figure 1.  EB parameter of FBM divided by the respective scaling laws with respect to Δ/t for the regimes 
0 < α < 3/2 and 3/2 < α < 2 according to Eq. (10). The behaviour according to Eq. (10) from45 is represented 
by the dashed red lines and the red symbol at α = 3/2: it shows a distinct divergence at α = 3/2. Our analytical 
result (12) based on a less severe approximation is represented by the symbols and the full line corresponding to 
the numerical evaluation of the integral (11), calculated via the trapezoidal rule with integration step 10−3. No 
divergence remains, and in fact a continuous albeit non-smooth behaviour is revealed. The agreement between 
our approximation (12) and the numerical evaluation of the full expression (11) remains quite good even for 
relatively large values of Δ/t. Note the left and right ordinates referring to the cases 0 < α < 3/2 and 3/2 < α < 2.
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Skewness and kurtosis of the amplitude scatter distribution.  As stated before, for finite measure-
ment times the time averaged MSD of a single trajectory of any stochastic process is a random variable, whose 
distribution φ(ξ) provides information about the underlying stochastic process4, 49, 68. The result for φ(ξ) for FBM 
is depicted in Fig. 3. The top panels show the scatter distribution for different values of the anomalous diffusion 
exponent α, in the middle and at the bottom rows the scatter distribution is shown for different lag times Δ for 
the case of subdiffusion and superdiffusion with α = 0.6 and α = 1.6 respectively. The left panels show the data 
in linear scales whereas the right panels use a semi-logarithmic scale. The tails of the distributions are fitted by 
exponentials. The special case of Brownian motion with α = 1 is fitted by a Gaussian distribution in the top panel.

For FBM the amplitude scatter distribution φ(ξ) was shown to be approximately Gaussian at sufficiently short 
lag times for subdiffusive FBM–the underlying argument was based on the assumption that for small Δ any two 
displacements do not overlap for successive time intervals49. It was also shown that φ(ξ) becomes highly asym-
metric for larger Δ49. As shown in Fig. 3 the Gaussian approximation indeed holds in the subdiffusive regime 
with 0 < α < 1 for Δ = 1. However, already for Δ = 5 the distribution φ(ξ) shows a pronounced asymmetry. In 
the superdiffusive case shown in the bottom panel of Fig. 3 this asymmetry is much more pronounced, and even 
in the case Δ = 1 the shape is obviously far beyond any Gaussian approximation. In all analysed cases the expo-
nential tail

φ ξ ξ− c( ) exp( ) (17)

appears to capture the behaviour well.
We quantify the asymmetry of φ(ξ) by using the skewness parameter (5), which by definition is a function of 

the ratio of the lag time versus the measurement time as well as the anomalous diffusion exponent α. A symmetric 
distribution is characterised by a zero-valued skewness. We consider a distribution significantly skewed when the 
absolute value of the skewness parameter exceeds unity. Depending on the sign of the skewness a distribution can 
be skewed to the left or right. The skewness parameter evaluated from our simulations is shown in Fig. 4. For the 
special case of Brownian motion the explicit expression is known from47. The comparison to simulated data can 
be seen in Fig. 5, showing excellent agreement. Although the explicit formula for the skewness, apart from this 
special case, is unknown, the data can be tentatively fitted to a power-law in the ratio t/Δ of the measurement and 
lag times (the data are obtained for the fixed lag time Δ = 1) in the form

γ Δ




Δ 

 .
β

t
t

( / )
(18)

The scaling exponent β and its derivative dβ/dα are shown in the right panel of Fig. 4. For subdiffusive FBM the 
value of β remains approximately constant at around 1/2 for the entire subdiffusive range 0 < α < 1, leading to a 
rapid decay of the skewness as function of t/Δ, and thus an approximate validity of the Gaussian distribution for 
φ(ξ) proposed in ref. 49. In particular, in this analysis the Brownian limit α = 1 does not appear distinguished. 
However, once we reach the superdiffusive domain 1 < α < 2 the exponent β exhibits a distinct decay to zero. This 
means that for more superdiffusive FBM the asymmetry of φ(ξ) is a long-ranging characteristic of the process. 
We also note that the variation of β with the anomalous diffusion exponent becomes most delicate at the value 
α = 3/2, at which the (Δ/t)-scaling of the EB parameter crosses over, see Eq. (12).

Figure 6 further analyses these observations in terms of the kurtosis. For the subdiffusive domain 0 < α < 1 the 
kurtosis converges relatively quickly to the expected value  = 3 for a Gaussian amplitude scatter distribution. 
Even for α = 1.2 the deviation is moderate. In contrast to this, for larger values of α the kurtosis converges signif-
icantly more slowly and assumes larger values, thus pointing at increasingly large outliers in the superdiffusive 
domain.

The strong asymmetry of the amplitude scatter distribution for FBM quantified in terms of the skewness and 
the kurtosis is our second main result.

Figure 2.  Analytical result (12) for the EB parameter of FBM, represented by the solid lines. The results of the 
numerical integrations of (11) are represented by the symbols and are calculated via the trapezoidal rule with 
integration step 10−3. Very good agreement is observed over the entire range of α.
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Figure 3.  Amplitude scatter distributions φ(ξ) for FBM. Top: different values of the anomalous diffusion 
exponent, with t = 26 and Δ = 1. The case of Brownian motion with α = 1 is shown with a Gaussian fit. Middle: 
different lag times for α = 0.6 and t = 26. A Gaussian fit for the short lag time Δ = 1 shows nice agreement 
with the data, whereas at longer Δ the asymmetry of φ(ξ) becomes obvious in the semi-log scale on the right. 
Bottom: different lag times for α = 1.6 and t = 26. High asymmetry of φ(ξ) is observed. In the semi-log scale on 
the right the tails are fitted exponentially.

Figure 4.  Skewness parameter of FBM as a function of the ratio t/Δ of the measurement and lag times from 
simulations evaluated at fixed Δ = 1, averaged over 105 trajectories. Right: scaling exponent β of the skewness 
(squares) and the respective derivative dβ/dα (circles). Note the left and right ordinates in the right panel.
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Subdiffusive continuous time random walk.  CTRWs were introduced by Montroll, Weiss, Scher, and 
Shlesinger and are jump processes characterised by random waiting times τ in between successive  
jumps7, 8, 69–71. These τ are assumed to be distributed according to the probability density function ψ(τ). As long 
as the mean waiting time ∫τ τψ τ τ〈 〉 =

∞ d( )
0

 remains finite, the associated CTRW process renormalises to a 
discrete time random walk with absolutely sharp distribution ψ(τ) = δ(τ − 〈τ〉) of waiting times for sufficiently 
long times τt 72. However, once a power-law form ψ τ τ τ τ α− −

( ) ( / )0 0
1  with 0 < α < 1 is chosen the char-

acteristic waiting time 〈τ〉 diverges and ψ(τ) is scale free. The resulting process describes anomalous diffusion 
of the form (1). Note that this is consistent with the form ψ τ− α

u u( ) 1 ( )0  in Laplace space73 which for 
0 < α < 1 relates to the characteristic function of a completely one-sided Lévy stable law, and for α = 1 corre-
sponds to ψ(τ) = δ(τ − τ0) with τ0 = 〈τ〉72, 73. A power-law form for the waiting time density in terms of τ is 
sometimes chosen, and in that case the characteristic waiting diverges marginally for α = 1. However, in our 
formulation based on the Shlesinger-Hughes idea in Laplace space, the limit α = 1 with the finite mean waiting 
time results consistently.

Power-law waiting time densities are intimately connected with random energy landscapes with exponential 
distribution of depths7, comb models74, weakly chaotic and turbulent systems75–77, as well as dynamic maps78–80. 
In experiments they are widely observed4. Subdiffusive CTRWs are non-stationary and weakly non-ergodic in the 
sense that the inequivalence δ Δ ≠ Δx( ) ( )2 2  remains true at arbitrarily long times4, 37, 38.

In the limit of many jumps subdiffusive CTRWs are characterised by the amplitude scatter distribution38

φ ξ α
αξ

α
ξ

=
Γ + 


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Γ + 


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α α
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α→∞ + llim ( ) (1 ) (1 ) ,
(19)t

1/

1 1/

1/

1/

where lα(z) is a one-sided Lévy stable law with the Laplace image exp(−uα)4.
Figure 7 shows the amplitude scatter distribution φ(ξ) for various α. In particular, the high degree of asym-

metry of the shape of φ(ξ) becomes obvious: even for quite large α the maximum of φ(ξ) stays to the right of the 
ergodic value ξ = 1. In the Brownian limit the distribution (19) converges to a δ-peak, φ(ξ) = δ(ξ − 1)38, 47, reflect-
ing the fact that all realisations have the same, fully reproducible amplitude.

Due to the relation between the Mittag-Leffler distribution ρα(x) and the one-sided Lévy stable law

Figure 5.  Numerical evaluation of the skewness of FBM for the special case α = 1 (blue dots). The solid line 
represents the analytic result from47.

Figure 6.  Kurtosis of FBM as function of the ratio t/Δ at fixed Δ = 1, averaged over 105 trajectories. The solid 
line represents the analytical result for Brownian motion (α = 1) from47. The value α = 3 corresponds to a 
Gaussian distribution.
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with s ≥ 0 and 0 < α < 1, we can rewrite relation (19) as
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Using the moment-generating function Mξ(s) = Eα(−sΓ(1 + α)) the moments can be generated by
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Explicitly, we thus obtain the four lowest order moments in the form
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consistent with the result in ref. 38, and the skewness parameter assumes the form

γ =
− +

−
.

α
α

α
α

α
α

Γ +
Γ +

Γ +
Γ +

Γ +
Γ +( )

6 6 2

2 1
(26)

(1 )
(1 3 )

(1 )
(1 2 )

(1 )
(1 2 )

3/2

3 2

2

For the kurtosis we obtain

=
− + −

−
.

α
α

α
α

α
α

α
α

Γ +
Γ +

Γ +
Γ +

Γ +
Γ +

Γ +
Γ +( )

24 24 12 3

2 1
(27)

(1 )
(1 4 )

(1 )
(1 3 )

(1 )
(1 2 )

(1 )
(1 2 )

2

4 3 2

2


Figure 8 shows the EB parameter, the skewness, and the kurtosis of the subdiffusive CTRW as a function of the 
anomalous diffusion exponent α. The EB parameter shows a relatively moderate variation over the interval 
α∈(0,1] and decays monotonically from EB = 1 at α → 0 to EB = 0 in the Brownian case α = 1. In the Brownian 
limit α = 1 corresponding to Brownian motion with finite moments 〈τk〉 of the waiting times the skewness and 

Figure 7.  Distribution φ(ξ) of the amplitude scatter variable ξ of CTRW according to Eq. (50) or Eq. (51), 
respectively for the indicated α, calculated with Mathematica.
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kurtosis reduce to γ = 0 and  = 3, respectively. The approach to these Gaussian values for finite t/Δ is detailed 
in Fig. 9. Note once more that according to our choice for the waiting time density starting from the expression 
ψ τ∼ − αu u( ) 1 ( )0  in Laplace space the form ψ(τ) = δ(τ − τ0) emerges in the Brownian limit, for which all 
moments are indeed finite.

Let us now turn to the subdiffusive case with 0 < α < 1. The skewness γ in Fig. 8 decays monotonically from 
γ = 2 in the limit α → 0 and generally has a more complex form than EB. γ changes its sign at around α = 0.78 
meaning that the scatter distribution switches from a right-skewed to a left-skewed distribution. For most of the 
range of the anomalous diffusion exponent the absolute value of the skewness is greater than unity–the two 
arrows in Fig. 8 indicate where γ crosses unity–and thus significantly skewed. In this region the EB parameter is 
thus not a sufficient quantity to characterise the shape of the amplitude scatter distribution φ(ξ). When we grad-
ually approach the Brownian case α = 1 we see that γ diverges to negative values and apparently does not con-
verge to its zero Brownian value. The reason for this lies in the very shape of φ(ξ) shown in Fig. 7. Namely, the 
maximum of φ(ξ) is not centred at the ergodic value ξ = 1. This off-centre behaviour persists until we fully reach 
the Brownian case α = 1. When φ(ξ) is sufficiently sharp such that we can evaluate the moments as if they were 
generated by a δ-function positioned at ξ = 1 + ε, we obtain 〈ξk〉 = (1 + ε)k. In the limit ε → 0 the skewness (5) 
indeed diverges to minus infinity. This heuristic argument is consistent with the limiting behaviour of expression 
(26) when we approach the Brownian case: γ α α= − −α→lim ( 1)/(1 )1

3/2. In contrast to the EB parameter, the 
skewness thus exhibits a discontinuous behaviour when we approach the Brownian limit. This is an important 
observation with respect to the analysis of subdiffusive CTRW processes. Note that in experiments values of 
α ≈ 0.9 are indeed observed and significant26.

Figure 8.  EB parameter (25), skewness (26), and kurtosis (27) (right ordinate) of the subdiffusive CTRW as a 
function of the anomalous diffusion exponent α. The solid lines represent the analytical results and the dots are 
the numerical results from a simulated CTRW based on ref. 115 with parameters Δs = 10−4, Δt = 10−3, 
NΔt = 107, ensemble averages are taken over 103 trajectories. The arrows mark the α values for which the 
absolute skewness crosses unity and are thus considered significant. Results from a discrete time random walk 
with Gaussian jump length distribution can be found in Fig. 9. Convergence to the limiting values γ = 0 and 

= 3  for Brownian motion47 can be clearly anticipated.

Figure 9.  Skewness and kurtosis for a discrete-time random walk with Gaussian jump length distribution. Solid 
lines represent the analytic result for Brownian motion from47. The convergence to γ = 0 and = 3  is nicely 
displayed by the data. While the skewness exhibits a power-law decay to zero the kurtosis appears to converge to 
its value much earlier and then does not change much any more.
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Similarly, the kurtosis also varies from an intermediate value for small α over a minimum, reaching quite large 
values when the anomalous diffusion exponent approaches unity. This divergent behaviour and the discontinuity 
at the point α = 1 can be rationalised analogously to the discussion of the skewness.

In comparison to FBM we note that for the subdiffusive CTRW we consider the shape parameters at t → ∞. 
Interestingly for both the EB parameter and the skewness the general trend is opposite: for FBM the smallest 
values occur for low α, while for the CTRW this corresponds to the largest values (not taken the divergencies 
for larger α into account). The higher order moments may therefore be good inference indicators for the CTRW 
mechanism. We also note that due to the larger variation of the skewness with α it may provide a useful tool 
to extract the anomalous diffusion exponent from sufficiently good data. The delicate variation of the kurtosis 
around α ≤ 1 makes it a particularly good indicator for α in this region.

The exact variation of γ and  with α and, in particular, their apparent divergence for α → 1 and discontinu-
ous behaviour at α = 1 are our third main result.

Ageing CTRW.  Often, the start of a measurement does not coincide with the initiation of the time evolu-
tion of the system. For instance, when we measure the motion of an endogenous lipid granule in a living cell, 
it is not clear what the starting point for this process is. Or, we could probe the charge current in amorphous 
semiconductors and on purpose introduce a time shift between the creation of the charge carriers and the 
moment when we switch on the driving electrical field81, 82. If the dynamics is stationary, a delay between sys-
tem initiation and start of the measurement does not make any difference, as the correlation functions solely 
depend on the time difference. In a non-stationary system, in contrast, we observe ageing phenomena4, similar 
to those in glassy systems83, 84. The delay between initiation and start of the measurement is called the ageing 
time ta

4.
Subdiffusive CTRWs represent a prototype case to study ageing effects85–89. It was shown that ageing in subdif-

fusive CTRWs leads to a population splitting into a fraction of particles, that never move during an observation 
period of duration t starting after the system has been allowed to age for the period ta – and a fraction of variable 
mobility88, 89. For the aged process the time averaged MSD is calculated via88, 89

∫δ Δ =
− Δ

+ Δ − .
+ −Δ

t
x t x t t( ) 1 [ ( ) ( )] d

(28)a
t

t t2 2

a

a

The distribution φ(ξ) for the ageing CTRW then yields in the form88, 89
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where mα is the probability to observe at least one jump during the observation period t88, 89,
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in terms of the incomplete Beta function90 with the power-law form α
α−

m t t t t( / ) ( / )a a
1  88, 89. The resulting EB 

parameter is, according to refs 88, 89
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EB 2 ([1 / ] ;1 , )

[1 (1 / ) ]
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a
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2

In analogy to the procedure outlined in Methods we determine the moments of ξ via the Mellin transform of 
the scatter distribution (29), yielding

Figure 10.  EB parameter, skewness, and kurtosis of ageing CTRW as a function of the anomalous diffusion 
exponent α in case of different ratios ta/t of the ageing time-to-measurement time. For comparison, we also 
include the behaviours of the parameters in the non-aged regime.
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Figure 10 shows the EB parameter, skewness, and kurtosis for CTRW for different ageing time-to-measurement 
time ratios. When the ageing time becomes more dominant we observe an increase of the degree of 
non-ergodicity, due to the increasing inhomogeneity of the jump statistic following the above-mentioned popu-
lation splitting88, 89. Except for a small parameter range of larger α the distribution is significantly asymmetric, as 
shown by the skewness parameter. Also outliers are more pronounced for an aged system, as can be seen for the 
kurtosis. These results for the shape parameters of the ageing process complete our study of CTRWs.

Heterogeneous diffusion process and gamma-distributed amplitude scatter distributions.  
Another important class of anomalous stochastic processes are heterogeneous diffusion processes (HDPs), which 
may be defined in terms of the multiplicative Langevin equation91

ζ= ×
x
t

D x td
d

2 ( ) ( ), (33)

in which ζ(t) represents Gaussian, delta-correlated noise with zero mean. We here briefly discuss the properties of 
HDPs for completeness. One of the well studied cases for the (quenched) position dependent diffusion coefficient 
is the power-law form91

= + βD x D x x( ) , (34)0 off

where D0 has the dimension cm2−β sec−1. The small shift xoff = 10−2 prevents the particle from being trapped 
at x = 0. In the Stratonovich interpretation the process was studied in detail in refs 91–93. It is known that the 
Stratonovich interpretation of the Langevin equation produces a so-called spurious drift, whereas a thermody-
namically consistent interpretation follows from the ‘isothermal’ discretisation94–96. Note that rigorous results 
on the general symmetries of overdamped multiplicative white noise processes, clarifying some prevailing mis-
conceptions on the Itô-Stratonovich dilemma and presenting an exact mapping of the different interpretations 
to a purely additive white noise process, were reported only recently97. Nevertheless, the notion of a ‘correct’ 
interpretation of multiplicative white noise Langevin equations is always context dependent98–100, as it was 
shown, for example, that general non-linear relaxation processes not satisfying a fluctuation-dissipation the-
orem in fact obey a Fokker-Planck equation following from the Itô interpretation of the underlying Langevin 
equation101. Moreover, as we here advocate the general importance of higher-order statistics in the quantifica-
tion of stationary and/or ergodic properties of single-particle time series data, the specific interpretation of the 
multiplicative white noise Langevin equation is not critical. A particle in the diffusivity field D(x) is effectively 
pushed into regions of ever smaller diffusivity. The MSD of the process follows the power-law form (1) with 
α = 2/(2 − β)91.

Figure 11 shows two representative probability density functions of the HDP amplitude scatter generated by 
the simulation scheme

ξ ξ− =




+ 

 × − .+

+
+x x D

x x
2

2
( )

(35)i i
i i

i i1
1

1

This probability density function can be fitted by the generalised Gamma distribution91

Figure 11.  Scatter distribution of a heterogeneous diffusion process with parameters D0 = 1, trajectory 
length t = 104, number of trajectories N = 104. Left figure: β = 1, parameters of the fit: a = 2.31, b = 1.28 × 106, 
ν = −3.08. Right figure: β = −1, parameters of the fit: a = 76.91, b = 1.85 × 103, ν = −77.72.
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with three fitting parameters a, b and ν and ξ > 0. Here Kν is the modified Bessel function of the second kind90. 
This distribution has exponential cutoffs for both small and large argument, as specified by the parameters a and 
b. In between, it exhibits power-law scaling with exponent ν − 1. This form is similar to generic first passage den-
sities of stochastic processes102. The above density has the moments103

ξ〈 〉 = ν

ν

+ab
K a b

K a b
( )

(2 / )
(2 / )

,
(37)

k k k/2

From which the EB parameter, the skewness, and the kurtosis can be readily constructed. Investigating the respec-
tive quantities numerically shows that the skewness can reach values larger than unity and the kurtosis may attain 
very large values, pointing at significant outliers in φ(ξ).

Discussion
We presented an analysis of the amplitude scatter distribution of the time averaged MSD of various, widely used 
anomalous diffusion processes: FBM is an ergodic process in the sense that time and ensemble averages of phys-
ical observables converge to each other. Subdiffusive CTRW and HDPs are weakly non-ergodic and show a dis-
parity between time and ensemble averages4. In all cases we identified relevant situations when the amplitude 
scatter distribution is not sufficiently characterised by the ergodicity breaking parameter EB due to the significant 
skewness of the distribution. A rough criterion for when the skewness is non-negligible is given when the absolute 
value of the skewness exceeds unity. As important additional parameters for the quantitative description of the 
amplitude scatter of the time averaged MSD, we analysed this skewness as well as the kurtosis of these processes. 
We believe that the results presented here are important additional characteristics for the analysis of anomalous 
stochastic time series measured in experiments and simulations in complex systems. Moreover they demon-
strate the importance of the higher order moments of φ(ξ) in the analysis of data garnered from experiments 
or simulations. The amplitude scatter distribution φ(ξ) is a very useful quantity to classify anomalous stochastic 
processes. Higher order moments, as shown here, provide even more relevant information for the physical clas-
sification and interpretation of stochastic data. We note that, indeed, following better data from experiments, 
higher order moments provide useful information for various processes, for instance, shown in a recent study of 
enzyme kinetics104.

Specifically for FBM we revisited the EB parameter and showed that with a less severe approximation 
EB is continuous over the entire range of the anomalous diffusion exponent, 0 < α < 2, and no singularity 
at α = 3/2 occurs. We showed that the previous results are in good agreement with the ones found here 
sufficiently far away from α = 3/2. We also showed that while a previous assumption that the amplitude 
scatter distribution of FBM is Gaussian for short lag times is approximately correct for subdiffusive FBM, 
for anomalous diffusion exponents in the superdiffusive range strong asymmetries of the scatter distribution 
arise for which the Gaussian description becomes inadequate and the skewness therefore is an important 
parameter to quantify the distribution. Cognisance of this fact is particularly important for generalisations 
of first passage processes in chemical and molecular biological contexts105–107, especially when active modes 
are present108, 109. Note that indeed in ref. 34 the superdiffusive transport inside amoeba cells was shown to 
be of FBM form.

As parameter inference from stochastic time series is being increasingly recognised as an important field in 
the theory of stochastic processes, analyses demonstrate that it is vital to compare several complementary meas-
ures for a given time series, in order to identify the very physical nature of the underlying stochastic mechanism 
(FBM, HDP, CTRW, etc.) and correctly infer the parameters in this process4. Apart from the ensemble and time 
averaged MSDs, the EB parameter as well as the amplitude scatter distribution φ(ξ) and its shape parameters γ 
and  analysed in this work we mention ratios of ensemble moments and the mean maximal excursion 
method110, fractional order moments33, the p-variation method54–56, Bayesian ranking111, or ageing  
analysis13, 14, 26–29, see also the review112 on analysis of diffusive motion. Generally, using several complementary 
methods improves the quality of the data inference. As we show here γ and  are relevant parameters to distin-
guish stochastic processes from each other but also to extract good estimates for the anomalous diffusion expo-
nent α itself, due to their high α-sensitivity.

An alternative approach is to use the time averaged van Hove cross-correlation functional22

∫χ
δ χ

πχ
Δ =

− Δ
+ Δ − −

.
−Δ

G
T

t t
t( , ) 1 ( r( ) r( ) )

4
d

(38)tt
T

0 2

Here 4πχ2Gtt(χ,Δ) is the probability density to find the particle at time Δ + t′ at a relative displacement between 
χ and χ + dχ. This cross-correlation function essentially describes the frequency of occurrences of jump lengths 
χ along the trajectory during the lag time delta. Analysing this distribution for various values of Δ provides 
additional information about the process. Especially the physical aspects underlying the bimodality of the scatter 
distribution for aged CTRW processes might be visible in an analysis of the van Hove cross-correlation function, 
an aspect requiring substantial simulations work in the future.
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Methods
Calculation of the EB parameter for FBM.  We start with Eq. (11). Introducing τ = t′/Δ the integrand 
simplifies to terms of (1 + τ)α and |1 − τ|α,
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We expand the integrands using the generalised binomial series
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which converges absolutely for |x| < 1. In order to assure an absolute convergence for all Δ/t as well as all α, we 
rewrite the integral as
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Explicitly, Eq. (11) becomes
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We interchange the integral and the sums and take the limit ε → 0. Note that we have not made any approxi-
mation up to this point. Focusing on Δ t/ 1 we only keep terms of leading order. As we show below, the special 
result for α = 3/2 can be obtained smoothly from this result by taking the limit α → 3/2 from below and from 
above. For α ≠ 3/2 after performing the integrals we obtain
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The last term (Δ/t)2(n+n′−α) only becomes relevant if n,n′ = 1. The contributions of the sums decrease as n,n′ 
increase. Hence, being interested in Δ t/ 1 we may neglect all terms but those with n,n′ = 1. Thus, we find Eq. 
(12) in the main text.

Alternatively Eq. (11) can be calculated explicitly leading to the expression
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For the reason of clarity we decided to use the approximation above since it shows excellent agreement with 
the numerical results.

We note in passing that a direct use of Mathematica to evaluate the integrals leads to problematic results, as the 
necessary analytic continuations for the involved special functions are neglected.

Continuous time random walk: calculation of the moments and skewness in the Brownian 
limit.  We here consider an alternative derivation of the amplitude scatter distribution and its moments for 
subdiffusive CTRW in terms of a Fox H-function. Identifying the Laplace image of a one-sided Lévy stable density 
lα(t) with the corresponding H-function yields113

α α− = 



− 

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αu H uexp( ) 1
(0, 1/ ) (45)0,1

1,0

By help of the Laplace inversion formula in ref. 114 one then obtains the representation
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Given the argument in lα and the prefactor in Eq. (19), this means that
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The moments of ξ can then be obtained as the Mellin transform of the H-function, which we know as the 
kernel of the defining Mellin-Barnes integral, see, e.g.ref. 8,
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where the kernel of the H-function in relation (48) is ref. 113
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To obtain concrete forms of φ(ξ) in terms of simpler functions one can use the series expansion of the 
H-function113,
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By help of Mathematica this computable form of φ(ξ) then outputs, for instance,
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2

for α = 1/2. Exact yet somewhat more complicated forms can be obtained for α = 2/3, 3/4, 9/10, and 19/20, to 
study the change of shape when α → 1.

Brownian limit.  If φ(ξ) = δ(ξ − 1) for the Brownian case expected from the fact that all moments of ψ(τ) are 
finite, what is then the skewness γ associated with it? Consider the limiting distribution

ϕ ξ
πσ σ

ξ
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=
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−
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2
,

(52)2 2

2

2

normalised on the interval [0,∞) and centred at ξ = 1. Generally, γ for this choice of φ(ξ) depends on the width 
σ, but for sufficiently small σ values the expected result γ =σ→lim 00  for a Gaussian distribution is reached. This 
heuristic argument to evaluate γ for the Brownian case is consistent with the analytic derivation in ref. 47 Similar 
considerations hold for the kurtosis.

Can one now explain the minus infinity in γ (and analogously for the kurtosis)? Consider the general expres-
sion for the skewness,

γ ξ ξ
ξ

=
− +

−
.

⟨ ⟩ ⟨ ⟩
⟨ ⟩

3 2
( 1) (53)

3 2

2 3/2

Now assume that for α → 1 the scatter distribution indeed converges towards the δ peak at ξ = 1, how-
ever, always stays centred a little to the right of ξ = 1, say ξ = 1 + ε. We then see that all moments become  
〈ξk〉 = 1 + ε. Indeed, γ → −∞ as ε → 0. That in fact the peak is somewhat to the right of ξ = 1 can be seen in Fig. 7. 
This means that the convergence to the δ shape is faster than the shift of the central position towards unity.

References
	 1.	 Bräuchle, C., Lamb, D. C. & Michaelis, J. Single Particle Tracking and Single Molecule Energy Transfer (Wiley-VCH, Weinheim, 

Germany, 2012).
	 2.	 Xie, X. S., Choi, P. J., Li, G.-W., Lee, N. K. & Lia, G. Single-molecule approach to molecular biology in living bacterial cells. Annu. 

Rev. Biophys. 37, 417 (2008).
	 3.	 Saxton, M. J. & Jacobsen, K. Single-particle tracking: applications to membrane dynamics. Ann. Rev. Biophys. Biomol. Struct. 26, 

373 (1997).
	 4.	 Metzler, R., Jeon, J.-H., Cherstvy, A. G. & Barkai, E. Anomalous diffusion models and their properties: non-stationarity, non-

ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 16, 24128 (2014).
	 5.	 Höfling, F. & Franosch, T. Anomalous transport in the crowded world of biological cells. Rep. Progr. Phys. 76, 046602 (2013).
	 6.	 Metzler, R., Jeon, J.-H. & Cherstvy, A. G. Non-Brownian diffusion in lipid membranes: Experiments and simulations. Biochim. 

Biophys. Acta 1858, 2451 (2016).
	 7.	 Bouchaud, J.-P. & Georges, A. Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. 

Phys. Rep. 195, 127 (1990).
	 8.	 Metzler, R. & Klafter, J. The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1 (2000).
	 9.	 Weiss, M., Elsner, M., Kartberg, F. & Nilsson, T. Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. 

Biophys J. 57, 5 (2004).
	 10.	 Golding, I. & Cox, E. C. Physical Nature of Bacterial Cytoplasm. Phys. Rev. Lett. 96, 098102 (2006).
	 11.	 Bronstein, I. et al. Transient Anomalous Diffusion of Telomeres in the Nucleus of Mammalian Cells. Phys. Rev. Lett. 103, 018102 

(2009).



www.nature.com/scientificreports/

1 6Scientific Reports | 7: 3878  | DOI:10.1038/s41598-017-03712-x

	 12.	 Weber, S. C., Spakowitz, A. J. & Theriot, J. A. Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm. 
Phys. Rev. Lett. 104, 238102 (2010).

	 13.	 Tabei, S. M. A. et al. Intracellular transport of insulin granules is a subordinated random walk. Proc. Natl. Acad. Sci. USA 110, 4911 
(2013).

	 14.	 Jeon, J.-H. et al. In Vivo Anomalous Diffusion and Weak Ergodicity Breaking of Lipid Granules. Phys. Rev. Lett. 106, 048103 (2011).
	 15.	 Molina-García, D., Pham, T. M., Paradisi, P., Manzo, C. & Pagnini, G. Fractional kinetics emerges from ergodicity breaking in 

random media. Phys. Rev. E 94, 052147 (2016).
	 16.	 Szymanski, J. & Weiss, M. Elucidating the Origin of Anomalous Diffusion in Crowded Fluids. Phys. Rev. Lett. 103, 038102 (2009).
	 17.	 Guigas, G., Kalla, C. & Weiss, M. Probing the nanoscale viscoelasticity of intracellular fluids in living cells. Biophys. J. 93, 316 

(2007).
	 18.	 Jeon, J.-H., Leijnse, N., Oddershede, L. B. & Metzler, R. Anomalous diffusion and power-law relaxation of the time averaged mean 

squared displacement in worm-like micellar solutions. New J. Phys. 15, 045011 (2013).
	 19.	 Wong, I. Y. et al. Anomalous Diffusion Probes Microstructure Dynamics of Entangled F-Actin Networks. Phys. Rev. Lett. 92, 

178101 (2004).
	 20.	 Hansing, J. et al. Nanoparticle filtering in charged hydrogels: Effects of particle size, charge asymmetry and salt concentration. Euro. 

Phys. J. E 39, 53 (2016).
	 21.	 Xu, Q., Feng, L., Sha, R., Seeman, N. C. & Chaikin, P. M. Subdiffusion of a Sticky Particle on a Surface. Phys. Rev. Lett. 106, 228102 

(2011).
	 22.	 Godec, A., Bauer, M. & Metzler, R. Collective dynamics effect transient subdiffusion of inert tracers in flexible gel networks. New 

J. Phys. 16, 092002 (2014).
	 23.	 Weiss, M., Hashimoto, H. & Nilsson, T. Anomalous Protein Diffusion in Living Cells as Seen by Fluorescence Correlation 

Spectroscopy. Biophys. J. 84, 4043 (2003).
	 24.	 Kneller, G. R., Baczynski, K. & Pasienkewicz-Gierula, M. Communication: consistent picture of lateral subdiffusion in lipid 

bilayers: molecular dynamics simulation and exact results. J. Chem. Phys. 135, 141105 (2011).
	 25.	 Jeon, J.-H., Monne, H. M.-S., Javanainen, M. & Metzler, R. Anomalous Diffusion of Phospholipids and Cholesterols in a Lipid 

Bilayer and its Origins. Phys. Rev. Lett. 109, 188103 (2012).
	 26.	 Weigel, A. V., Simon, B., Tamkun, M. M. & Krapf, D. Ergodic and nonergodic processes coexist in the plasma membrane as 

observed by single-molecule tracking. Proc. Natl. Acad. Sci. USA 108, 6438 (2011).
	 27.	 Yamamoto, E., Akimoto, T., Yasui, M. & Yasuoka, K. Origin of subdiffusion of water molecules on cell membrane surfaces. Sci. Rep. 

4, 4720 (2014).
	 28.	 Manzo, C. et al. Weak Ergodicity Breaking of Receptor Motion in Living Cells Stemming from Random Diffusivity. Phys. Rev X 5, 

011021 (2015).
	 29.	 Jeon, J.-H., Javanainen, M., Martinez-Seara, H., Metzler, R. & Vattulainen, I. Protein Crowding in Lipid Bilayers Gives Rise to Non-

Gaussian Anomalous Lateral Diffusion of Phospholipids and Proteins. Phys. Rev. X 6, 021006 (2016).
	 30.	 Berkowitz, B., Cortis, A., Dentz, M. & Scher, H. Modeling Non-Fickian Transport in Geological Formations as a Continuous Time 

Random Walk. Rev. Geophys. 44, RG2003 (2006).
	 31.	 Caspi, A., Granek, R. & Elbaum, M. Enhanced Diffusion in Active Intracellular Transport. Phys. Rev. Lett. 85, 5655 (2000).
	 32.	 Robert, D., Nguyen, T. H., Gallet, F. & Wilhelm, C. In vivo determination of fluctuating forces during endosome trafficking using a 

combination of active and passive microrheology. PLoS ONE 5, e10046 (2010).
	 33.	 Gal, N. & Weihs, D. Experimental evidence of strong anomalous diffusion in living cells. Phys. Rev. E 81, 020903(R) (2010).
	 34.	 Reverey, J. F., Jeon, J.-H., Leippe, M., Metzler, R. & Selhuber-Unkel, C. Superdiffusion dominates intracellular particle motion in 

the supercrowded cytoplasm of pathogenic Acanthamoeba castellanii. Sci. Rep. 5, 11690 (2015).
	 35.	 Monserud, J. H. & Schwartz, D. K. Interfacial Molecular Searching Using Forager Dynamics. Phys. Rev. Lett. 116, 098303 (2016).
	 36.	 Campagnola, G., Nepal, K., Schroder, B. W., Peersen, O. B. & Krapf, D. Superdiffusive motion of membrane-targeting C2 domains. 

Sci. Rep. 5, 17721 (2015).
	 37.	 Barkai, E., Garini, Y. & Metzler, R. Strange kinetics of single molecules in living cells. Phys. Today 65(8), 29 (2012).
	 38.	 He, Y., Burov, S., Metzler, R. & Barkai, E. Random Time-Scale Invariant Diffusion and Transport Coefficients. Phys. Rev. Lett. 101, 

058101 (2008).
	 39.	 Lubelski, A., Sokolov, I. M. & Klafter, J. Nonergodicity Mimics Inhomogeneity in Single Particle Tracking. Phys. Rev. Lett. 100, 

250602 (2008).
	 40.	 Bouchaud, J.-P. Weak ergodicity breaking and aging in disordered systems. J. Phys. I France 2, 1705 (1992).
	 41.	 Bel, G. & Barkai, E. Weak Ergodicity Breaking in the Continuous-Time Random Walk. Phys. Rev. Lett. 94, 240602 (2005).
	 42.	 Bel, G. & Barkai, E. Random walk to a nonergodic equilibrium concept. Phys. Rev. E 73, 016125 (2006).
	 43.	 Rebenshtok, A. & Barkai, E. Distribution of time-averaged observables for weak ergodicity breaking. Phys. Rev. Lett. 99, 210601 

(2007).
	 44.	 Lomholt, M. A., Zaid, I. M. & Metzler, R. Subdiffusion and Weak Ergodicity Breaking in the Presence of a Reactive Boundary. Phys. 

Rev. Lett. 98, 200603 (2007).
	 45.	 Deng, W. & Barkai, E. Ergodic properties of fractional Brownian-Langevin motion. Phys. Rev. E 79, 011112 (2009).
	 46.	 Rytov, S. M., Kravtsov, Y. A. & Tatarskii, V. I. Principles of statistical radiopysics 1: elements of random process theory (Springer, 

Heidelberg, 1987).
	 47.	 Andreanov, A. & Grebenkov, D. S. Time-averaged MSD of Brownian motion. J. Stat. Mech. P07001 (2012).
	 48.	 Jeon, J.-H. et al. In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. Phys. Rev. Lett. 106, 048103 (2011).
	 49.	 Jeon, J.-H. & Metzler, R. Analysis of short subdiffusive time series: scatter of the time-averaged mean-squared displacement. J. Phys. 

A 43, 252001 (2010).
	 50.	 Rostek, S. & Schöbel, R. A note on the use of fractional Brownian motion for financial modeling. Econom. Model 30, 30 (2013).
	 51.	 Chakravarti, N. & Sebastian, K. L. Fractional Brownian motion models for polymers. Chem. Phys. Lett. 267, 9 (1997).
	 52.	 Lim, S. C. & Teo, L. P. Modeling single-file diffusion with step fractional Brownian motion and a generalized fractional Langevin 

equation. J. Stat. Mech. P08015 (2009).
	 53.	 Burnecki, K. et al. Universal Algorithm for Identification of Fractional Brownian Motion. A Case of Telomere Subdiffusion. 

Biophys. J. 103, 1839 (2012).
	 54.	 Magdziarz, M., Weron, A., Burnecki, K. & Klafter, J. Fractional Brownian Motion Versus the Continuous-Time Random Walk: A 

Simple Test for Subdiffusive Dynamics. Phys. Rev. Lett. 103, 180602 (2009).
	 55.	 Magdziarz, M. & Klafter, J. Detecting origins of subdiffusion: P-variation test for confined systems. Phys. Rev. E 82, 011129 (2010).
	 56.	 Jeon, J.-H., Barkai, E. & Metzler, R. Noisy continuous time random walks. J. Chem. Phys. 139, 121916 (2013).
	 57.	 Goychuk, I. Viscoelastic subdiffusion: From anomalous to normal. Phys. Rev. E 80, 046125 (2009).
	 58.	 Goychuk, I. Viscoelastic Subdiffusion: Generalized Langevin Equation Approach. Adv. Chem. Phys. 150, 187 (2012).
	 59.	 Mandelbrot, B. B. & Van Ness, J. W. Fractional Brownian Motions, Fractional Noises and Applications. SIAM Rev. 10, 422 (1968).
	 60.	 Kolmogorov, A. N. Curves in Hilbert spaces invariant relative to one-parametric group of motions. Dokl. Akad. Nauk SSSR 26, 6 

(1940).
	 61.	 Jeon, J.-H. & Metzler, R. Fractional Brownian motion and motion governed by the fractional Langevin equation in confined 

geometries. Phys. Rev. E 81, 021103 (2010).



www.nature.com/scientificreports/

17Scientific Reports | 7: 3878  | DOI:10.1038/s41598-017-03712-x

	 62.	 Kou, S. C. & Xie, X. S. Generalized Langevin Equation with Fractional Gaussian Noise: Subdiffusion within a Single Protein 
Molecule. Phys. Rev. Lett. 93, 180603 (2004).

	 63.	 Qian, H. In Processes with long-ranged correlations: theory and applications (eds Rangarajan, G. & Ding, M. Z.) Lecture Notes in 
Physics vol. 621 (Springer, New York, 2003).

	 64.	 Hosking, J. R. M. Modeling persistence in hydrological time series using fractional differencing. Water Res. Res. 20, 1898 (1984).
	 65.	 Dieker, A. B. Simulation of fractional Brownian motion. MSc Theses (Vrije Universiteit Amsterdam, 2002).
	 66.	 Kursawe, J., Schulz, J. & Metzler, R. Transient aging in fractional Brownian and Langevin-equation motion. Phys. Rev. E 88, 062124 

(2013).
	 67.	 Jeon, J.-H. & Metzler, R. Inequivalence of time and ensemble averages in ergodic systems: Exponential versus power-law relaxation 

in confinement. Phys. Rev. E 85, 021147 (2012).
	 68.	 Burov, S., Jeon, J.-H., Metzler, R. & Barkai, E. Single particle tracking in systems showing anomalous diffusion: the role of weak 

ergodicity breaking. Phys. Chem. Chem. Phys. 13, 1800 (2011).
	 69.	 Montroll, E. W. & Weiss, G. H. Random Walks on Lattices. III. Calculation of First-Passage Times with Application to Exciton 

Trapping on Photosynthetic Units. J. Math. Phys 10, 753 (1969).
	 70.	 Scher, H. & Montroll, E. W. Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B 12, 2455 (1975).
	 71.	 Shlesinger, M. F. Asymptotic solutions of continuous-time random walks. J. Stat. Phys 10, 421 (1974).
	 72.	 Hughes, B. D. Random walks and random environments, vol 1: random walks (Oxford University Press, Oxford, UK, 1995).
	 73.	 Klafter, J., Blumen, A. & Shlesinger, M. F. Stochastic pathway to anomalous diffusion. Phys. Rev. A 35, 3081 (1987).
	 74.	 Weiss, G. H. & Havlin, S. Some properties of a random walk on a comb structure. Physica A 134, 474 (1986).
	 75.	 Zaslavsky, G. M. Hamiltonian Chaos and Fractional Dynamics (Oxford University Press, Oxford, UK, 2005).
	 76.	 Solomon, T. H., Weeks, E. R. & Swinney, H. L. Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating 

flow. Phys. Rev. Lett. 71, 3975 (1993).
	 77.	 Young, W., Pumir, A. & Pomeau, Y. Anomalous diffusion of tracer in convection rolls. Phys. Fluids A 1, 462 (1989).
	 78.	 Geisel, T. & Thomae, S. Anomalous Diffusion in Intermittent Chaotic Systems. Phys. Rev. Lett. 52, 1936 (1984).
	 79.	 Geisel, T., Nierwetberg, J. & Zacherl, A. Accelerated Diffusion in Josephson Junctions and Related Chaotic Systems. Phys. Rev. Lett. 

54, 616 (1985).
	 80.	 Zumofen, G. & Klafter, J. Scale-invariant motion in intermittent chaotic systems. Phys. Rev. E 47, 851 (1993).
	 81.	 Schubert, M. et al. Mobility relaxation and electron trapping in a donor/acceptor copolymer. Phys. Rev. B 87, 024203 (2013).
	 82.	 Krüsemann, H., Schwarzl, R. & Metzler, R. Ageing Scher-Montroll Transport. Transp. Porous Media 115, 327 (2016).
	 83.	 Henkel, M., Pleimling, M. & Sanctuary, R. Ageing and the Glass Transition (Springer, Berlin, 2007).
	 84.	 Donth, E. The Glass Transition (Springer, Berlin, 2001).
	 85.	 Monthus, C. & Bouchaud, J.-P. Models of traps and glass phenomenology. J. Phys. A 29, 3847 (1996).
	 86.	 Barkai, E. Aging in Subdiffusion Generated by a Deterministic Dynamical System. Phys. Rev. Lett. 90, 104101 (2003).
	 87.	 Barkai, E. & Cheng, Y. C. Aging Continuous Time Random Walks. J. Chem. Phys. 118, 6167 (2003).
	 88.	 Schulz, J. H. P., Barkai, E. & Metzler, R. Aging Effects and Population Splitting in Single-Particle Trajectory Averages. Phys. Rev. 

Lett. 110, 020602 (2013).
	 89.	 Schulz, J. H. P., Barkai, E. & Metzler, R. Aging Renewal Theory and Application to Random Walks. Phys. Rev. X 4, 011028 (2014).
	 90.	 Abramowitz, M. & Stegun, I. A. Handbook of Mathematical Functions (Dover, New York, 1964).
	 91.	 Cherstvy, A. G., Chechkin, A. V. & Metzler, R. Anomalous diffusion and ergodicity breaking in heterogeneous diffusion processes. 

New J. Phys. 15, 083039 (2013).
	 92.	 Cherstvy, A. G. & Metzler, R. Nonergodicity, fluctuations, and criticality in heterogeneous diffusion processes. Phys. Rev. E 90, 

012134 (2014).
	 93.	 Cherstvy, A. G. & Metzler, R. Population splitting, trapping, and non-ergodicity in heterogeneous diffusion processes. Phys. Chem. 

Chem. Phys. 15, 20220 (2013).
	 94.	 Lau, A. W. C. & Lubensky, T. C. State-dependent diffusion: Thermodynamic consistency and its path integral formulation. Phys. 

Rev. E 76, 011123 (2007).
	 95.	 Kuroiwa, T. & Miyazaki, K. Brownian motion with multiplicative noises revisited. J. Phys. A 47, 012001 (2014).
	 96.	 Hottovy, S., McDaniel, A., Volpe, G. & Wehr, J. The Smoluchowski-Kramers Limit of Stochastic Differential Equations with 

Arbitrary State-Dependent Friction. Commun. Math. Phys. 336, 1259 (2015).
	 97.	 Aron, C. et al. Dynamical symmetries of Markov processes with multiplicative white noise. J. Stat. Mech. 053207 (2016).
	 98.	 Volpe, G. & Wehr, J. Effective drifts in dynamical systems with multiplicative noise: a review of recent progress. Rep. Prog. Phys. 79, 

053901 (2016).
	 99.	 Ovchinnikov, I. V. Introduction to supersymmetric theory of stochastics. Entropy 18, 108 (2016).
	100.	 Kuroiwa, T. & Miyazaki, K. Brownian motion with multiplicative noises revisited. J. Phys. A: Math. Theor. 47, 012001 (2014).
	101.	 Kubo, R., Matsuo, K. & Kitahara, K. Fluctuation and relaxation of macrovariables. J. Stat. Phys. 9, 51 (1973).
	102.	 Mattos, T., Meja-Monasterio, C., Metzler, R. & Oshanin, G. First passages in bounded domains: When is the mean first passage 

time meaningful? Phys. Rev. E 86, 031143 (2012).
	103.	 Grebenkov, D. S. Probability distribution of the time-averaged mean-square displacement of a Gaussian process. Phys. Rev. E 84, 

031124 (2011).
	104.	 Barato, A. C. & Seifert, U. Skewness and Kurtosis in Statistical Kinetics. Phys. Rev. Lett. 115, 188103 (2015).
	105.	 Bénichou, O., Chevalier, C., Klafter, J., Mayer, B. & Voituriez, R. Geometry-controlled kinetics. Nat. Chem 2, 472 (2010).
	106.	 Godec, A. & Metzler, R. Universal proximity effect in target search kinetics in the few-encounter limit. Phys. Rev. X 6, 041037 

(2016).
	107.	 Godec, A. & Metzler, R. First passage time distribution in heterogeneity controlled kinetics: going beyond the mean first passage 

time. Sci. Rep. 6, 20349 (2016).
	108.	 Godec, A. & Metzler, R. Signal focusing through active transport. Phys. Rev. E 92, 010701(R) (2015).
	109.	 Loverdo, C., Bénichou, O., Moreau, M. & Voituriez, R. Enhanced reaction kinetics in biological cells. Nature Phys. 4, 134 (2008).
	110.	 Tejedor, V. et al. Quantitative Analysis of Single Particle Trajectories: Mean Maximal Excursion Method. Biophys. J. 98, 1364 

(2010).
	111.	 Robson, A., Burrage, K. & Leake, M. C. Inferring diffusion in single live cells at the single-molecule level. Trans. R. Soc. B 368, 

20120029 (2012).
	112.	 Meroz, Y. & Sokolov, I. M. A toolbox for determining subdiffusive mechanisms. Phys. Rep. 573, 1 (2015).
	113.	 Mathai, A. M., Saxena, R. K. & Haubold, H. J. The H-function (Springer, Berlin, 2010).
	114.	 Glöckle, W. G. & Nonnenmacher, T. F. Fox function representation of non-debye relaxation processes. J. Stat. Phys. 71, 741 (1993).
	115.	 Kleinhans, D. & Friedrich, R. Continuous-time random walks: Simulation of continuous trajectories. Rev. E 76, 061102 (2007).

Acknowledgements
We thank Eli Barkai and Denis Grebenkov for very helpful discussions. We also thank Andrey Cherstvy for 
sharing the data of heterogeneous diffusion processes and for discussions. We acknowledge funding through an 
Alexander von Humboldt Fellowship and an ARRS Project Z1-7296 (A.G.).



www.nature.com/scientificreports/

1 8Scientific Reports | 7: 3878  | DOI:10.1038/s41598-017-03712-x

Author Contributions
M.S., A.G., and R.M. conceived and carried out the research, M.S., A.G., and R.M. wrote and reviewed the paper.

Additional Information
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	Quantifying non-ergodicity of anomalous diffusion with higher order moments

	Results

	Fractional Brownian Motion. 
	Ergodicity breaking parameter. 
	Skewness and kurtosis of the amplitude scatter distribution. 
	Subdiffusive continuous time random walk. 
	Ageing CTRW. 
	Heterogeneous diffusion process and gamma-distributed amplitude scatter distributions. 

	Discussion

	Methods

	Calculation of the EB parameter for FBM. 
	Continuous time random walk: calculation of the moments and skewness in the Brownian limit. 
	Brownian limit. 

	Acknowledgements

	Figure 1 EB parameter of FBM divided by the respective scaling laws with respect to Δ/t for the regimes 0 < α < 3/2 and 3/2 < α < 2 according to Eq.
	Figure 2 Analytical result (12) for the EB parameter of FBM, represented by the solid lines.
	Figure 3 Amplitude scatter distributions φ(ξ) for FBM.
	Figure 4 Skewness parameter of FBM as a function of the ratio t/Δ of the measurement and lag times from simulations evaluated at fixed Δ = 1, averaged over 105 trajectories.
	Figure 5 Numerical evaluation of the skewness of FBM for the special case α = 1 (blue dots).
	Figure 6 Kurtosis of FBM as function of the ratio t/Δ at fixed Δ = 1, averaged over 105 trajectories.
	Figure 7 Distribution φ(ξ) of the amplitude scatter variable ξ of CTRW according to Eq.
	Figure 8 EB parameter (25), skewness (26), and kurtosis (27) (right ordinate) of the subdiffusive CTRW as a function of the anomalous diffusion exponent α.
	Figure 9 Skewness and kurtosis for a discrete-time random walk with Gaussian jump length distribution.
	Figure 10 EB parameter, skewness, and kurtosis of ageing CTRW as a function of the anomalous diffusion exponent α in case of different ratios ta/t of the ageing time-to-measurement time.
	Figure 11 Scatter distribution of a heterogeneous diffusion process with parameters D0 = 1, trajectory length t = 104, number of trajectories N = 104.




